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Abstract: Drone delivery has gained increasing importance in the past few years. Recent technology
advancements have allowed us to think of systems capable of transporting and delivering goods
precisely and efficiently. However, in order to switch from a test environment to a real environment,
many open issues need to be addressed. In this paper, we focused on drop-off point localization
based on fiducial markers, analyzing different systems and the configuration of different aspects. We
tested our system in a real-world environment and drew conclusions which lead us to identify the
most reliable fiducial system and family for this use case.

Keywords: unmanned aerial vehicle; fiducial marker; smart city; packet delivery in urban environment

1. Introduction

According to most researchers, professionals and industrialists, many factors are
fundamental to forming a smart city, including a “smart economy”, “smart governance”,
“smart living”, “smart mobility”, “smart people” and “smart environment”. After many
years, a common and agreed upon definition of a smart city has not been provided. Some
recent studies have investigated the literature on this topic according to the concepts of
meta-reviews, meta-analysis or meta-synthesis as in [1,2] to cite a few. In almost all studies,
the key points for enabling services in the smart city are: i. technological advances above
all in mobility and health, ii. performing and capillary telecommunication networks and
iii. the organic management of collected data [3,4].

Thanks to recent advances in vehicular technology, unmanned aerial vehicles (UAVs)
are playing a key role in smart city applications and services such as photogrammetry,
air pollution monitoring, security and surveillance and natural disaster management. In
the same way, UAV technology can be leveraged effectively to deliver packages in terms
of time and cost. Drones can retrieve their precise location from the global navigation
satellite system (GNSS) and take advantage from cloud processing made possible by the
5G network, which enables simultaneous real-time communications between thousands
of devices.

Beyond consumer products, drones can be used to deliver medical supplies or essential
life support equipment directly to patient homes, thus improving the cities’ public health.
As an example, disabled, infected, elderly or vulnerable people can benefit from a fully
autonomous delivery system without having to go to the pharmacy. In recent years, we
also experienced the difficulties caused by the COVID-19 worldwide disease. In order to
react to the current and any possible future pandemic, a contact-less “to-the-door” delivery
system can also dramatically improve the health care system, overcoming the limitations
imposed by social distancing regulations or even lockdowns.

Other solutions rely on mail-delivered medications, including new or refilled prescrip-
tions especially targeting elderly individuals. While a mail-based system could be easier to
deploy, it still requires an efficient postal system and suffers from logistic-related problems
(e.g., incorrect deliveries, delivery thefts and tracking problems).
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In this paper, we investigate a possible solution to solve the medical supply delivery
problem in a smart city context. Although the constraints for a production-ready solution
are many, we focus on the accuracy requirement of position delivery, which we believe
is a key factor to determine the feasibility of the solution. Through the paper, some
assumptions are made, and some aspects have not been investigated and therefore could
be a subject for future works in this direction (e.g., energy efficiency and drone congestion
in the air). On the other hand, we focus on the landing spot localization, and thus the
delivery accuracy has been extensively measured both theoretically and on the field with a
real test bed. With that said, we present an autonomous delivery solution by leveraging
UAVs (namely drones) equipped with precise GNSS sensors, a high-resolution camera,
and a winch, which brings the medicine to the patient. The system allows i. locating the
approximate position of the house, ii. precisely finding the spot to leave the package, and
iii. releasing the winch in order to drop the supply (i.e., the medicine). Concerning the
second point, in the next sections, we will evaluate the performances of different localization
mechanisms based on fiducial markers [5] to be placed at the drop location. The adoption of
specific fiducial codes allows the proposed system to manage the delivery of transportable
packages (e.g., medicines in this paper, but of course, this depends on the UAV size and on
the environmental conditions, such as building density, wind, etc.), performed through a
dynamic code assignment to the patient. The patient can automatically receive the marker
by the delivery system, enabling it to manage several simultaneous deliveries in the same
area without any possible misdelivery. Moreover, collisions between drones of the same
system can be handled in advance by properly scheduling non-overlapping deliveries in the
same area or sharing the UAV real-time positions through an internal management system.
Regarding the possibility of collisions with other objects (e.g., drones, electrical wires and
buildings), the collision avoidance systems integrated within the UAV should be activated.
Technologies such as infrared sensors, stereo vision sensors, ultrasonic sensors and GPS
must work together to ensure a clear flight path, thus preventing crashes. The integrity of
the medicine delivery is also guaranteed, as the doctor carries out the medical consultation
and selects the most appropriate medicine for the patient (considering his allergies and
other pathologies). This paper is organized as follows. Section 2 illustrates previous related
works in the field, particularly in UAV localization and goods delivery systems. In Section 3,
the overall system description is presented, diving into details of the various aspects and
issues. In this section, we also evaluate different fiducial marker systems and families
as a required step to select the most appropriate ones for the considered case. Section 4
describes the system implementation we used to create our testbed. Furthermore, we
included details about the dataset creation and evaluation. In Section 5, we report on the
performance of the fiducial marker families in static configurations (i.e., not detected by
an UAV). In Section 6, we illustrate the metrics and the results obtained by running a real
UAV in a test environment. Specifically, we measure the overall outcome by introducing
three application specific metrics that allow for measuring the system from different points
of view. Conclusions are drawn at the end of the paper.

