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Abstract: Transformers have become popular in building end-to-end automatic speech recognition
(ASR) systems. However, transformer ASR systems are usually trained to give output sequences
in the left-to-right order, disregarding the right-to-left context. Currently, the existing transformer-
based ASR systems that employ two decoders for bidirectional decoding are complex in terms of
computation and optimization. The existing ASR transformer with a single decoder for bidirectional
decoding requires extra methods (such as a self-mask) to resolve the problem of information leakage
in the attention mechanism This paper explores different options for the development of a speech
transformer that utilizes a single decoder equipped with bidirectional context embedding (BCE) for
bidirectional decoding. The decoding direction, which is set up at the input level, enables the model
to attend to different directional contexts without extra decoders and also alleviates any information
leakage. The effectiveness of this method was verified with a bidirectional beam search method that
generates bidirectional output sequences and determines the best hypothesis according to the output
score. We achieved a word error rate (WER) of 7.65%/18.97% on the clean/other LibriSpeech test set,
outperforming the left-to-right decoding style in our work by 3.17%/3.47%. The results are also close
to, or better than, other state-of-the-art end-to-end models.

Keywords: automatic speech recognition (ASR); speech transformer; bidirectional decoder; bidirectional
embedding; end-to-end model; attention; bidirectional beam search

1. Introduction

Automatic speech recognition (ASR) is the process whereby an algorithm is used to
generate a sequence of words from a given speech signal. Traditional ASR systems usually
consist of independent parts, such as an acoustic model, a pronunciation model, and a
language model. These parts are trained separately and then combined for model inference.
Over the years, several end-to-end models [1–6] have emerged to address this undesirable
way of training by combining all the different parts into one network, thereby simplifying
the training process.

Recently, the transformer [7], an end-to-end model that mainly relies on self-attention,
has achieved superior results in natural language processing (NLP) tasks such as neural ma-
chine translation (NMT) and language modeling. In ASR, transformers have also achieved
outstanding results in different modeling paradigms such as sequence-to-sequence [8],
neural transducer [9], and connectionist temporal classification (CTC) systems [10,11]. A
transformer network has a stack of encoder and decoder layers, and each layer performs
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computations for the whole sequence in parallel, which greatly improves efficiency. The
multi-head self-attention, which is a major component of the transformer, learns to directly
connect related positions in the entire sequence. This allows the network to exploit long-
range dependencies regardless of distance. This attention-based network has been found
to be more parallelizable and can be trained faster than other end-to-end models, which
are mostly based on recurrent neural networks (RNN).

However, transformer models built for ASR tasks are such that they are trained
to decode output sequences in a left-to-right order without considering the right-to-left
context. Extra components are needed to attend to the right-to-left context. Thus far,
very few research works have been carried out in response to this issue. In the current
literature, there are some works [12,13] that employ two decoders to tackle this issue.
One decoder is used for attending to the left-to-tight context and another decoder is
used for attending to the right-to-left context. This approach significantly boosts the
prediction performance. However, utilizing two decoders for such a task presents an
increased cost in both computation and optimization. There also exists works, such as that
in [14], which utilize a single decoder for bidirectional decoding. Due to the bidirectional
decoding implementation method at the architecture level, extra methods such as self-mask
are required to resolve the problem of information leakage in the self-attention during
model training.

This paper focuses on exploring different options to develop an improved speech trans-
former that utilizes a single decoder equipped with bidirectional context embedding (BCE)
for bidirectional decoding. In particular, the decoding direction of each input sequence
is set up at the input level of the decoder. This is in contrast to [14] where the decoding
direction was implemented at the architecture level. Therefore, while this approach enables
the model to generate bidirectional output sequences in a more efficient way without
relying on any extra decoders, it also alleviates the possible leakage of information in the
attention mechanism which was encountered by [14]. The left-to-right and right-to-left
decoding subtasks are jointly optimized with shared weights. Unlike [12], utilizing only one
decoder for such a task is desirable as it helps minimize the computational complexity. The
effectiveness of this method was verified with a bidirectional beam search (BBS) method
that generates bidirectional output sequences (i.e., left-to-right and right-to-left) and keeps
the hypothesis with the best score as the final output. On the LibriSpeech dataset [15],
the model achieves a word error rate (WER) of 7.65%/18.97% on the clean/other test sets,
which is 3.17%/3.47% better than the left-to-right decoding style in our work. With fewer
model parameters, the results are also close to or better than some state-of-the-art models.
No language model or data augmentation techniques were employed in this work. Our
main contributions in this paper are the following:

