
����������
�������

Citation: Zheng, Y. Context-Aware

Collaborative Filtering Using Context

Similarity: An Empirical Comparison.

Information 2022, 13, 42. https://

doi.org/10.3390/info13010042

Academic Editors: Marco Polignano

and Giovanni Semeraro

Received: 21 November 2021

Accepted: 10 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Context-Aware Collaborative Filtering Using Context Similarity:
An Empirical Comparison
Yong Zheng

Department of Information Technology and Management, College of Computing, Illinois Institute of Technology,
Chicago, IL 60616, USA; yzheng66@iit.edu

Abstract: Recommender systems can assist with decision-making by delivering a list of item recom-
mendations tailored to user preferences. Context-aware recommender systems additionally consider
context information and adapt the recommendations to different situations. A process of context
matching, therefore, enables the system to utilize rating profiles in the matched contexts to produce
context-aware recommendations. However, it suffers from the sparsity problem since users may
not rate items in various context situations. One of the major solutions to alleviate the sparsity
issue is measuring the similarity of contexts and utilizing rating profiles with similar contexts to
build the recommendation model. In this paper, we summarize the context-aware collaborative
filtering methods using context similarity, and deliver an empirical comparison based on multiple
context-aware data sets.

Keywords: recommender systems; context-aware; context similarity; collaborative filtering

1. Introduction

The problem of information overload [1,2] refers to the situation that a person can have
difficulty in understanding an issue and making decisions that can be caused by the pres-
ence of too much information. Recommender systems have been demonstrated to alleviate
information overload by producing recommendations tailored to user preferences. Several
recommendation algorithms have been built for item recommendations by exploiting users’
preference history, such as collaborative filtering [3,4], content-based recommenders [5],
hybrid approaches [6], and so forth.

In contrast to the traditional recommender systems, context-aware recommender
systems (CARS) [7,8] were proposed and developed in order to adapt the recommendations
to users’ preferences in different contextual situations. The underlying assumption is that a
user may make distinct decisions in different situations. For example, a user may choose
a different type of movie when he or she will watch the movie with a partner rather than
with kids. Furthermore, a user may choose a formal restaurant for a business dinner, but a
fast-food restaurant may be enough for having a quick lunch alone. Companion and occasion
are two context variables in these examples that may affect a user’s choice of the items.

Several recommendation algorithms were proposed for CARS, such as pre-filtering [7,9,10],
post-filtering [11,12], and contextual modeling [13–15] approaches. Taking pre-filtering ap-
proaches for example, we can use contexts to filter out irrelevant rating profiles, so the tradi-
tional recommendation algorithms can be applied to the remaining ratings. To predict a user’s
rating on a movie in contexts “at a cinema on a weekend with family”, the model expects to
use the ratings on the same item in the same contexts. However, the items may not be rated in
the exact contexts for multiple times, which results in the sparsity issue in CARS. Researchers
proposed to build different latent-factor models [13,14] to alleviate this issue, but we may have
difficulties to discover the insights or interpret the recommendations in these models. Another
popular solution is measuring context similarities so that rating profiles with similar contexts
can be utilized to build the recommendation model. The similarity of the contexts can also be
used to interpret the model or the contextual effects [16].

Information 2022, 13, 42. https://doi.org/10.3390/info13010042 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13010042
https://doi.org/10.3390/info13010042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-4990-4580
https://doi.org/10.3390/info13010042
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13010042?type=check_update&version=1

Information 2022, 13, 42 2 of 18

In this paper, we deliver a mini review about context-aware collaborative filtering
(CACF) using context similarity. The major contributions can be summarized as follows.

• Using context similarity is one of the major solutions to alleviate the sparsity issue
in CARS. In this paper, we summarize different approaches to measure the context
similarity, and discuss existing CACF approaches using context similarity.

• We deliver an empirical comparison among these recommendation algorithms, includ-
ing some classical CACF approaches that were proposed at the early stage, but not
compared with any existing research, such as the Chen’s method [17] in 2005.

The remainder of the article is organized as follows: Section 2 briefly reviews context-
aware recommender systems and collaborative filtering. Section 3 introduces the classical
collaborative filtering as a preliminary. Section 4 illustrates and summarizes different CACF
approaches. Section 5 presents our empirical comparison among these CACF methods,
followed by the conclusion and future work in Section 6.

2. Related Work

In this section, we deliver the background of CARS, introduce CACF approaches,
and illustrate the sparsity issue in CARS.

2.1. Context-Aware Recommender Systems

Traditional recommendation problem can be modeled as a two-dimensional (2D)
prediction—R: Users × Items→ Ratings, where the recommender system’s task is to predict
that user’s rating for that item. By contrast, context-aware recommender systems try to
additionally incorporate contexts to estimate user preferences, which turns the prediction
into a “multi-dimensional” (MD) rating function—R: Users × Items × Contexts→ Ratings [8].
In other words, CARS tries to adapt to user’s preferences in different contextual situations.
The appropriate recommendations should be produced by taking context information into
account, since users’ tastes may vary from context to context.

Context is defined as “any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves” [18].
G. Adomavicius et al. [8] believed that context variables can be split according to two
factors—what a recommender system knows about a contextual factor (i.e., fully observ-
able, partially observable, and unobservable) and how the contextual factor changes over
time (i.e., static, or dynamic). Therefore, CARS can be classified into two categories—one
is representational CARS in which the contextual variables are fully observed and static.
The other is interactional CARS in which contextual factors are not fully observed and
usually change dynamically in the process of interactions among users, items, and con-
texts, such as the session-based recommender systems [19,20]. In this paper, we limit our
discussion to the representational CARS.

Some recent development of CARS incorporated additional information into the
recommendation models to obtain further improvements. These additional information
include but not limited to trust information [21], social network [22], tag-based folkson-
omy [23], and so forth. In this paper, we only discuss the CARS models which were built
based on users’ contextual ratings on the items.

2.2. Context-Aware Collaborative Filtering

Traditional recommender systems usually use a variety of ways to adapt to user
preferences, such as collaborative [3,24], content-based [5], knowledge-based [25], and
hybrid [6] approaches. In CARS, researchers tried to incorporate contexts into these
traditional recommendation approaches, especially the collaborative filtering techniques.

Adomavicius [26] pointed out that there were usually three ways to incorporate
contexts into recommender systems. The contextual pre-filtering approaches [7,9,10] use
contexts as filters to filter out irrelevant rating profiles, and any traditional recommendation
algorithms can be applied to the remaining ratings to produce the recommendation list.

Information 2022, 13, 42 3 of 18

The first approach in this category was the reduction-based approach or exact-filtering [7]
that performs an exact matching by using the whole or the reduced context variables.
Contextual post-filtering [11,12] methods apply a recommender first and then use contexts
as filters to filter out irrelevant recommendations. By contrast, contexts are considered as
one part in the prediction function in the contextual modeling approaches to build MD
recommenders directly, such as tensor factorization (TF) [14] and context-aware matrix
factorization (CAMF) [13].