2. Related Works

The problem of deliveries directly to the home using a UAV is a topic that research is
actively pursuing, and real applications are increasing daily. UAV home delivery is being
promoted by a growing number of companies. Companies such as Amazon, Google, UPS,
DHL, FedEX and others have been testing drone delivery for years, some since 2005, as a
possible alternative or complement to traditional delivery [6]. More recently, Amazon [7]
has planned to use UAVs for 30-min home deliveries and is conducting an alpha test on a
small village in England, with the first delivery to customers via drone becoming a reality.
The topic of last-mile logistics is a topic explored by various authors, ranging through the
many facets of the segment: from problems in terms of energy consumption and social and
environmental impact [8] to models for the optimal routing and scheduling of UAVs and
delivery trucks, including in collaboration with each other [9]. More specifically, in recent
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years, numerous authors have dealt with the problem of last-mile deliveries from the point
of view of transport planning. Ha et al. [10] investigated the operating cost minimiza-
tion, including total transportation costs and costs resulting from logistical inefficiencies,
such as waiting times. Tavana et al. [11] discussed the problem of truck scheduling (i.e.,
the optimal sequence of trucks entering and exiting gates) considering drones instead of
trucks. Equally important is the set of research on energy consumption and environmental
impact: Dorling et al. [12] derived and experimentally validated an energy consumption
model for multirotor drones within a routing optimization problem. More recently, Sto-
laroff et al. [13] focused on the possible reduction of greenhouse gas emissions and energy
consumption by using drones for last-mile coverage. From strictly an application point of
view, the research is mainly oriented to methods for delivery in rural areas, the only ones
that can make the model sustainable according to the conclusion reached by Joerss et al. [14].
Guerrero et al. [15] proposed an UAV design consisting of a drone having the payload
suspended through a cable and a control algorithm that inhibits the effect of oscillation
during the trajectory. Gatteschi et al. [16] proposed a complete prototype for medicine
delivery, including the definition of a specific mobile application and the design of a related
drone for deliveries. The vast majority of solutions share the same aspect: the use of UAVs
for last-mile delivery in rural areas with low population density, where it is possible to
precisely navigate based on a strong GPS signal and the buildings have adequate outdoor
space that allows landing and handover. Brunner et al. [17] proposed a direct delivery
solution to the window or balcony using a fiducial marker to be affixed directly to the
glass as a reference for the drone, while Walsh and Falesch [18] patented a solution that
involves the installation of a device that integrates both the detection and storage of a
possible package.

In this work, we employed UAVs for last-mile delivery in urban areas without requir-
ing a specific landing spot or any kind of equipment from the receiver of goods. The rough
localization occurs by means of an onboard GPS system, and afterwards, it is fine-tuned
using a computer vision system based on fiducial markers. In the following sections, we
will dive into details of how the fiducial system is selected and evaluated in order to meet
the needs of entire area.

3. System Description
3.1. System Architecture

The proposed system is based on the reference architecture reported in Figure 1.
The patient turns to the doctor for a medical consultation. Then, the doctor sends the
medical prescription to a medicine center or a pharmacy close to the patient. At the same
time, the system sends the fiducial marker assigned to the patient to his printer, which he
must then display outside his own window. At this point, the drone goes to the pharmacy
indicated by the system and collects the medicine for the patient. Thanks to the coordinates
provided by the system, the drone is able to approach the patient’s window at a suitable
distance. First, it exploits GPS to get closer to the patient house. When it is closer than a
certain distance, the drone will use the fiducial marker to get closer to the patient’s window
to deliver the medicine indicated by the doctor.

Figure 2 describes the flow of operations required to deliver medicine to a patient
using a UAV. (1) After a medical consultation a patient P requires a medicine Me. P cannot
leave the house for several reasons, such as quarantine or disability; (2) The system knows
the patient’s personal data, including their address. A geocoding process is applied to
the address, generating C coordinates; (3) The system must verify how many and which
markers are already present within the drone scouting area and consequently generate a
unique fiducial marker M, which ensures the absolute absence of any collisions (which
would cause possible misdelivery); (4) The fiducial marker M is then sent by e-mail to
user P, who must print and place it outside the window before it expires; (5) As soon as
the medicine is ready for shipment, it is loaded by the pharmacy onto a UAV D, fixed
to the winch W; (6) The system sends UAV D the information necessary to complete the
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delivery; in detail, (i.) the destination coordinates C and (ii.) the fiducial marker M; (7) The
UAV D takes off from the pharmacy, and through autonomous flight, it heads towards
the C coordinates, flying at a cruise height CH ; (8) When D reaches the point identified by
the coordinates C, it moves to a height SH (scouting height); (9) Once the height SH has
been reached, the UAV D enters scouting mode, which aims to detect marker M using the
camera located in the bottom of the UAV. During scouting mode, UAV D moves at a SS
speed (scouting speed), following a particular pattern in order to cover the entire scouting
area SA; (10) If D correctly detects the marker M, then it uses an accurate visual landing
algorithm to position itself exactly on the vertical aspect of it (point VM), using, for example,
a PID control to minimize the distance between the marker center and the center of the
UAV; (11) When the UAV D has reached the VM point, it moves to a DH (drop height) such
that the UAV to marker distance is exactly DD (drop distance); (12) Once the height DH is
reached safely, the UAV D can move the winch V by moving the package Me by a length
LV , calculated as the sum of the estimated distance between drone D and marker M (DD)
plus the maximum absolute estimation error (DE); (13) When the winch is extended to an
LV length, package Me can be released; (14) UAV D can withdraw the winch and return to
the starting position, ready to be reloaded or to make a new delivery.