1. We propose to explore different options and implement an improved speech trans-
former that relies on a single decoder equipped with BCE for bidirectional decoding.
This significantly minimizes computation complexity compared to methods that
employ two decoders.

2. We trained the BCE, end to end, with unique sentence start tokens for each decoding
direction, allowing the model with its single decoder to directly generate a right-to-
left output without first generating a left-to-right output. This method alleviates the
possible information leakage in the attention mechanism, which was encountered by
other works.

3. A BBS method that generates bidirectional output sequences was implemented in the
decoding stage, and used to perform extensive analysis to show the effectiveness of
the model with different beam sizes. We also analyzed the performance of the model
on different sequence lengths.

The rest of the paper is organized as follows. Section 2 provides a summary of other
works related to this paper. Section 3 gives the details of the proposed method. Section 4
presents the details of the experimental work. Section 5 presents and discusses the obtained
results. Section 6 provides concluding remarks and suggestions for future works.
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2. Related Works
2.1. Existing Works on Transformers for ASR

The first transformer-based model for automatic speech recognition was proposed
by the authors of [16] in 2018. In contrast to [7], they replaced the embedding layer of the
encoder with convolution layers and reported promising results on the Wall Street Journal
corpus [17]. The authors of [10] extended the work by introducing CTC into the transformer
framework for a joint training and decoding. This approach made the training faster than
with RNNs and also assisted in language model integration. Hang et al. [18] proposed
a transformer-based dual-decoder system. The architecture was trained to perform both
speech recognition and speech translation. Works such as those in [19–21] have investigated
and proposed methods to improve the attention mechanism of the transformer for ASR.
In [22], the authors conducted series of experiments to on RNNs against transformers
for a number of ASR tasks and reported superior results with transformers. The authors
of [23] also reported robust effects on the LibriSpeech benchmark with transformers within
the hybrid system. Several works [24–26], as well as transformer transducers [9,27], have
demonstrated the effectiveness of transformer for online speech recognition. The authors
of [28] also employed an unsupervised pre-training method to enhance the transformer for
ASR. In [29], the authors reported that transformers perform even better when trained on
very large datasets.

2.2. Existing Works on Transformers with Bidirectional Decoders for ASR

In the current literature, very few works have been carried out on bidirectional trans-
formers for speech recognition. In an attempt to utilize the right-to-left context in the
transformer and improve the speech recognition performance, Chen et al. [12] proposed
a novel ASR transformer which had a bidirectional decoder structure. Specifically, two
decoders were employed in the structure, and each decoder exploits a specific direction (i.e.,
left-to-right or right-to-left). Wu et al. [13] proposed U2++, a novel bidirectional transformer,
which can perform both online and offline speech recognition. Similarly, this was achieved
by employing two decoders for the task. More recently, Zhang et al. [14] developed a novel
non-autoregressive transformer that utilizes only one decoder for bidirectional decoding.
The implementation exposed the model to information leakage, which resulted from the
self-attention mechanism. Therefore, a new attention mask called “self-mask” was also
proposed to address the issue.

In this work, a different approach (i.e., BCE) was used to achieve bidirectional decoding
with the transformer. In contrast to [12], this method minimizes computation complexity
as the model utilizes only a single decoder for the task. This method is also desirable as it
alleviates the information leakage problem in [14].

3. Materials and Methods

This section provides a detailed explanation of the proposed transformer, which
relies on BCE for bidirectional decoding. We start by giving a brief introduction of the
conventional transformer used in previous works [12,16,20] for speech recognition in
Section 3.1. We then proceed with the details of our network structure, the BCE method,
and the adopted masking method in Section 3.2.