Most of the existing research incorporates contexts into the memory-based [3,27] and
model-based [4,28,29] collaborative filtering by using the three methods above. With the
development of deep learning-based recommendation models [30], CARS have been built
on top of neural networks too. Most efforts by deep learning were devoted to the interactive
CARS, such as the session-based recommender systems [19,20]. Few of them [31–33] were
applied to representational CARS. However, none of these deep learning-based models
took advantage of context similarities.

2.3. Sparsity Issue in CARS

As mentioned before, a user may not rate items in different contexts for several
different times. This is well-known as the sparsity issue in CARS. For example, using
the exact matching by contexts may lead to limited or even no rating profiles left. As a
result, the recommendation models may not provide accurate or reliable recommendations,
or even do not work if there are no matched rating profiles.

There could be three solutions to alleviate this sparsity issue: First, we can reduce
the number of context variables. However, we may mistakenly remove contexts that are
useful. Moreover, the latent-factor models, such as the CARS algorithms based on matrix
factorization [13] or tensor factorization [14], can alleviate the sparsity issue. However, these
models may reduce the degree of transparency or the explainability of the recommendations.
In addition, researchers seek ways to measure context similarity, so that a larger proportion
of the rating profiles can be utilized in the recommendation models. The context similarity
can be utilized in a similar way to explain the recommendations as to the user–user or
item–item similarities in the neighborhood-based collaborative filtering (NBCF). We will
summarize and discuss these approaches in Section 4.

Our work in this paper specifically focuses on context-aware collaborative filtering using
context similarities in which we highlight the importance of context similarities in alleviating
the sparsity of CARS and provide an empirical comparison among related techniques.

3. Preliminary: Collaborative Filtering

In this section, we discuss the classical collaborative filtering algorithms for the tradi-
tional recommender systems.

3.1. Memory-Based Collaborative Filtering

The neighborhood-based collaborative filtering, such as user-based collaborative fil-
tering (UBCF) [3] and item-based collaborative filtering [27], are the two most popular
memory-based collaborative filtering. Taking UBCF for example, it assumes a user’s pref-
erence on one item is close to a group of users’ taste on the same item. This group of
users should share similar preferences with the target user and is usually named as user
neighborhood.

r̂u,i = r̄u +

∑
a∈Nu

(ra,i − r̄a)× sim(a, u)

∑
a∈Nu

sim(a, u)
(1)

The standard prediction function in UBCF can be described by Equation (1), where u
is a user, i is an item, and Nu is the user neighborhood for user u. The algorithm calculates
r̂u,i, which is the predicted rating by user u on item i. The similarity between users u and
neighbor a can be computed from the ratings of their co-rated items based on popular
similarity measure (e.g., Pearson correlation, cosine similarity, etc.). Nu can be formed

Information 2022, 13, 42 4 of 18

by the top-K similar neighbors based on the user–user similarities. It suffers from the
sparsity issue, since user-user similarities may not be reliable if the number of co-rated
items is limited.

3.2. Model-Based Collaborative Filtering

Matrix factorization (MF) [4] is one of the most effective model-based collaborative
filtering in the traditional recommender systems. In MF, both users and items are repre-
sented by latent-factor vectors, e.g., −→pu is used to denote a user vector, and −→qi as an item
vector. As a result, the rating prediction can be described by Equation (2).

r̂u,i =
−→pu · −→qi (2)

The values in −→pu can be considered as the weights on the factors that why the user u
likes an item, while the values in −→qi can represent how much an item i obtains these factors
or characteristics. Therefore, the dot product in Equation (2) can represent how user u likes
the item i.

r̂u,i = µ + bu + bi +
−→pu · −→qi (3)

Minimize
p∗,q∗,b∗ ∑

(u,i)∈Tr

(ru,i − r̂u,i)
2 + λ(||−→pu ||2 + ||−→qi ||2 + b2

u + b2
i) (4)

Koren et al. [4] suggests adding the global rating (i.e., µ), user bias (i.e., bu), and item
bias (i.e., bi) in the rating prediction, as shown by Equation (3), to produce better rating
predictions. Stochastic gradient descent (SGD) or alternating least squares can minimize
the sum of squared errors by learning the user and item vectors, as well as the user and
item biases in the model. The loss function can be shown by Equation (4), where Tr is the
rating data set and ru,i refers to the known or real rating. λ refers to the regularization rate
assigned to the regularization term with L2 norm, as shown by Equation (4).

4. Context-Aware Collaborative Filtering Using Context Similarity

In this section, we discuss different ways to compute or learn the context similarity and
present the approaches that take advantages of context similarity to build better context-
aware recommendation models. Finally, we discuss the advantages and disadvantages in
Section 4.6.

Some studies did not use context similarity directly in their models but derive a
similarity function to better calculate user–user [34–36] or item–item [36,37] similarities by
considering contexts. These works were excluded from our discussions in this section.

According to our literature reviews, we classify these approaches using context similar-
ity into four categories—semantic similarity, matching-based similarity, inferred similarity
from ratings, and learned similarity representations—which can be described in Table 1.
In addition, we indicate the type of the collaborative filtering (NBCF or MF) the context sim-
ilarity can be fused to, and which category of CARS algorithm (pre-filtering or contextual
modeling) they belong to.

We can observe that 9 out of 12 works built contextual modeling algorithms, and no
existing research incorporates context similarity into post-filtering models. Among these
four categories, only the work by Zheng et al. [38] proposed and learned different similarity
representations, while others tried to compute the context similarity based on the semantic
ontology [39] or existing ratings [7,10,40–42]. We discuss these techniques in the following
sections, respectively.

Information 2022, 13, 42 5 of 18

Table 1. Summary of Context Similarity Approaches.

References Pre-Filtering Contextual Modeling NBCF MF

Semantic Similarity Liu et al. [39]
Kolahkaj et al. [43] 3 3

Matching-based
Similarity

Adomavicius et al. [7], 3 3

Zheng et al. [40,41,44],
Gupta et al. [45]
Linda et al. [46]

3 3

Inffered Similarity
from Ratings

Chen [17] 3 3

Codina et al. [10]
Ferdousi, et al. [42] 3 3

Learned Similarity
Representations Zheng et al. [38] 3 3

4.1. Terminology and Notations

To better describe the CARS algorithms, we introduce the terminology and notations in
this Section. In Table 2, there is one user u, one movie i, and three context variables—Time
(weekend or weekday), Location (at home or cinema), and Companion (alone, partner,
or family). In the following discussion, we use context dimension to denote the contextual
variable, e.g., “Location”. The term context condition refers to a specific value in a dimension,
e.g., “home” and “cinema” are two contextual conditions in “Location”. The contexts or
context situation is, therefore, a set of contextual conditions, e.g., weekend, home, or family.

Table 2. Contextual Ratings on Movies.

User Item Rating Time Location Companion

u i 3 weekend home alone

u i 5 weekend cinema partner

u i ? weekday home family

The symbols or notations used in the following discussions are listed in Table 3.

Table 3. Notations.