Figure 1. Reference system architecture for medicine delivery.

We must specify that this algorithm is deliberately simplified as it only reports the
standard operational flow without going into the details of any security or disaster recovery
operations. In case of particular weather conditions (e.g., a windy area), the system may
request the patient to expose the fiducial marker from the most sheltered window. It is
worth noting that modern UAVs have stabilization systems, which allow them to fly in
strong winds. The main factors influencing the UAV’s capabilities are the drone’s weight
and the maximum motor thrust. The higher the ratio between the thrust and the weight,
the better stabilization one can achieve. Wind speed could be empirically measured by the
Beaufort wind force scale [19]. The scale is composed of 12 levels, starting from Level 0,
which means calm or almost no wind, and going up to Level 12, which is the wind force
of a hurricane (i.e., ≥118 km/h). Wind level 5 (i.e., 29–38 km/h) and above are usually
considered too strong for the majority of commercial drones. In such cases, it might be
appropriate to use UAVs with higher wind resistance capabilities. Wind force also brings
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out another issue, which is related to the energy consumption under different wind speed
conditions. This issue has been studied in [20].

Figure 2. Medicine delivery flowchart.

3.2. Fiducial System Comparison

Table 1 shows a comparison between fiducial systems on the basis of some indicators
selected for an objective comparison. In particular, the indicators shown are: (1) Open-
source, if the marker detector source code is published online (Y), or otherwise (N); (2) Lan-
guage, which lists any programming languages available for the implementation of the
marker detector; (3) Last release, meaning if the code is published open-source, when the
last software update was; (4) Families, representing how many standard family markers
fiducial system makes available; (5) Min. bits, or minimum bits, indicating within the stan-
dard marker family, how many bits encodes the family having fewer bits. As can be easily
understood, the selected metrics mainly consider the implementation aspects compared
to theoretical aspects. This is because, in this phase, it is more important to highlight the
technologies with a higher degree of maturity and usability. Characteristics such as type of
pose estimation algorithm or error detection and correction on a purely theoretical basis are
not evaluated in this phase but will themselves be the object of in-depth analysis during the
analysis phase. A first essential constraint for the purposes of this analysis is the presence or
absence of a detector published as open-source for two reasons: (i) an open-source software
is often developed collaboratively and has already gone through all the validation phases;
(ii) the absence of an published detector is a symptom of a probable loss of commitment
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and attention by the proposing team. The last release metric, as well as the open-source
metric, is significant in terms of the proposing team’s activity towards the project. A recent
last release testifies to a project that is still active and consequently probably more solid and
less prone to bugs; on the other hand, a remote last release probably attests to an obsolete
and unmaintained project. The couple (family, min bit) demonstrates the versatility of
the fiducial system regarding various applications, with a direct proportionality between
the number of families and possible applications. The number of bits is important as the
smaller number of coded bits corresponds to a greater theoretical recognition distance.
This comparison has therefore produced a list of fiducial systems that will be analyzed
consisting of two elements, specifically ArUco and AprilTag, that have complied with all
the constraints imposed in terms of reliability, maintenance, and ease of access.

Table 1. Fiducial System comparison.

Fiducial
System Open-Source Language Last Release Families Min. Bit

AprilTag Y C, Python,
Matlab 29 November 2021 9 16

ARTag N - - 1 36
ARToolKit Y C, Python 21 August 2020 1 -

ArUco Y C, Python 22 December 2021 16 16
BlurTag N - - 1 -
CALTag Y Matlab 10–21 October 2019 1 64
RuneTag Y C 15 March 2017 1 43

3.3. Fiducial System and Related Issues

The following two aspects should be considered by the fiducial system: (i.) narrowness
of the fiducial codes; (ii.) drone hijacking to another user.

In medicine delivery, it is important to provide a unique fiducial marker code to the
intended patient in order to not generate misdelivery caused by the simultaneous delivery
of several drones in the area. To this aim, the number of fiducial codes in a given area
should be unique, though they can be adopted again in a different (not overlapping) area.
Then, following the cellular concept used in the cellular mobile radio systems, where
portions of sub-bands are reused at a proper distance in order to not generate interference
above a threshold, the group of the family fiducial codes can be reused in another area that
does not overlap with the previous one. This methodology avoids any possible misdelivery,
as two equal codes are far enough apart. A similar strategy can be implemented at the
generation of the fiducial code by the system. In this case, the system should be aware of
the code generation by considering a minimum distance within which the same fiducial
code can be assigned. A third strategy can consider the coupling of two family codes, thus
multiplying the number of possible assignable codes.