3.1. Overview of Transformers for ASR

The first transformer for speech recognition [16] is composed of an encoder and a
decoder. The encoder and decoder contain the multi-head self-attention and position-wise
feedforward network (FFN) as their major components. The encoder learns to map an
input sequence, which is represented as X = (x1, . . . , xn) for a given sequence represented
as = (z1, . . . , zn). Therefore, given Z, the decoder is able to generate, element by element,
an output sequence, which is represented as Y = (y1, . . . , ym). The slight difference in
architecture between the original transformer [7] for NMT and the speech transformer [16]
lies in the encoder’s input, where the embedding layers are commonly replaced with
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convolutional neural network (CNN) layers to facilitate the extraction of rich acoustic
features and also to perform sub-sampling on the input acoustic sequence.

3.1.1. Dot-Product Self-Attention

The transformer’s self-attention usually consists of multiple attention heads. Given
that the multi-head self-attention has h heads, the transformer computes the scaled dot-
product attention h times, and their output is concatenated. A linear projection layer
is built upon the scaled dot-product attention, which produces the final result from the
concatenated outputs. Given X ∈ RTxd as an input sequence, with T as the length of
the sequence and d as the hidden size of the self-attention layer, each scaled dot-product
attention head, as described by [20], can be computed as

Attention (Qi, Ki, Vi) = so f tmax

(
QiKT

i√
dk

)
Vi (1)

where the query Qi = XWQi, key Ki = XWKi, and value Vi = XWvi. We also have
WQi, WKi, WVi ∈ Rdxdk to denote the learnable projection parameter matrices for the
i-th head, and dk = d/h represents the dimension of the feature vector for each head. The
multi-head self-attention is defined as

Multihead(Q, K, V) = Concat(U1, . . . . . . ..Uh)Wo (2)

and
Ui = Attention

(
XWQi, XWKi, XWVi

)
(3)

Wo ∈ Rdxd is the weight matrix of the linear projection layer.

3.1.2. Position-Wise FFN

Additionally, each layer of encoder and decoder of the transformer is usually equipped
with a fully connected FFN. The FFN is made up of two linear layers with a ReLU activation
employed between them. From [12], the output of the FFN is defined as:

F(x) = max(0; xW1 + b1) W2 + b2 (4)

where W1 ∈ Rdm×d f , W2 ∈ Rd f×dm , b1 ∈ Rd f , and b2 ∈ Rdm . d f denotes the feature dimen-
sion of the inner layer, and dm denotes the feature dimension of the final outputs. The FNN
is applied separately to each position in the sequence. Across different positions, the linear
transformations are the same. However, there is a change in parameter across different
layers. The FNN is an important component because it facilitates a richer representation by
projecting the outputs of the attention.

3.1.3. Positional Encoding

With the transformer network, the output sequence does not depend on the input
sequence order permutation. As the multi-head attention contains no recurrences or convo-
lution layers, the transformer is unable to model the order of the input acoustic sequence.
For this reason, “positional encodings” are used to learn the positional information in the
input sequence. The positional encodings, as described by [7], are defined as

PE(pos; 2i) = sin

(
pos

10000
2i

dmodel

)
(5)

PE(pos; 2i + 1) = cos

(
pos

10000
2i

dmodel

)
(6)
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pos represents the position of the current frame or token in the current sequence, and i
represents the dimension. The encoding values at each “even” and “odd” position are
obtained by Equations (5) and (6), respectively. As different values are added to different
dimensions of each input element, the position information is inserted into the attention
process, allowing the model to learn the dependencies between different elements.

3.2. Bidirectional Context Embedding Transformer (Bi-CET)

To attend to both the left-to-right and the right-to-left contexts and improve the predic-
tion accuracy of the transformer for speech recognition, we propose a speech transformer
that utilizes a single decoder equipped with BCE for bidirectional decoding in one forward
pass. In short, the architecture is denoted as Bi-CET.