Notation Explanations

M, N, Z the number of users, items, and context dimensions, respectively,

c, x, y context situations

cE a special context situation, with all dimensions as empty or N/A values.
a non-contextual rating can be viewed as a rating in cE

c1, c2, ...cZ context conditions in the 1th, 2th, . . . , Zth dimension of the situation c

ru,i,c rating given by user u on item i in context situation c

ru,i,ct rating given by user u on item i in context condition ct

ru,i rating given by user u on item i without considering contexts

Tr, Te training and testing set, respectively,

4.2. Semantic Similarity

The notion of semantic similarity here only refers to the similarity of contexts from
the perspective of semantics in the contextual variables and conditions, i.e., the similarity
measured from the textual values. Taking companion at movie watching for example,

Information 2022, 13, 42 6 of 18

“with sisters” may be more similar to “with family” rather than “with colleagues” from the
perspective of semantics. The work by Codina et al. [10] tried to infer context similarity
from rating behaviors, where we consider their work as inferred similarities from ratings,
instead of semantic similarities.

Liu et al. [39] proposed to treat numerical and nominal contexts differently in a case
study of hotel recommendations. They used a ratio value to represent context similarity
for the numerical context dimension and adopted an ontology to measure the context
similarity for nominal variables. Note that most of the context variables are categorical in
existing data sets for CARS. In their work, they built an ontology tree for the companion
in the trip scenario, e.g., traveling with children may be more similar with having a trip
with spouse rather than with friends. There are two concerns with this method—on one
hand, two contexts with a high context similarity usually infer that users may have similar
preferences in these two contextual situations, while it is not necessary to be consistent with
the semantic similarity. Taking companion at movie watching above for example again,
“with sisters” may be more similar to “with family” rather than “with colleagues” from the
perspective of semantics. However, the rating behaviors for watching movie “with sisters”
may be similar to “with colleagues”, but different from “with family”. On the other hand,
the semantic method is difficult to be generalized since it may need domain knowledge to
build an ontology.

Kolahkaj et al. [43] focused on the temporal and geographical contexts. More specif-
ically, they used a time-decay function to measure the similarity between timestamps.
By contrast, they measured the spatial distance for the geographical contexts, if we have
the latitude and longitude information. A weighted sum of the temporal and geographical
context similarity can be considered as the similarity between two context situations. They
take advantage of the temporal and geographical semantics. However, temporal and
geographical contexts are usually represented in nominal values in most of the existing
context-aware data, e.g., a “time” dimension may have “weekend, weekday, morning,
evening” as the conditions, while a “location” may have context conditions such as “at
home or at work”.

4.3. Matching-Based Similarity

We consider context matching as a special case in measuring context similarity. There
are usually two approaches—exact matching and weighted matching. The reduction-based
approach proposed by Adomavicius et al. [7] is an exact-matching method that filters
out rating profiles not-matched with the given contexts. Afterwards, any traditional
recommendation algorithms (e.g., UBCF, MF, etc.) can be applied to the remaining rating
profiles. The differential context relaxation (DCR) by Zheng et al. [40] used the exact
matching in relaxed contexts. They decomposed the rating prediction function in UBCF
into four components—neighbor selection, neighbor contribution, calculation of user-user
similarities, and average rating of the target user, as shown by Figure 1. For each component,
they proposed to perform an exact matching on selected or relaxed context dimensions.
Taking the data shown in Table 2 for example, we can use time and location in the exact
matching for the neighbor selection process but use time and companion in the neighbor
contribution component. They proposed to use binary particle swarm optimizer [47]
to learn the best selected or relaxed context dimensions for each component, where the
solution can be encoded by a binary vector, so that the value of one indicates that the
dimension is selected, and zero tells the dimension is not selected in the context relaxation.

Information 2022, 13, 42 7 of 18

Neighbor selection

Neighbor contribution User-user similarities

Average rating

,

Figure 1. Four components in UBCF.

Zheng et al. [41] also proposed the weighted matching method which is referred to
differential context weighting (DCW). Instead of an exact matching for the four components
in the UBCF, they suggested to calculate context similarity and set a minimal threshold to
have a set of rating profiles for each component. More specifically, they assigned a weight
for each context dimension, and adopted a weighted Jaccard metric to calculate the context
similarity, as shown by Equation (5), where x and y are two context situations, w is the
weighting vector for context dimensions, Z is the number of context dimensions, and f
refers to the index of matched context dimensions between x and y. Only the weights on
the matched dimensions will be contributed to the similarity computations.

sim(x, y, w) =
∑ f∈x∩y w f

∑Z
t=1 wt

(5)

Accordingly, particle swarm optimizer [48] can be adopted to learn these weights in
DCW. More specifically, the weights for each context dimension (i.e., wt in Equation (5)) is
encoded by a vector or real values which can further optimized by a process of population-
based heuristic search (e.g., particle swarm optimizer or genetic algorithm).

There are several extensions to these DCR and DCW recommendation models. For ex-
ample, Linda et al. [46] proposed to utilize real-coded genetic algorithm [49] to learn the
weights in DCW. Gupta et al. [45] tried different weighted similarity measures (e.g., cosine
similarity, Dice’s coefficient, etc.) rather than the Jaccard metric, while they all are weighted
matching based similarity, since nominal context conditions need to be transformed into
binary values in the computations. Recently, the non-dominated DCR and DCW [44]
were proposed. Context relaxation and context weighting were reused in these models,
but they utilize a dominance relation to select better neighbors that can be referred as “non-
dominated user neighbors”. These neighbors are defined as the neighbors that dominate
others from different perspectives of the user-user similarities, such as the user-user simi-
larities based on co-rated items and co-rated context dimensions or conditions. They were
demonstrated as better improvements over DCR and DCW in the rating prediction task.

4.4. Inferred Similarity from Ratings

Chen [17] first proposed to utilize context similarity in collaborative filtering in 2005,
but these methods were not evaluated since there were no context-aware data sets available.
It is surprising that the following research after 2005 did not evaluate Chen’s methods
too. Given two situations x and c, Chen proposed to measure similarity of them at tth
dimension with respect to an item i by Equation (6). M refers to the number of users in the
data, and ru,i,xt is used to denote a rating given by user u on item i in the context condition
xt, while r̄i refers to the average rating on item i.

sim(ct, xt, i) =
∑M

u=1(ru,i,ct − r̄i) · (ru,i,xt − r̄i)√
∑M

u=1(ru,i,ct − r̄i)2
√

∑M
u=1(ru,i,xt − r̄i)2

(6)

Therefore, the predicted rating by u on item i in context situation c can be represented
by Equation (7), while Nc denotes a set of similar context situations with c. The context

Information 2022, 13, 42 8 of 18

similarity between two situations with respect to i can be an average over all dimensions as
shown by Equation (8).

r̂u,i,c =
∑x∈Nc ru,i,x · sim(c, x, i)

∑x∈Nc sim(c, x, i)
(7)

sim(c, x, i) =
1
Z

Z

∑
t=1

sim(ct, xt, i) (8)

Or the user neighborhood can be utilized to produce the final prediction as shown
by Equation (9). If neighbor a’s rating ra,i,c is not available, it can be estimated from
Equation (7).

r̂u,i,c = r̄u +
∑a∈Nu(ra,i,c − r̄a) · sim(a, u)

∑a∈Nu sim(a, u)
(9)

We use “Chen1” to denote the rating prediction by Equation (7) and “Chen2” for
the method in Equation (9). Chen’s methods suffer from sparsity issues seriously. In
Equation (6), it is not guaranteed that a user has rating on an item i, not to mention the
rating in context condition ct, which results in inaccurate computation of context similarity
with respect to item i in Equation (8).