Concerning security aspects, any person can print a fiducial code by herself as they are
defined in advance (i.e., they are always the same). For this reason, a drone can erroneously
deliver a medicine to another person who has previously printed a fiducial code. To avoid
this problem, the drone can be provided the correct patient position. Moreover, the validity
of a fiducial code can be linked to a time interval. After it expires, the code is no longer
valid. Furthermore, the correct patient can be alerted when the drone is close to his window
and ready to deliver the medicine by a dedicated message on his smartphone. These three
parameters (GPS coordinates, time validity of the fiducial code and an alert message on a
patient’s smartphone) noticeably reduce drone hijacking towards another user.

4. Testbed Description and Dataset Creation

As detailed by Yu et al. [21], there is still no uniform shared dataset for fiducial
marker evaluation. This makes it difficult to reproduce results and compare them with
others. In addition, this evaluation requires the use of samples obtained from aerial images.
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In this work, we try to fill this gap by collecting a large dataset, including a total of 42.004
aerial images containing fiducial markers, which include various fiducial systems, fiducial
families, distances, weather conditions, acquisition speed, light conditions, zoom, etc.

We used a widely available consumer drone, the DJI Mavic 2 Zoom, equipped with a
camera having a shutter with 3840 × 2160 resolution streaming at 29.97 fps. The variable
focal length allows a horizontal field of view of 83° at 24 mm (no zoom) and 48° at 48 mm
(2× zoom). The native 12 Mpx CMOS resolution is scaled to 3840× 2160 during acquisition
in order to obtain an excellent image quality and to reduce image noise. The exposure time
is set to automatic in order to allow the camera to adjust the parameters according to the
conditions. The DJI Mavic 2 has a maximum vertical ascent speed of 4 m/s, a maximum
vertical descent speed of 3 m/s and a maximum horizontal speed of 20 m/s. The maximum
allowed height by the law is 120 m, although it could technically reach higher heights.

As discussed before, we acquired samples of two different fiducial systems, ArUco
and AprilTag, selecting the fiducial families Original, 4 × 4, 5 × 5, 6 × 6, and 7 × 7 for the
former and Tag16h5, Tag36h11, TagCircle21h7, TagStandard41h12 for the latter. For each
family, we printed the fiducial marker having ID 1 in two different sizes, 0.15 m and 0.26 m,
in order to fill an A4 and an A3 format paper, respectively. We acquired a total of nine
different sequences:

• In seq #1, we acquired samples during a sunny day using the 0.15 m printed tag
version of each fiducial family/system, setting the camera focal length at 24 mm (no
zoom).

• In seq #2, we acquired samples during a sunny day using the 0.26 m printed tag
version of each fiducial family/system, setting the camera focal length at 24 mm (no
zoom).

• In seq #3, we acquired samples during a sunny day using the 0.15 m printed tag
version of each fiducial family/system, setting the camera focal length at 48 mm (2×
zoom).

• In seq #4, we acquired samples during a sunny day using the 0.26 m printed tag
version of each fiducial family/system, setting the camera focal length at 48 mm (2×
zoom).

• Sequences #5, #6, #7 and #8 are set up to be equivalent to sequences #1, #2, #3 and #4
except for the weather and light conditions; we acquired these sequences during a
cloudy day.

• Sequence #9 was acquired during a sunny day using the 0.26 m printed tag version of
each fiducial family/system, setting the camera focal length at 48 mm (2× zoom).

Sequences #1–#8 were acquired at a fixed angle of 90° between the camera and the
printed fiducial marker, which is positioned on the ground. The drone started an ascending
flight from 10 m height to 120 m, with a constant speed of 3 m/s. All paths were recorded
with a 3840× 2160 resolution at 29.97 fps, along with an SRT file containing the relationship
between the frame number and the drone height, which in this case represents the distance
between the fiducial marker and the camera. We enabled the DJI Vision Positioning System
(VPS) for all flights in order to obtain an altitude measurement error less than 0.1 m.
Sequence #9 was acquired at a fixed distance, varying the drone speed from 2 m/s to
20 m/s. We started recording when the marker was exactly at the field of view edge,
moving the drone at a fixed speed until it disappeared from view. We continued recording
until the marker remains in view. After each capture, the recorded video file was processed
using the ffmpeg library in order to extract all video frames, which were compressed using
the lossless format .png and stored together with their SRT file.

5. Evaluation
5.1. Definitions

In order to assess the identification performances from an object classification point of
view, we relied on the commonly used metrics accuracy, precision, recall and F-score. We
started from the confusion matrix construction, where we defined as Tp (i.e., true positives)
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the number of tags which have been correctly identified, considering both their location
and the ID decoding. Conversely, Fp (i.e., false positives) was the number of erroneous
detections, in this case also considering location or ID decoding errors. Similarly to other
object detection tasks, Tn was not defined because iit is less informative than Tp and Fp, so
it is always equal to zero. Eventually, we counted as Fn (i.e., false negatives) all the markers
which do exist in the image but have not been detected at all. Relating to the considered
dataset, a Tp would be a perfectly decoded marker. In this case, the drone has found the
marker position within the image and decoded its value without errors. Conversely, an Fp
is a marker which has been detected in the wrong position within the image or which has
been decoded to a different value in respect to ground-truth. Fn refers to the last possibility,
and therefore all the markers, which the system has failed to detect (i.e., missing localization
and consequently missing decodification).