3.2.1. Structure of Bi-CET

The Bi-CET architecture is such that the encoder is comprised of a stack of M = 8 layers.
Each of the stacked encoder layer has the multi-head self-attention and the position-wise FFN
as sublayers. The FNN has an inner-layer dimension of df = 2048, and the multi-head self-
attention has vector size of dmodel = 512. The decoder also contains a stack of N = 4 layers,
and each stacked layer has three sublayers: the masked multi-head self-attention sublayer, the
encoder-decoder attention sublayer, and the position-wise FFN sublayer. The mask employed
around the multi-head self-attention sublayer masks the present positions from attending to
the future positions during training. There is also layer normalization, which is added to each
sublayer in the encoder and decoder. All the sublayers in both the encoder and decoder, as
well as the linear and embedding layer, produce outputs with a dimension of dmodel = 512.
Before the input features were passed to the encoder, we employed the first two layers of
a VGG [30] convolution block with layer normalization functions to extract the contextual
information. VGG is a state-of-the-art CNN network that was originally implemented for
large-scale image recognition tasks. The first and second layers of the VGG convolution have
output channels of 64 and 128, respectively. Both layers have a kernel size, stride, and padding
of 3, 1, and 1, respectively. We also used a 1D-CNN layer before the decoder to extract local
features replacing the position embedding, which is used in most works. The ID-CNN layer
has an output channel, kernel size, and stride of 512, 3, and 1, respectively. The softmax
function was used to generate next-token probabilities from the decoder output. The structure
of Bi-CET is shown in Figure 1.
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3.2.2. Setup of the BCE

Similar to the implementation in [31], the decoding direction of the output sequence is
considered as two subtasks (i.e., left-to-right and right-to-left). In addition to the character
embedding layer of the transformer, an additional 512-dimensional vector is also initialized
during training. This allows for a two-time decoding to be performed on the input sequence
in every batch during training: once from left-to-right and then from right-to-left. The
ground truth transcription of the left-to-right decoded character sequence is reversed to
serve as the ground truth transcription for the right-to-left character sequence. The method
in [31] was initially proposed for a scene text recognition (STR) task where the maximum
sequence length was 24. Moreover, the method only depended on the order of the input
target sequences to set the decoding direction. This is because the two input targets to the
decoder had a common start of sentence 〈SOS〉 token. Therefore, if there is only one input
target, then only a left-to-right output sequence will be generated. If there are two input
targets, then a left-to-right output sequence will be generated, followed by a right-to-left
output sequence. We took the implementation further by looking at the following issues:

1. Avoiding the idea of always waiting for a second input to switch the decoding
direction. It is possible to change the decoding direction with just one input.

2. Minimizing the decoding time in cases where only a right-to-left output is needed.

We therefore discarded the common 〈SOS〉 token and introduced 〈SLR〉 (i.e., sequence
left-to-right) and 〈SRL〉 (sequence right-to-left) to serve as unique start tokens for the two
directional contexts. We trained the BCE end to end with the rest of the model to learn
and distinguish between the two directional targets and their corresponding decoding
directions. The training process enhances the model’s decision making on whether or not
to maintain or change its current decoding direction. In this way, we do not necessarily
have to provide two input targets before obtaining a right-to-left output sequence. We can
directly obtain only a right-to-left output by only setting an 〈SRL〉 token at the input time,
which saves a significant amount of time. We can also set two 〈SRL〉 tokens at the input
time and obtain two right-to-left outputs in a row. The workflow of the BCE is shown in
Figure 2. Additionally, as shown in Figure 1, the BCE is added on top of the 1D-CNN layer
to provide extra contextual information for the model.
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3.2.3. Masking Method

We adopted the semantic masking method proposed by the authors of [32], which
utilizes alignment information to perform token-wise masking. Therefore, we refer to [32]
for the details of the implementation. During training, a percentage of the tokens is selected,
and masking is applied to the corresponding speech sequence in each iteration. In contrast
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to other methods [33] that purposely add noise to the input sequence by randomly masking
the spectrum, this approach rather aims to train the model to learn a better language
model. The authors explain that, in this way, a model may become less prone to over-fitting
because the generation of words will not only depend on their corresponding speech
features but also on other useful features, thus making training more effective even with
noisy input signals

3.2.4. Character Decoding

To further improve model prediction accuracy, we implemented a BBS method to
generate bidirectional output sequences using different beam sizes. To obtain a single
output sequence, we can input only 〈SLR〉 or 〈SRL〉 as the start token. To perform bidi-
rectional decoding, we input both of the sentence start tokens to provide more contextual
information for the decoder. The specific method, based on that in [34], is illustrated in
Algorithm 1.