Alternatively, Codina et al. [10] and Ferdousi, et al. [42] proposed to use a distributed
vector to represent context conditions and dimensions. More specifically, the semantic
pre-filtering (SPF) method by Codina et al. [10] first computed the influence of the condition
ct on the item i, denoted by wi,ct , as shown by Equation (10). We use Ri,ct to denote the set
of ratings on the item i in context condition ct, and β is a decay factor.

wi,ct =
1

|Ri,ct |+ β ∑
ru,i,ct εRi,ct

(ru,i,ct − r̂u,i) (10)

By this way, we can build a condition-item matrix in which rows are the unique context
conditions in the data set, columns are the items, and the matrix can be filled by the influence
of the condition ct on the item it above. Each context condition is therefore represented by
an influence vector over all items. A context situation c can be represented by the average
vector over its condition vectors, and a cosine similarity is used to compute the similarity
between two situations. A minimal similarity threshold can be set up to filter-out dissimilar
rating profiles in the pre-filtering setting. Traditional recommendation algorithms, such
as MF, can be applied to the remaining ratings to produce rating predictions or the list
of recommendations.

Ferdousi, et al. [42] proposed a correlation-based pre-filtering (CBPF), which is a
similar pre-filtering method with SPF. The influence of the condition ct on the item it,
wi,ct , was computed by the Pearson correlation between a rating entry in the data and the
context condition ct. After that, a context situation c is representation by a vector which is
a concatenation of the condition vectors, as shown by Figure 2. The calculation of wi,ct in
CBPF has significant computational costs since it must visit all rating entries and context
conditions. Ferdousi, et al. suggested to compute wi,ct on an item-cluster basis, instead of
an influence on the item basis [42]. They clustered the items over item content features and
demonstrated that it was able to speed up the computation process.

Figure 2. A context situation is a concatenation of the condition vectors.

All these methods in this category rely on the independent assumptions, so that the
similarity of context situations can be aggregated from context conditions. There may be
dependency among contexts. Given one example in movie watching, a user might prefer

Information 2022, 13, 42 9 of 18

to watch movie at cinema if it is weekend, since he or she may have time on the weekend to
drive to the cinema.

4.5. Learned Similarity Representations

Zheng et al. [38] proposed to learn different similarity representations. The general
rating prediction function can be described by Equation (11) in which the non-contextual
rating r̂u,i is estimated by the dot product of the user and item vectors in matrix factorization.
The function estimates a contextual rating from non-contextual rating by multiplying with
the context similarity between a regular situation c and the empty contexts cE. For example,
c could be {at home, at weekend, with parents}, while cE refers to {N/A, N/A, N/A}
which is a special context situation to denote the empty or unknown contexts. It can also be
a function from the perspective of transfer learning. Namely, the context similarity is used
to transfer user preferences without considering contexts to user preferences in specific
context situations.

r̂u,i,c =
−→pu · −→qi · sim(c, cE) (11)

Three similarity representations were proposed—independent context similarity (ICS),
latent context similarity (LCS) and multi-dimensional context similarity (MCS). In ICS,
the model initializes a similarity value (in [0, 1]) for each pair of the context conditions
from a same context dimension, e.g., similarities for <at home, at cinema>, <weekend,
weekday>, and so forth. The context similarity between c and x situations can be depicted
by Equation (12) which is a multiplication of the similarity of conditions in each dimension.
Note that, sim(ct, xt) were initialized at the beginning, and they can be learned together by
using the SGD towards the sum of squared loss.

sim(c, x) =
Z

∏
t=1

sim(ct, xt) (12)

The representation by ICS may be affected by the sparsity issue. For example, we need
the similarity between “at home” and “at cinema”, but this pair was never learned since it
did not appear in the training set. LCS can alleviate this issue by representing each context
condition as a latent-factor vector. The dot-product of the vectors can be considered as the
similarity between two conditions, while Equation (12) can also be applied to measure the
similarity between two context situations.

LCS can alleviate the problems in ICS, but it is possible that the vector representation
for a context condition is never trained due to the sparsity. MCS may be able to further
alleviate the sparsity problem. To better understand MCS, we visualized the approach
by Figure 3. Each context dimension is considered as an axis in the multi-dimensional
space. Each condition is initialized with a real value. By this way, each contextual situation
is mapped to a point in the space. The dissimilarity between two contextual situations
can be captured by the Euclidean distance between the mapped points. The model can
learn the real values for each context condition, so that the similarity can be adjusted in the
optimization process.

ICS, LCS, and MCS can be considered as general ways to represent context similarity.
Theoretically, a contextual rating in situation c can be estimated from rating in another
situation x by multiplying with the context similarity between c and x. The prediction
function in Equation (11) utilizes the rating in cE as a source, to reduce the complexity and
further alleviate the sparsity issue. The algorithms based on LCS and MCS were optimized
on a relaxed loss function, e.g., the dot product is used to represent context similarity in LCS.
In this case, the output in Equation (11) is not guaranteed to stay in the original rating scale,
but it can be considered as ranking score to sort and rank items. Therefore, the methods
based on LCS and MCS are used for top-N recommendations only, while the algorithm
based on ICS can be used for both rating predictions and top-N recommendations.

Information 2022, 13, 42 10 of 18

Figure 3. Visualization of multi-dimensional space in MCS.

4.6. Summary: Pros and Cons

Among the five categories of these context similarities, the semantic similarity may
only work in limited applications. On the one hand, it requires domain knowledge to build
the ontology for the purpose of semantic similarities. On the other hand, the semantic
similarities may not be consistent with context similarities. User will probably give similar
ratings on the items in two similar context situations, but these contexts may not be
necessary to be semantically similar. The matching-based similarities and the inferred
similarities from ratings can be generally applied to any CARS, but they may suffer from
the sparsity issue, since we may not have enough knowledge to deliver reliable similarity
values. The learned similarity representations can be optimized by the recommendation
models. They may help to improve the recommendation qualities. However, there are
more parameters to be learned, and it is difficult to explain the latent representations.

5. Experiments and Results

In this section, we introduce the contextual data sets and evaluation protocols for
experiments, and discuss our experimental results and findings.

5.1. Contextual Data Sets

Due to the difficulty in context collection, there is a limited number of contextual
data sets available for research. We selected six data sets as shown in Table 4, and most
of them can be found from this data repository (https://github.com/irecsys/CARSKit/
tree/master/context-aware_data_sets, accessed around 1 August 2021). The data are small,
since most of them were collected from user surveys. In real practice, a user may not
consume or rate an item for several times in different context situations.

https://github.com/irecsys/CARSKit/tree/master/context-aware_data_sets
https://github.com/irecsys/CARSKit/tree/master/context-aware_data_sets

Information 2022, 13, 42 11 of 18

Table 4. List of Contextual Data Sets.