Accuracy is formally defined as follows:

A =
Tp + Tn

Tp + Tn + Fp + Fn
(1)

Although it is quite intuitive, if used as a single metric, it can lead to misleading
conclusions especially on unbalanced datasets. Precision and recall are also relevant
and often used in combination to express more precisely the performances of a classifier.
The respective mathematical expressions are

P =
Tp

Tp + Fp
R =

Tp

Tp + Fn
(2)

Both precision and recall can be used to define another metric, which is the F-score (or
F-measure), which is defined as:

Fβ =
(

1 + β2
)
· P · R
(β2 · P) +R (3)

where P andR are the values of precision and recall, and β is a weighting factor used to
give different importance to precision and recall. It follows that, if β = 1, we are giving the
same importance at precision and recall. In this case, the F-score is also called the F1 score.

5.2. Results

Based on the definitions introduced in Section 5.1, we assessed the performances of
Aruco and AprilTag systems using different configurations. For this evaluation, we used
nine datasets containing an average of 4k images each (i.e., the ones described in Section 4)
captured from our DJI Mavic 2 Zoom drone at different altitudes ranging from 10 to 120 m
above the ground.

In order to create the ground truth reference, all the captured images were manually
annotated. We then proceeded to feed the samples into the object classifier and parti-
tioned the output into Tp, Fp, Fn. In Table 2, we summarized the datasets created and the
results obtained.

Table 2. Performance evaluation datasets.

System Family # Samples Tp Fp Fn

Aruco 4 × 4 3130 1908 95 1222
Aruco 5 × 5 3485 2240 0 1245
Aruco 6 × 6 3609 1855 0 1754
Aruco 7 × 7 3307 1721 0 1586
Aruco Original 3037 2165 339 872

AprilTag Tag16h5 4722 4265 4070 457
AprilTag Tag36h11 5346 3252 0 2094
AprilTag TagCircle21h7 4712 3299 1153 1413
AprilTag TagStandard41h12 4743 2757 0 1986
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Eventually, we proceeded to calculate precision, recall, accuracy and the balanced F1
score.

Based on the F1 score results reported in Table 3, we can conclude that ArUco Original
and AprilTag Tag36h11 are two valuable choices.

Table 3. Performance evaluation results.

System Family Precision, P Recall, R Accuracy, A F-Score

Aruco 4 × 4 0.95 0.61 0.59 0.74
ArUco 5 × 5 1.00 0.64 0.64 0.78
ArUco 6 × 6 1.00 0.51 0.51 0.68
ArUco 7 × 7 1.00 0.52 0.52 0.68
ArUco Original 0.86 0.71 0.64 0.78

AprilTag Tag16h5 0.51 0.90 0.49 0.65
AprilTag Tag36h11 1.00 0.61 0.61 0.76
AprilTag TagCircle21h7 0.74 0.70 0.56 0.72
AprilTag TagStandard41h12 1.00 0.58 0.58 0.74

Although the object classification performance is indeed an important result to con-
sider, we decided to evaluate other factors which are closely related to this problem.

In the next sections, we will define and measure the maximum detection distance
(dmax), pose estimation Error (ep), and maximum detection speed (vmax).

6. Metrics and Results
6.1. Maximum Detection Distance

This analysis goes into detail regarding the recognition distance or maximum detection
distance (dmax): the activity concerns an accurate trend evaluation of the recognition
performance of each fiducial system family as the marker–camera distance varies. For this
operation we used the dataset sequences #1–#8, consisting of a total of 35,570 video-frames
containing fiducial markers.

The flowchart in Figure 3 shows the flow we have implemented to calculate the metrics
that evaluate the maximum detection distance. The algorithm goal is to group height values
that differ at most H_STEP meters, and for each frame belonging to a group of samples of
similar height increase a counter each time a marker is identified. A total counter is always
incremented. For this analysis, an H_STEP equal to 5 was used, a value that allows us
to theoretically have 50 samples for each group (considering 3 m/s drone speed during
acquisition at 30 fps).

Dataset processing resulted in a series of tuples representing the performance of the
recognition algorithms (ArUco, AprilTag) as the distance between the marker and the
acquisition device varied. As shown in Table 4, the first metric considered is the probability
of detection, or hit rate, at a given height, calculated through the ratio between the number
of true positive samples and the total number of positive samples. In order to make a direct
comparison between the fiducial system families, a second metric is identified, defined as
90th percentile, corresponding to dmax.

From dmax, we can evaluate the number of pixels per bit px needed to correctly decode
a marker bit through the relation in (4):

px =
2 · r
w · f

atan
(

s
2 · dmax

)
(4)

where s is the size of the marker (in meters), w is the size of the tag in bits, f is the
field-of-view (FOV) of the lens (in radians), and r is the horizontal acquisition resolution.
The meaning of the parameters in (4) is explained in the Figure 4.
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Figure 3. dmax analysis flowchart.

Table 4. Extract of dmax hit rate results.