Algorithm 1: Bidirectional Beam Search Method

Data: source(x), targets (SLR, SRL), beam size (β), max length (Lmax), score (s1, s2)
1 Initialize: SLR0← {〈0, SLR〉}, SRL0 ← {〈0, SRL〉}
2 while not converged do
3 for t in range (1, . . . . . . . . . , Lmax−1) do //update left-to-right beam
4 SLR← empty
5 for (〈s1, u〉) ∈ SLRt−1 do //u is the current state
6 if u.last() == EOS then
7 SLR.add(〈s1, u〉) //s1 is the score for u
8 continue
9 for n ∈ N do //N contains neighbors of u
10 s1 = score(x, u ◦ n)
11 SLR.add(〈s1, u ◦ n 〉)
12 end
13 SLRt← SLR.top(β)
14 end
15 SLR.path← SLR.max()
16 for t in range (Lmax−1, . . . . . . . . . , 1) do //update right-to-left beam
17 SRL← empty
18 for (〈s2, v〉) ∈ SRLt−1 do //v is the current state
19 if v.last() == EOS then
20 SRL.add(〈s2, v〉) //s2 is the score for v
21 continue
22 for v ∈ V do //V contains neighbors of v
23 s2 = score(x, v ◦ v)
24 SRL.add(〈s2, v ◦ v 〉)
25 end
26 SRLt = SRL.top(β)
27 end
28 SRL.path← SRL.max()
29 OUTPUT← best score from (SLR.path, SRL.path)

The goal is to search for the best and most likely transcription based on the source
sequence. The BBS algorithm works by selecting possible choices for an input sequence
at each step. At each step, t, only the best, β (i.e., beam size), hypothesis is maintained to
generate the output sequence of the next step. The decoding process continues, and we
only pick the output with the best score for both the left-to-right and right-to-left outputs
at the end. On completion, the scores of the two generated outputs are compared; the best
one is chosen as the final output, and the remaining one is discarded. If the chosen output
is an SRL sequence, the SRL will be reversed, and the word error rate will be calculated.
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This method can generate bidirectional output sequences with equal or different sequence
lengths. The Pytorch deep learning framework was used to implement this method.

4. Experiment
4.1. Dataset

All experiments were performed with the LibriSpeech dataset [15]. LibriSpeech is
an English read speech corpus obtained from audiobooks, and it is publicly available. A
total of 2484 speakers with accents close to those of the US were involved in the recording
activities. A total of 1283 males and 1201 females participated, making the corpus more
gender balanced. It has a 960 h (i.e.,100 h, 360 h, and 500 h) set with corresponding
transcriptions for training. The 100 h and the 360 h sets are clean audio, while the 500 h set
is noisier. The corpus also has additional “Dev” and “Test” sets, which are split into “clean”
and “other” subsets for model evaluation or testing. The “clean” subsets are made up of
clean audio with their corresponding transcriptions, while the “other” subsets have noisy
and more challenging audio with their corresponding transcriptions. Each subset of the
“Dev” and “Test” sets contains approximately 5 h of audio data. All of the audio data were
sampled at 16 kHz. Due to memory limitations at the time of experiment, we only used the
100 h and 360 h sets for training and the “Dev” and “Test” sets for evaluation and testing.