Food Restaurant CoMoDa Music STS Frappe

of users 212 50 121 42 325 957

of items 20 40 1232 139 249 4082

of context dimensions 2 2 8 5 11 3

of context conditions 8 7 37 21 53 14

of ratings 6360 2309 2292 3251 2354 87,580

Rating scale 1–5 1–5 1–5 1–5 1–5 0–4.46

Density 9.4% 9.6% 1.4 × 10−7 3.8 × 10−4 1.3 × 10−9 9.4 × 10−5

• The Food data [50] was collected from surveys in which the subjects were asked to give
ratings on Japanese food menus in two contextual dimensions: degree of hungriness
in real situations, and degree of hungriness in assumed or imagined situations. Typical
context conditions in these two dimensions are full, hungry, and normal. This is a
good data set for exploring contextual preferences, since each user gave multiple
ratings on a same item in different contexts.

• The Restaurant data [11] is also a data set collected from a survey. Subjects gave ratings
to the popular restaurants in Tijuana, Mexico, by considering two contextual variables:
time and location.

• The CoMoDa data [51] is a publicly available context-aware movie data collected from
surveys. There are 12 context dimensions that captured users’ various situations,
including mood, weather, time, location, companion, etc.

• The South Tyrol Suggests (STS) data [52] was collected from a mobile app that pro-
vides context-aware suggestions for attractions, events, public services, restaurants,
and much more for South Tyrol. There are 14 contextual dimensions, such as budget,
companion, daytime, mood, season, weather, etc.

• The Music data [53] was collected from InCarMusic, which is a mobile application
(Android) offering music recommendations to the passengers of a car. Users are
requested to enter ratings for some items using a web application. The contextual
dimensions include driving style, road type, landscape, sleepiness, traffic conditions,
mood, weather, and natural phenomena.

• The Frappe data [54] comes from the mobile usage in the app named Frappe, which is
a context-aware app discovery tool that will recommend the right apps for the right
moment. We used three context dimensions for experimental evaluations, including
time of the day, day of the week, and location. This data captures the frequencies of
an app used by each user within 2 months.

5.2. Evaluation Protocols

We use 5-fold cross validation for all the data sets above and evaluate different context-
aware recommendation models based on the rating prediction task and top-10 recommen-
dation task by using the CARSKit library [55], which is a Java-based open-source library
for context-aware recommendations.

In the rating predictions, we use mean absolute error (MAE) as the metric, as shown
by Equation (13), while Te refers to the test set.

MAE =
1
|Te| ∑

(u,i,c)∈Te

|ru,i,c − r̂u,i,c| (13)

In terms of the top-10 recommendations, we evaluate the relevance and ranking quality
by F1 measure and normalized discounted cumulative gain (NDCG) [56]. The precision is
the fraction of recommendations that are relevant, while recall is the fraction of relevant

Information 2022, 13, 42 12 of 18

items that were recommended. F1 is the metric which combined precision and recall,
as shown in Equation (14).

F1 = 2 · precision · recall
precision + recall

(14)

NDCG a metric for listwise ranking in the well-known learning-to-rank methods.
Assuming each user u has a “gain” gui from being recommended an item i, the average
Discounted Cumulative Gain (DCG) for a list of J items is defined in Equation (15).

DCG =
1
N

N

∑
u=1

J

∑
j=1

gui j

max(1, logb j))
(15)

where the logarithm base is a free parameter, typically between 2 and 10. A logarithm with
base 2 is commonly used to ensure all positions are discounted. NDCG is the normalized
version of DCG given by Equation (16), where DCG∗ is the ideal DCG, i.e., the maximum
possible DCG.

NDCG =
DCG
DCG∗

(16)

In traditional recommender systems, we may produce a list of recommenders given a
user. In CARS, we recommend items given a user and the specific context situation. An ex-
ample of NDCG calculation can be followed by the workflow described in Algorithm 1.
For each unique pair of a user u and a context situation c in the test set, we retrieval the
list of the ground truth ListTruth

u,c and the list of top-N recommendations ListTopN
u,c , so that

the NDCG for the pair u and c can be obtained. We achieve the NDCG for each user by
averaging the NDCG values over all user and context situation pairs, and finally output
the NDCG by an average value over all users. It results in small values in these metrics,
since a user may not rate several items in a same context situation.

Algorithm 1: Calculation of NDCG in CARS.
NDCG = [];
for each unique user in test set do

u = current user;
NDCGu = [];
for each unique pair of user u and context situation c in test set do

ListTruth
u,c = the ranked list of items associated with (u, c) in test set;

ListTopN
u,c = the top-N recommendation list associated with (u, c);

NDCGu,c = NDCG(ListTopN
u,c , ListTruth

u,c) by Equation (16);
NDCGu.append(NDCGu,c);

end
NDCG.append(mean(NDCGu));

end
ndcg_final = mean(NDCGu)

In our experiments, we compared different CACF models that are listed as follows.

• CACF using context similarity.

– Exact filtering (EF), which is the reduction approach proposed by Adomavi-
cius et al. [7]. We use the contexts for exact filtering and apply MF in the remaining
rating profiles to produce recommendations.

– DCR uses the exact filtering on relaxed contexts, and DCW calculates context
similarity based on a weighted matching. We present the results based on the
non-dominated simplified DCR and DCW (i.e., noted by NDs-DCR and NDs-
DCW), which are the latest variants of the DCR and DCW models mentioned in
Section 4.3.

Information 2022, 13, 42 13 of 18

– Chen’s method including Chen1 and Chen2 that use the prediction function by
Equations (7) and (9), respectively.

– SPF [10] and CBPF [42], which are two pre-filtering methods that rely on the
context similarity based on the distributed vector representation for the context
conditions. Note that CBPF runs slowly if there are several items and context
conditions. The authors suggested to build the correlations on item clusters to
speed up the computation process. We used K-Means clustering to build ten item
clusters for the CoModa and Frappe data.

– Context-aware matrix factorization using ICS, LCS, and MCS [38], which learns
different similarity representations.

• Other CACF methods.

– UISplitting [57], which is a pre-filtering model that combines user splitting and
item splitting.

– Context-aware matrix factorization (CAMF) [13], which learns a bias for each
context condition. We use the version that assumes this bias is associated with
an item. Namely, the bias for a same context condition may vary from items to
items.

– Tensor factorization (TF) [14], which considers each context variance as an indi-
vidual dimension in the tensor CANDECOMP/PARAFAC decomposition [58].

Note that we did not add the models using semantic similarity to measure context
similarity, since we do not have domain knowledge to build the ontology for each contextual
data set.

5.3. Results and Discussions

We present the experimental results in this section. Particularly, we wish to explore
the following questions.

• Which one is the winner in terms of the comparison between CACF using context
similarity and other CACF approaches?