Dataset_id Distance (m) Total Found Probability

3 85 21 8 38.10%
3 80 54 25 46.29%
3 75 48 29 60.42%
3 70 48 34 70.83%
3 65 48 39 81.25%
3 60 47 44 93.62%
3 55 48 48 100.00%
3 50 48 48 100.00%

As px decreases, the minimum ratio between the surface of the correctly recognized
marker and the total surface of the frame also decreases. Therefore, px can be considered
an indicator of the robustness of the family’s error correction algorithm. Lower values of
px correspond to better results in terms of dmax in non-optimal conditions.

Table 5 shows the expected ratio compared to the detected ratio as the tag size, weather
conditions or zoom changes. The detected zoom 2×/1× ratio is quite different from
the expected ratio, and we can assume two causes: i. the 2× optical zoom tends to
accentuate any small impurities/imperfections that may be present both in the lens and
in the environment [22], and ii. 2× optical zoom makes autofocusing more difficult,
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increasing the time required. Thanks to an average increase in the recognition distance of
45%, the use of the 2× optical zoom can still be a good compromise between the cost of
adoption and obtainable results. The sunny/cloudy ratio is consistent with the expected
value considering a small experimental error margin. According to this analysis, adaptive
measures and strategies based on weather conditions are therefore not necessary if the
acquisition device is of adequate quality.

Figure 4. Diagram representing the relation between parameters in (4).

Table 5. Expected ratios vs detected ratios.

Expected Value Detected Value Difference %

2×/1× ratio 2 1.45 −27.50%
Cloudy/Sunny ratio 1 0.98 −2.00%

A3/A4 ratio
√

2 1.28 −9.48%

Table 6 shows the marker families with their calculated dmax and their px value. We
can see that i. families with a lower bit width have a better dmax, and ii. families with
a higher bit width have a lower px. The first point shows that in these conditions, the
AprilTag detection algorithm is better performing than the ArUco detection algorithm,
and the AprilTag Tag16h5 family has a maximum overall dmax value of 106.5 m.

In Figures 5 and 6, the hit rate percent has been plotted as the distance varies for both
the systems AprilTag and ArUco, respectively. For each chart, we considered the zoom
ratio (i.e., 1× or 2×), the weather condition (i.e., cloudy or sunny) and the marker size (i.e.,
A3 or A4 format).

Table 6. dmax and px by tag families and systems.

System Fiducial Family Best Zoom Best Size dmax (m) px

AprilTag Tag16h5 2× A3 106.49 2.26
AprilTag Tag36h11 2× A3 57.11 2.74
AprilTag TagCircle21h7 2× A3 73.64 1.81
AprilTag TagStandard41h12 2× A3 71.10 1.81

Aruco 4 × 4 2× A3 59.70 5.09
Aruco 5 × 5 2× A3 50.82 4.78
Aruco 6 × 6 2× A4 48.32 3.33
Aruco 7 × 7 2× A3 81.66 5.26
Aruco Original 2× A3 66.94 4.02
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Figure 5. Hit rate percentage vs. distance (AprilTag).
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Figure 6. Hit rate percentage vs. distance (ArUco).

6.2. Pose Estimation Error

The purpose of this analysis is to evaluate the performance of the ArUco and AprilTag
pose estimation algorithms. Pose estimation is a general computer vision problem which
aims to recognize the position and orientation of an object within an image and, as an
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estimate, is intrinsically subject to error. We define this error as pose estimation error (ep).
The trend of this error is analyzed as the distance from tag to camera varies.

For this task, we used the same dataset of the previous work, sequences #1–#8, con-
sisting of a total of 35,570 video-frames containing fiducial markers. However, further
processing was necessary, aimed at optimizing the analysis process: we decided to cal-
culate in advance the pose estimation on the dataset, historicizing the values obtained in
conjunction with the distance measured by the drone’s on-board altimeter, thus avoiding
having to subsequently analyze every single frame. The drone altimeter measure is used as
a ground truth value.

The flowchart in Figure 7 shows the process we developed to generate the ep dataset:
the algorithm’s goal is to store a record composed of (frame_id, ground_truth_distance,
estimated_distance). For this task, we first calibrated the camera, and then we used the
same calibration parameters for all subsequent tasks. The flowchart in Figure 7 step c refers
to the methods aruco.estimatePoseSingleMarkers and detector.detect of detectors
cv.aruco [23] and pupil-apriltag [24], respectively.

Figure 7. ep dataset flowchart.

The flowchart in Figure 8 shows the flow we have implemented to calculate the metrics
that evaluate the pose estimation error. The goal of Algorithm a is to group records of the
same condition subsets (fiducial family, zoom and size) having distance values that differ
at most H_STEP meters, and for each record belonging to a group of samples of similar
distance increase a counter each time an estimated distance is correct. A total counter is
always incremented. An estimated distance is correct when the absolute error is below an
ERROR_THRESHOLD value. We used for H_STEP the same value of the previous task,
5 m, and for ERROR_THRESHOLD a value of 0.5 m.

The goal of step b is to calculate n [0+] pairs of values (x1, x2) , which represent
the interval boundaries in which the Finterp function assumes a value always greater
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than PERCENT_THRESHOLD. Finterp is a continuous function calculated from linear
interpolation of the results from the previous step (x = distance, y = correct/total), and
PERCENT_THRESHOLD was set to 0.8. Step c calculates the root-mean-square Error
(RMSE) index between the ground truth distances list and the estimated distances list using
the formula:

RMSE =

√
1
n

n

∑
i=1

(
ei − gTi

)2
(5)

where n is the number of samples, ei is the i-th estimated value, and gTi is the i-th ground
truth value.