4.2. Setup

We represented the input signals as a sequence of 80 dim log Mel filter banks, which
were extracted with a frame size of 25 ms and a frame shift of 10 ms. The global cepstral
mean and variance normalization (CMVN) were applied to normalize the features. We im-
plemented two speech transformer models, Bi-CETsmall and Bi-CETbig, for the experiment.
The smaller speech transformer model, Bi-CETsmall, was set up with eight encoder layers,
four decoder layers, and four attention heads. The attention vector size and feedforward
dimensions were set as 256 and 1024, respectively. The bigger speech transformer model,
Bi-CETbig, was set up with eight encoder layers, four decoder layers, and eight attention
heads. We set the attention vector size as 512 and the feedforward dimension as 2048.
Bi-CETsmall and Bi-CETbig have total model parameters of 14 M and 46 M, respectively.
The AdamW optimizer [35] was used with a warm-up strategy, and we set β1 = 0.9,
β2 = 0.98, and ε = 10−9. β1, β2, and ε values are popular values that are widely used by
state-of-the-art works, such as in [7,12], in setting up the optimizer. Since experimenting to
test other values is time prohibitive, we adopted these settings in our work. The learning
rate is defined as

lr = k ·min
(

step−0.5, step · warmup_steps−1.5
)

(7)

where we set k as 1.0, and warmup_steps was set as 16,000 and 25,000 for Bi-CETsmall and
Bi-CETbig, respectively. The feedforward dropout was set as 0.2 to prevent or minimize
any overfitting. For the masking strategy, we followed that implemented in [32]. The
cross-entropy loss with label smoothing of 0.1 was applied. The batch size was set as 16.
Using an NVIDIA 3080 GPU, Bi-CETsmall was trained on the 100 h set for 156 epochs, and
Bi-CETbig was trained on the combined 100 h and 360 h set for 58 epochs. In the decoding
stage, we set the beam size as 2 for both unidirectional and bidirectional decoding. No
language model or data augmentation technique was employed in this work. The entire
setup was implemented with the Pytorch deep learning framework.

5. Results and Discussion
5.1. Unidirectional vs. Bidirectional

Using the BBS method, comprehensive experiments were conducted on the “Dev” and
“Test” sets of the LibriSpeech dataset to verify the effectiveness of the proposed method. The
“clean” and “other” subsets of “Dev”, as well as the “clean” and “other” subsets of “Test”,
were all considered in this stage. We first carried out unidirectional decoding. To obtain
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only left-to-right output sequences, we set 〈SLR〉 as the start token for the decoder input.
We also set 〈SRL〉 as the start token to obtain only right-to-left output sequences. Next, we
carried out bidirectional decoding where both 〈SLR〉 and 〈SRL〉 were fed to the decoder
to generate bidirectional output sequences. Unidirectional and bidirectional decoding
were conducted with both Bi-CETsmall and Bi-CETbig models, and the performance was
recorded in terms of WER. WER is the general criteria for assessing the performance of
speech recognition models. The results of with/without bidirectional decoding are shown
in Tables 1 and 2. The “Direction” column heading refers to the specific decoding direction
chosen during decoding.

Table 1. Word error rate (WER) of Bi-CETsmall trained on LibriSpeech (100 h). We compare WER in
percentage (%) using different decoding directions.

Direction Test Clean Dev Clean Test Other Dev Other

left-to-right 21.77 20.64 35.58 34.79
right-to-left 20.20 21.07 36.39 35.98
bidirectional 16.83 17.67 29.18 29.93

Table 2. WER (%) of Bi-CETbig trained on LibriSpeech (460 h). We compare WER using different
decoding directions.

Direction Test Clean Dev Clean Test Other Dev Other

left-to-right 10.82 10.76 22.44 22.97
right-to-left 9.98 10.64 23.12 23.26
bidirectional 7.65 7.85 18.97 19.33

We also visualized the training and validation losses of both the Bi-CETsmall and
Bi-CETbig models. This is shown in Figures 3 and 4.
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In Table 3, we compare the model performance with other existing end-to-end models
that were also trained on the LibriSpeech dataset.

Table 3. Comparison of WER (%) with other end-to-end models on the LibriSpeech benchmark.