• Which approach is the best among these CACF using context similarity?
• Among the three categories of CACF using context similarity (i.e., matching-based

similarity, inferred similarity, learned similarity), which method is the best in each
category?

5.3.1. Performance on Rating Predictions

First, we focus on the performance on the rating prediction task by different CARS
models. The results based on MAE are shown in Table 5, where the numbers in bold and
italic are the best results by CACF using context similarity, and the underlined values tell
the best results by other CACF methods. We further compared the best model from these
two categories (i.e., using context similarity or not), and use * to indicate significance at
95% confidence level.

According to Table 5, we can observe that CACF using context similarity may produce
predicted ratings with lower MAE in comparison with other CACF approaches. More
specifically, NDs-DCW delivers significant lower MAE on three data sets (i.e., food, restau-
rant and CoMoDa) than the ones by the UISplitting which is the best performing CACF
using other methods rather than context similarity. UISplitting can produce lower MAE on
other three data sets, but there are no significant differences with the CACF model using
context similarity (e.g., ICS on the music data, SPF on the STS data, and NDs-DCW on the
Frappe data).

Among the models using matching-based context similarity (i.e., EF, NDs-DCR, NDs-
DCW), NDs-DCW is clear winner. In terms of the approaches using inferred similarities
(i.e., Chen1, Chen2, SPF and CBPF), SPF is the overall winner, while Chen1 method can beat
SPF on the music data and obtain comparable results on the CoMoDa data. Regarding the

Information 2022, 13, 42 14 of 18

learned similarity representations, only ICS is applied for rating predictions, while LCS
and MCS were developed for top-N recommendations only.

Table 5. MAE Results.

Food Restaurant CoMoDa Music STS Frappe

EF 0.900 1.026 0.833 1.165 0.961 0.409

NDs-DCR 0.740 0.787 0.726 1.092 0.934 0.386

NDs-DCW 0.725 * 0.735 * 0.726 * 1.048 0.923 0.379

Chen1 1.105 1.010 0.846 0.686 1.020 0.527

Chen2 1.023 1.090 0.857 1.110 0.952 0.563

SPF 0.900 0.808 0.819 0.918 0.900 0.382

CBPF 1.068 0.972 0.830 1.110 1.060 0.402

ICS 0.858 0.825 0.777 0.678 0.986 0.388

UISplitting 0.805 0.813 0.775 0.657 0.893 0.378

CAMF 0.845 0.860 0.795 0.727 1.019 0.398

TF 0.966 0.945 0.858 0.864 0.916 0.392

5.3.2. Performance on Top-10 Recommendations

The performance based on the top-10 item recommendations can be depicted by
Figure 4. In our experiments, we tuned up parameters for the rating prediction and top-10
recommendations, respectively. Therefore, the patterns in the top-10 recommendations
may not be consistent with the results in the rating prediction task.

In Figure 4, we use bars to denote the results of F1 measure with respect to the y-axis
on the left. The curve in the figure tells the results in NDCG with respect to the y-axis on
the right.

The comparison of the CACF using context similarity with other CACF methods,
the CACF using learned context similarities (i.e., ICS, LCS, MCS) can be considered as the
overall winner, except the CoMoDa data where UISplitting and CAMF work better, and the
Frappe data where NDs-DCW and Chen1 methods can produce better F1 scores.

NDs-DCW is the best performing CACF using matching-based context similarity.
The only exception is shown on the food data where EF works better. As mentioned before,
the food data is a rating data with dense contextual ratings—each subject was asked for rate
selected items in all six contextual situations. It is not surprising that EF can work better
than NDs-DCW in this case. NDs-DCW generally works better than others in the rating
prediction task, but its performance on top-N recommendations is not as good as the ones
in the rating predictions. One of the underlying reasons is that we used sum of squared
prediction errors as the fitness function in particle swarm intelligence. By switching to
using ranking metrics as the fitness function, its performance on top-N recommendations
may be improved. However, the computational cost will also be increased significantly.

In contrast, there are no clear patterns in the CACF using inferred context similarities.
Chen’s methods perform better than SPF and CBPF on the music, STS, and Frappe data,
while SPF works better than others slightly on the food and CoMoDa data. CBPF seems to
perform well on the data sets with dense ratings, such as the food and restaurant data.

Information 2022, 13, 42 15 of 18

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

N
D

C
GF1

Food

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

N
D

C
GF1

Restaurant

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

N
D

C
GF1

CoMoDa

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

N
D

C
GF1

Music

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

N
D

C
GF1

STS

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800

0.2000

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

N
D

C
GF1

Frappe

Figure 4. Results of top-10 recommendations.

The CACF models using learned context similarities (i.e., ICS, LCS, and MCS) generally
perform well on the top-10 recommendations. The method based on MCS shows significant
advantages over ICS and LCS on the CoMoDa and Frappe data. There is no clear winner
between ICS and LCS. LCS is expected to further alleviate the sparsity issue, but there are
also more parameters to be learned in LCS in comparison with ICS.

Frappe is the only large data in our experiments. The NBCF works better than MF
on this data, if we do not consider context information. Therefore, the CARS models built
on NBCF (e.g., EF, NDs-DCR, NDs-DCW, and Chen’s methods) usually outperform the
models built upon MF (e.g., SPF, CBPF, ICS, LCS, MCS) on the Frappe data. Surprisingly,
the context-aware matrix factorization using MCS presents improved performance in
comparison with other CACF models based on MF. It infers the potential advantages of
MCS in context-aware recommendations.

6. Conclusions and Future Work

Context-aware recommender systems were built and developed based on the assump-
tion that a user’s decisions or preferences on the items may vary from contexts to contexts.
However, the recommendation models may suffer from the sparsity issue, while one of the
solutions is measuring and utilizing the context similarity in the recommendation approach.

This article delivers a review of existing context-aware collaborative filtering models
using context similarity. Particularly, we also provide an empirical study of these models
based on six real-world contextual rating data sets. Our experimental results showed that
using context similarity can alleviate the sparsity issue and improve the recommendation

Information 2022, 13, 42 16 of 18

models. More specifically, the models based on the matching-based context similarity
may perform well in the rating prediction task, while the context-aware collaborative
filtering approaches using learned context similarity usually work better in the top-N
recommendations.

There are two promising research directions that could be considered in our future
work. First, most methods measuring context similarity ignores the dependency among
the context dimensions or conditions. Taking the dependency into consideration may be
able to produce more accuracy and reliable context similarities. In addition, it is interest-
ing to explore new approaches to incorporate context similarity in deep learning-based
recommendation models.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/irecsys/CARSKit/tree/master/context-aware_data_sets
(accessed on 20 November 2021).

Conflicts of Interest: The author declares no conflict of interest.

References
1. Gross, B.M. The Managing of Organizations: The Administrative Struggle; JSTOR: New York, NY, USA, 1964; Volumes I and II.
2. Ruff, J. Information Overload: Causes, Symptoms and Solutions; Harvard Graduate School of Education: Cambridge, MA, USA, 2002;

pp. 1–13.
3. Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; Riedl, J. GroupLens: An open architecture for collaborative filtering of

netnews. In Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, Chapel Hill, NC, USA, 22–26
October 1994; pp. 175–186.

4. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. IEEE Comput. 2009, 42, 30–37.
[CrossRef]

5. Lops, P.; De Gemmis, M.; Semeraro, G. Content-based recommender systems: State of the art and trends. In Recommender Systems
Handbook; Springer: New York, NY, USA, 2011; pp. 73–105.

6. Burke, R. Hybrid Recommender Systems: Survey and Experiments. User Model. User-Adapt. Interact. 2002, 12, 331–370. [CrossRef]
7. Adomavicius, G.; Sankaranarayanan, R.; Sen, S.; Tuzhilin, A. Incorporating contextual information in recommender systems

using a multidimensional approach. ACM Trans. Inf. Syst. (TOIS) 2005, 23, 103–145. [CrossRef]
8. Adomavicius, G.; Mobasher, B.; Ricci, F.; Tuzhilin, A. Context-Aware Recommender Systems. AI Mag. 2011, 32, 67–80.
9. Baltrunas, L.; Ricci, F. Context-based splitting of item ratings in collaborative filtering. In Proceedings of the ACM Conference on

Recommender Systems, New York, NY, USA, 23–25 October 2009; pp. 245–248.
10. Codina, V.; Ricci, F.; Ceccaroni, L. Distributional semantic pre-filtering in context-aware recommender systems. User Model.

User-Adapt. Interact. 2016, 26, 1–32. [CrossRef]
11. Ramirez-Garcia, X.; Garcia-Valdez, M. Post-filtering for a restaurant context-aware recommender system. In Recent Advances on

Hybrid Approaches for Designing Intelligent Systems; Springer: New York, NY, USA, 2014; pp. 695–707.
12. Zheng, Y. Context-Aware Mobile Recommendation by a Novel Post-Filtering Approach. In Proceedings of the FLAIRS Conference,

Melbourne, FL, USA, 21–23 May 2018; pp. 482–485.
13. Baltrunas, L.; Ludwig, B.; Ricci, F. Matrix factorization techniques for context aware recommendation. In Proceedings of the Fifth

ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October 2011; pp. 301–304.
14. Karatzoglou, A.; Amatriain, X.; Baltrunas, L.; Oliver, N. Multiverse recommendation: N-dimensional tensor factorization for

context-aware collaborative filtering. In Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain,
26–30 September 2010; pp. 79–86.

15. Zheng, Y.; Mobasher, B.; Burke, R. Integrating context similarity with sparse linear recommendation model. In Proceedings of the
International Conference on User Modeling, Adaptation, and Personalization, Dublin, Ireland, 29 June–3 July 2015; pp. 370–376.

16. Zheng, Y. Interpreting Contextual Effects by Contextual Modeling In Recommender Systems. In Proceedings of the ACM CIKM,
the Workshop on Interpretable Data Mining (IDM)—Bridging the Gap between Shallow and Deep Models, Singapore, 6–10
November 2017.

17. Chen, A. Context-aware collaborative filtering system: Predicting the user’s preferences in ubiquitous computing. In Proceedings
of the CHI’05 Extended Abstracts on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; pp. 1110–1111.

18. Abowd, G.D.; Dey, A.K.; Brown, P.J.; Davies, N.; Smith, M.; Steggles, P. Towards a better understanding of context and
context-awareness. In Handheld and Ubiquitous Computing; Springer: New York, NY, USA, 1999; pp. 304–307.

https://github.com/irecsys/CARSKit/tree/master/context-aware_data_sets
http://doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1145/1055709.1055714
http://dx.doi.org/10.1007/s11257-015-9158-2

Information 2022, 13, 42 17 of 18

19. Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; Tikk, D. Session-based recommendations with recurrent neural networks. arXiv 2015,
arXiv:1511.06939.

20. Jannach, D.; Mobasher, B.; Berkovsky, S. Research directions in session-based and sequential recommendation. User Model.
User-Adapt. Interact. 2020, 30, 609–616. [CrossRef]

21. El Yebdri, Z.; Benslimane, S.M.; Lahfa, F.; Barhamgi, M.; Benslimane, D. Context-aware recommender system using trust network.
Computing 2021, 103, 1919–1937. [CrossRef]

22. Chen, B.; Xie, H. A Context-Aware Collaborative Filtering Recommender System Based on GCNs. In Proceedings of the 2020
International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Vientiane, Laos, 11–12 January 2020;
pp. 703–706.

23. Qassimi, S.; Hafidi, M.; Qazdar, A. Towards a folksonomy graph-based context-aware recommender system of annotated books.
J. Big Data 2021, 8, 67. [CrossRef]

24. Resnick, P.; Varian, H.R. Recommender systems. Commun. ACM 1997, 40, 56–58. [CrossRef]
25. Burke, R. Knowledge-based recommender systems. Encycl. Libr. Inf. Syst. 2000, 69, 175–186.
26. Adomavicius, G.; Tuzhilin, A. Context-aware recommender systems. In Recommender Systems Handbook; Springer: New York, NY,

USA, 2011; pp. 217–253.
27. Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based collaborative filtering recommendation algorithms. In Proceedings of the

10th International Conference on World Wide Web, Hong Kong, China, 1–5 May 2001; pp. 285–295.
28. Ning, X.; Karypis, G. SLIM: Sparse linear methods for top-n recommender systems. In Proceedings of the 2011 IEEE 11th

International Conference on Data Mining, Vancouver, BC, Canada, 11 December 2011; pp. 497–506.
29. Wu, D.; Shang, M.; Luo, X.; Wang, Z. An L1-and-L2-Norm-Oriented Latent Factor Model for Recommender Systems. IEEE Trans.

Neural Netw. Learn. Syst. 2021, 1–14. [CrossRef] [PubMed]
30. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput.

Surv. (CSUR) 2019, 52, 1–38. [CrossRef]
31. Unger, M.; Shapira, B.; Rokach, L.; Bar, A. Inferring contextual preferences using deep auto-encoding. In Proceedings of the 25th

Conference on User Modeling, Adaptation and Personalization, Bratislava, Slovakia, 9–12 July 2017; pp. 221–229.
32. Jhamb, Y.; Ebesu, T.; Fang, Y. Attentive contextual denoising autoencoder for recommendation. In Proceedings of the 2018 ACM

SIGIR International Conference on Theory of Information Retrieval, Tianjin, China, 14–17 September 2018; pp. 27–34.
33. Unger, M.; Tuzhilin, A.; Livne, A. Context-Aware Recommendations Based on Deep Learning Frameworks. ACM Trans. Manag.

Inf. Syst. (TMIS) 2020, 11, 8. [CrossRef]
34. Wasid, M.; Ali, R. Context Similarity Measurement Based on Genetic Algorithm for Improved Recommendations. In Applications

of Soft Computing for the Web; Springer: New York, NY, USA, 2017; pp. 11–29.
35. Dixit, V.S.; Jain, P. Proposed similarity measure using Bhattacharyya coefficient for context aware recommender system. J. Intell.