Figure 8. ep analysis flowchart.

The flowchart in Figure 8 produces a series of records that represent the accuracy of
the distance estimation as the distance varies.

As shown in Table 7, the first metric considered is the probability of correct estimates
at a given distance, calculated through the ratio between the number of correctly estimated
samples and the total number of samples. Using these values, we have been able to calculate
all the interval boundaries [x1, x2] for each dataset condition (fiducial family, zoom, size).
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We can, therefore, define the interval [x1, x2] as the range of distances within which at least
80% of the distance estimates have an absolute error of less than 0.5 m. In order to make a
direct comparison between the fiducial families and the various conditions of application
(zoom, size), two metrics derived from the considerations set out above were used: i. the
value x2 of the pair, the upper_bound, ii. the width of the interval [x1, x2] and iii. RMSE.

Table 7. Extract of ep probability of correct estimation.

Family Zoom Size Distance Total Correct Probability

Original 2× A4 10 54 38 70.37%
Original 2× A4 15 53 51 96.23%
Original 2× A4 20 54 43 79.63%
Original 2× A4 25 48 26 54.17%
Original 2× A4 30 68 28 41.18%
Original 2× A4 35 90 19 21.11%
Original 2× A4 40 51 18 35.29%
Original 2× A4 45 70 17 24.29%

Table 8 shows the expected ratio compared to the detected ratio as the tag size or zoom
changes. Both ratios are slightly higher than the expected values, in contrast to previous
analysis, which showed lower values than expected values.

Table 8. Expected ratios vs detected ratios.

Expected Value Detected Value Difference %

2×/1× ratio 2 2.22 +11.00%
A3/A4 ratio

√
2 1.59 +12.43%

As shown by Table 9, the analysis of the dmax concerned considerably greater distances
than the distances involved for ep. Under these conditions, it is, therefore, conceivable
to obtain a greater advantage using 2× zoom, but the A4 size remains a good trade-off
between accessibility and performance.

Table 9. Upper Bound and dmax calculated for different zoom values.

Zoom Upper Bound (m) dmax (m)

1× 8.21 37.19
2× 18.23 52.53

Table 10 shows an extract of the metrics calculated (lower_bound, upper_bound) at the
best conditions in terms of zoom ratio and marker size.

Table 10. Lower Bound and Upper Bound calculated on best size and zoom conditions.

Fiducial
System Family Best Zoom Best Size Lower

Bound
Upper
Bound

AprilTag Tag16h5 2× A3 5.00 37.91
AprilTag Tag36h11 2× A3 5.00 34.86
AprilTag TagCircle21h7 2× A3 27.29 33.64
AprilTag TagStandard41h12 2× A3 19.16 24.10
ArUco 4 × 4 2× A3 5.00 59.70
ArUco 5 × 5 2× A3 9.52 50.82
ArUco 6 × 6 2× A4 5.00 48.32
ArUco 7 × 7 2× A3 15.90 51.66
ArUco Original 2× A3 5.00 48.94
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In Figures 9 and 10, the absolute error has been plotted as the distance varies for both
the systems AprilTag and ArUco, respectively. For each chart, we considered the zoom
ratio (i.e., 1× or 2×) and the marker size (i.e., A3 or A4 format).

Figure 9. Pose estimation absolute error by distance—ArUco.
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Figure 10. Pose estimation absolute error by distance—AprilTag.

6.3. Maximum Detection Speed

The purpose of this analysis is to study the trend of detection performance as the
camera speed relative to the tag varies at a fixed distance. The main metric to be detected
is defined as the maximum detection speed (vmax) and corresponds to the maximum
movement speed of the acquisition device (in meters per second) for which it is possible to
correctly perform detection. For this task, we used dataset sequence #9, consisting of a total
of 6434 video-frames containing fiducial markers. Sequence #9, unlike the others, contains
only tags belonging to the Tag16h5 and Tag36h11 families, with a size of 0.15 m (A4) and
acquired with 2× zoom, conditions selected based on the previous results.

This subset was obtained by positioning the drone at a height H for which dmax
corresponds to the maximum possible distance tag—camera, equal to

H = dmax · cos
(

FOV
2

)
(6)

where FOV = 48° (2× optical zoom) and dmax is obtained from the previous analysis.
Table 11 shows the values actually used.

Table 11. dmax and relative subset height by marker family.

Fiducial System Fiducial Family Conditions dmax (m) Height (m)

AprilTag Tag16h5 Zoom 2×, A4 85.79 78.37
AprilTag Tag36h11 Zoom 2×, A4 57.11 52.17

The flowchart in Figure 11 shows the flow we have implemented to calculate the
metrics that evaluate the maximum detection speed. The algorithm’s goal is to group speed
values v by populating a structure for each group of samples having the same value v,
increasing a counter each time a marker is detected. A total counter is always incremented.
The value v depends on the values we used for subset acquisition, and for this analysis,
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we acquired samples having values v equal to 2.77 m/s, 5.55 m/s, 8.33 m/s, 11.11 m/s,
13.88 m/s, 16.66 m/s, and 19.44 m/s.