Hours Model Train Type
Test Dev

Network
Clean Other Clean Other

100

Hsu et al. [36] Supervised 14.85 39.95 14.00 37.02 Seq2Seq/TDS

Kahn et al. [37] Supervised 14.90 40.00 14.00 37.00 TDS/Attention

Lüsher et al. [38] Supervised 14.70 40.80 14.70 38.5 E2E/Attention

Bi-CETsmall Supervised 16.83 29.18 17.67 29.93 Transformer

460

Ling et al. [39] Semi-
supervised 7.11 24.31 - - BLSTM/CTC

Hsu et al. [36] Supervised 7.99 26.59 7.20 25.32 Seq2Seq/TDS

Bi-CETbig Supervised 7.65 18.97 7.85 19.33 Transformer

All the models used for comparison in Table 3, including our work (i.e., Bi-CETsmall
and Bi-CETbig), report their numbers without any language model. From the given results,
it is shown that Bi-CET produces results that are somewhat close to or less than those of
the other models on the “Clean” sets. It is slightly better than [36] on the 460 h set. On
the “Other” subset of both the “Test” and “Dev” sets, Bi-CET significantly outperforms all
other models on both the 100 h and 460 h sets. This confirms the impact of the semantic
mask [32] method, which makes training more effective even with noisy input signals.

5.2. Discussion

During the bidirectional decoding process, it was observed that some sequences were
better decoded in the left-to-right direction, while s others were better decoded in the
right-to-left direction. The two generated output sequences were sometimes equal, close,
or totally different in both length and score. If the output sequence with the best score is
right-to-left, then the sequence will be reversed to calculate its WER against the ground
truth transcription. Therefore, selecting the best result among the two decoding directions
resulted in a massive improvement for the bidirectional decoding. With Bi-CETbig, 54%
and 61% of the final output sequences were decoded in the right-to-left direction during the
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bidirectional decoding on the “test” and “development” clean sets, respectively. Compared
with the unidirectional decoding style, there is also a significant increase in decoding
time with bidirectional decoding. This varies with different sequence lengths. From the
results obtained, it can be seen that the BCE is very effective for bidirectional decoding in
transformers and will have more advantages on large-scale datasets.

5.3. Further Analysis
5.3.1. Effect of Beam Size

Using Bi-CETbig, further tests were carried out on the “test clean” set to observe the
effect of beam size when using the BBS method for bidirectional decoding. As shown in
Figure 5, the size of the beam significantly affects the performance of the model. When the
beam size was first increased from 1 to 2, a significant improvement in WER was observed.
However, further increments in beam size only resulted in a slight improvement in WER,
and then it remained constant or even decreased afterwards. It was also observed that the
decoding speed or time increased with increase in beam size. Compared with both the left-
to-right and the right-to-left methods, the bidirectional decoding method performed better.
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Figure 5. Word error rate with different beam sizes on Bi-CETbig.

5.3.2. Effect of Sequence Length

An additional analysis was carried out to investigate the effect of the BCE on different
sequence lengths. Using Bi-CETbig on the “test clean” set, the sequences were grouped
according to their corresponding transcription lengths. The shortest lengths were in the
range of 0–50, and the longest lengths were those greater than 250. The corresponding
average WER of each group of sequences is shown in Figure 6.

It can be seen that the average WER first decreased as sequence length increased, and
later began to rise with much longer sequences. It should also be noted that each group of
sequences had different amounts of utterances. Sequences with lengths greater than 250
were the least in number.
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6. Conclusions

In this paper, we explored different options and implemented Bi-CET, an improved
speech transformer that relies on a single decoder equipped with BCE for bidirectional
decoding. Bi-CET is such that the decoding direction of each target input is implemented
at the decoder input level by adding extra contextual target information to the input. This
is in contrast to methods such as that in [14] where decoding direction is conditioned at
the architecture level. We showed that with a more efficient approach as compared to
methods, Bi-CET significantly outperforms the traditional left-to-right or unidirectional
style of decoding. The performance is also close to, or better than, other state-of-the-art end-
to-end models that are trained on a similar size of datasets. Bi-CET utilizes a single decoder
to exploit the same attention head for the two different directional contexts, which makes
the computations less complex than in other approaches that employ two decoders [12]. It
is evident that larger datasets will be necessary to achieve state-of-the-art results. Therefore,
future works will include expanding the model and dataset sizes, and exploring other
fascinating techniques to prepare the model for streaming tasks.
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