Fuzzy Syst. 2019, 36, 3105–3117. [CrossRef]
36. Huynh, H.X.; Phan, N.Q.; Pham, N.M.; Pham, V.H.; Abdel-Basset, M.; Ismail, M. Context-Similarity Collaborative Filtering

Recommendation. IEEE Access 2020, 8, 33342–33351. [CrossRef]
37. Shi, Y.; Larson, M.; Hanjalic, A. Mining contextual movie similarity with matrix factorization for context-aware recommendation.

ACM Trans. Intell. Syst. Technol. (TIST) 2013, 4, 16. [CrossRef]
38. Zheng, Y.; Mobasher, B.; Burke, R. Similarity-based context-aware recommendation. In Proceedings of the International

Conference on Web Information Systems Engineering, Miami, FL, USA, 1–3 November 2015; pp. 431–447.
39. Liu, L.; Lecue, F.; Mehandjiev, N.; Xu, L. Using context similarity for service recommendation. In Proceedings of the 2010 IEEE

Fourth International Conference on Semantic Computing, Pittsburgh, PA, USA, 22–24 September 2010; pp. 277–284.
40. Zheng, Y.; Burke, R.; Mobasher, B. Optimal Feature Selection for Context-Aware Recommendation Using Differential Relaxation.

Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.4093&rep=rep1&type=pdf (accessed on
20 November 2021).

41. Zheng, Y.; Burke, R.; Mobasher, B. Recommendation with differential context weighting. In Proceedings of the International
Conference on User Modeling, Adaptation, and Personalization, Rome, Italy, 10–14 June 2013; pp. 152–164.

42. Ferdousi, Z.V.; Colazzo, D.; Negre, E. Correlation-based pre-filtering for context-aware recommendation. In Proceedings of the
2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Athens,
Greece, 19–23 March 2018; pp. 89–94.

43. Kolahkaj, M.; Harounabadi, A.; Nikravanshalmani, A.; Chinipardaz, R. A hybrid context-aware approach for e-tourism package
recommendation based on asymmetric similarity measurement and sequential pattern mining. Electron. Commer. Res. Appl. 2020,
42, 100978. [CrossRef]

44. Zheng, Y. Non-Dominated Differential Context Modeling for Context-Aware Recommendations. Appl. Intell. 2022, 1–14.
[CrossRef]

45. Gupta, A.; Gusain, K. Selection of Similarity Function for Context-Aware Recommendation Systems. In Computational Intelligence
in Data Mining; Springer: New York, NY, USA, 2017; pp. 803–811.

46. Linda, S.; Minz, S.; Bharadwaj, K. Effective Context-Aware Recommendations Based on Context Weighting Using Genetic
Algorithm and Alleviating Data Sparsity. Appl. Artif. Intell. 2020, 34, 730–753. [CrossRef]

http://dx.doi.org/10.1007/s11257-020-09274-4
http://dx.doi.org/10.1007/s00607-020-00876-9
http://dx.doi.org/10.1186/s40537-021-00457-3
http://dx.doi.org/10.1145/245108.245121
http://dx.doi.org/10.1109/TNNLS.2021.3071392
http://www.ncbi.nlm.nih.gov/pubmed/33886475
http://dx.doi.org/10.1145/3158369
http://dx.doi.org/10.1145/3386243
http://dx.doi.org/10.3233/JIFS-18341
http://dx.doi.org/10.1109/ACCESS.2020.2973755
http://dx.doi.org/10.1145/2414425.2414441
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.4093&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.elerap.2020.100978
http://dx.doi.org/10.1007/s10489-021-03027-5
http://dx.doi.org/10.1080/08839514.2020.1775011

Information 2022, 13, 42 18 of 18

47. Kennedy, J.; Eberhart, R. A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE International
Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October
1997; Volume 5, pp. 4104–4108.

48. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

49. Eshelman, L.J.; Schaffer, J.D. Real-coded genetic algorithms and interval-schemata. In Foundations of Genetic Algorithms; Elsevier:
Amsterdam, The Netherlands, 1993; Volume 2, pp. 187–202.

50. Ono, C.; Takishima, Y.; Motomura, Y.; Asoh, H. Context-Aware Preference Model Based on a Study of Difference between Real
and Supposed Situation Data. In Proceedings of the International Conference on User Modeling, Adaptation, and Personalization,
Trento, Italy, 22–26 June 2009; pp. 102–113.

51. Košir, A.; Odic, A.; Kunaver, M.; Tkalcic, M.; Tasic, J.F. Database for contextual personalization. Elektrotehniski Vestn. 2011,
78, 270–274.

52. Braunhofer, M.; Elahi, M.; Ricci, F.; Schievenin, T. Context-Aware Points of Interest Suggestion with Dynamic Weather Data
Management. In Information and Communication Technologies in Tourism 2014; Springer: New York, NY, USA, 2013; pp. 87–100.

53. Baltrunas, L.; Kaminskas, M.; Ludwig, B.; Moling, O.; Ricci, F.; Aydin, A.; Lüke, K.H.; Schwaiger, R. Incarmusic: Context-aware
music recommendations in a car. In E-Commerce and Web Technologies; Springer: New York, NY, USA, 2011; pp. 89–100.

54. Baltrunas, L.; Church, K.; Karatzoglou, A.; Oliver, N. Frappe: Understanding the Usage and Perception of Mobile App
Recommendations In-The-Wild. arXiv 2015, arXiv:1505.03014.

55. Zheng, Y.; Mobasher, B.; Burke, R. CARSKit: A Java-Based Context-aware Recommendation Engine. In Proceedings of the 15th
IEEE International Conference on Data Mining Workshops, Atlantic City, NJ, USA, 14–17 November 2015.

56. Järvelin, K.; Kekäläinen, J. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 2002, 20, 422–446.
[CrossRef]

57. Zheng, Y.; Burke, R.; Mobasher, B. Splitting approaches for context-aware recommendation: An empirical study. In Proceedings
of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Korea, 24–28 March 2014; pp. 274–279.

58. Harshman, R.A. Foundations of the PARAFAC Procedure: Models and Conditions for an “Explanatory” Multimodal Factor Analysis;
University of California at Los Angeles: Los Angeles, CA, USA, 1970.

http://dx.doi.org/10.1145/582415.582418

	Introduction
	Related Work
	Context-Aware Recommender Systems
	Context-Aware Collaborative Filtering
	Sparsity Issue in CARS

	Preliminary: Collaborative Filtering
	Memory-Based Collaborative Filtering
	Model-Based Collaborative Filtering

	Context-Aware Collaborative Filtering Using Context Similarity
	Terminology and Notations
	Semantic Similarity
	Matching-Based Similarity
	Inferred Similarity from Ratings
	Learned Similarity Representations
	Summary: Pros and Cons

	Experiments and Results
	Contextual Data Sets
	Evaluation Protocols
	Results and Discussions
	Performance on Rating Predictions
	Performance on Top-10 Recommendations

	Conclusions and Future Work
	References