Figure 11. vmax analysis flowchart.

Dataset processing resulted in a series of tuples representing the performance of the
recognition algorithms as the speed between the marker and the acquisition device varied.
As shown in Table 12, the first metric considered is the probability of detection, or hit rate,
at a given speed, calculated through the ratio between the number of true positive samples
and the total number of positive samples. In order to make a direct comparison between
the fiducial families, a second metric is identified, defined as the 90th percentile: the speed
under which at least 90% of the samples are always correctly detected. As stated in the
previous sections, the definition is valid only if the curve is monotonic, and in this case, we
can assume that it always is, at least in the range of interest. Since the dataset is a discrete
set, it is necessary to use a linear interpolation method to obtain the speed value x at y = 0.9.
The vmax therefore corresponds to the 90th percentile speed.

The degradation of detection performance as the speed varies depends on the motion
blur effect, which increases with increasing speed and decreasing ambient brightness [25].
Figure 12 shows a real example of the motion blur effect, visually comparing a Tag36h11
marker acquired at 2.77 m/s and 19.44 m/s. In order to explain the results, we have to
introduce a new acquisition property: the camera shutter time. Motion blur is directly
proportional to the shutter time, so for this subset, we have chosen to fix this value at
1/500 s (i.e., 2 ms).

Figure 13 shows a linear decay of detection performance as drone speed increases,
with a decreasing trend which starts from about 8 m/s for the Tag16h5 marker family and
11 m/s for the marker family Tag36h11. Similarly to the ep analysis, Tag36h11, thanks to
a higher amount of significant bits, ensures a greater interval of correct data (above 90th
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percentile). The Tag16h5 family, thanks to it lower amount of bits (despite the shorter
Hamming distance), ensures a smoother decay, with a detection percentage that remains
around 50% at 19.77 m/s.

Table 12. vmax hit rate results.

Dataset_id Speed (m/s) Total Found Probability

72 19.44 22 0 0.00%
73 16.66 29 9 31.03%
74 13.88 48 28 58.33%
75 11.11 51 50 98.04%
76 8.33 61 61 100.00%
77 5.55 83 83 100.00%
78 2.77 361 361 100.00%
79 19.44 23 11 47.83%
80 16.66 31 19 61.29%
81 13.88 56 41 73.21%
82 11.11 61 54 88.52%
83 8.33 131 131 100.00%
84 5.55 151 137 90.73%
85 2.77 351 350 99.72%

Figure 12. Marker acquired at 2.77 m/s (left) and 19.44 m/s (right).

Figure 13. Hit rate by acquisition speed.
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7. Conclusions and Future Work

The main contribution of this paper is to present and evaluate a working proof of
concept for medicine delivery in a smart city using UAVs and fiducial markers. The
performance evaluation of two different fiducial marker systems was performed from
several points of view: i. object detection performance based on the most reliable metrics
used in the literature; ii. maximum detection distance; iii. pose estimation error, and
eventually iv. maximum detection speed. Although machine learning and deep learning
techniques are frequently used nowadays, the energy requirements and the maintainability
of these systems do not always justify the performance improvements obtained. In this
paper, we evaluated the joint use of drones and fiducial markers, identifying the best
conditions in which the system guarantees its efficient and safe operation. Future works
concern deeper analysis on particular issues such as: i. security measures against malicious
attacks; ii. route optimization for better energy efficiency; iii. sample recovery in addition
to medicine delivery.

The AprilTag fiducial system achieved better overall results than the ArUco fiducial
system. Tag16h5 and Tag36h11 are the two marker families that have obtained the best
results in terms of maximum detection distance, pose estimation error (considering both
RMSE and upper bound) and maximum detection speed. Table 13 shows the overall results
obtained by AprilTag Tag16h5 and Tag36h11.

Table 13. AprilTag Tag16h5 and Tag36h11 overall results.

AprilTag Tag16h5 AprilTag Tag36h11

Family Size 30 587
Best Zoom 2× 2×

Maximum Shutter Time 1/500 s 1/500 s
Best Marker Size A3 A3

Maximum Detection Distance 106.49 m 57.11 m
Pose Estimation Upper Bound 37.91 m 34.86 m

Maximum Detection Speed 10.75 m/s 11.67 m/s

Designing a hypothetical UAV medicine delivery service in an urban area that uses
AprilTag Tag16h5 as a fiducial family, it is possible to imagine a drone that moves towards
the destination at a cruising height of 120 m (maximum legal altitude). After that, it
positions itself at a scouting height of 106.49 m (maximum detection distance) and moves
searching the marker at a scouting speed of 10.75 m/s (maximum detection speed). If the
marker detection operation is successful, the drone lowers further until the distance with
the marker is 37.91 m (pose estimation upper bound); then it activates the winch and
delivers the medicine. Using AprilTag Tag36h11 instead as the fiducial family, the drone
performs the scouting operation at 57.11 m and 11.67 m/s; if the tag is detected, it positions
itself at 34.86 m from the marker and performs the delivery. Considering these results,
the best fiducial family for a UAV medicine delivery service is AprilTag Tag16h5.
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