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Abstract: In this work, we propose a mechanism for knowledge transfer between Convolutional
Neural Networks via the geometric regularization of local features produced by the activations of
convolutional layers. We formulate appropriate loss functions, driving a “student” model to adapt
such that its local features exhibit similar geometrical characteristics to those of an “instructor” model,
at corresponding layers. The investigated functions, inspired by manifold-to-manifold distance
measures, are designed to compare the neighboring information inside the feature space of the
involved activations without any restrictions in the features’ dimensionality, thus enabling knowledge
transfer between different architectures. Experimental evidence demonstrates that the proposed
technique is effective in different settings, including knowledge-transfer to smaller models, transfer
between different deep architectures and harnessing knowledge from external data, producing
models with increased accuracy compared to a typical training. Furthermore, results indicate that
the presented method can work synergistically with methods such as knowledge distillation, further
increasing the accuracy of the trained models. Finally, experiments on training with limited data show
that a combined regularization scheme can achieve the same generalization as a non-regularized
training with 50% of the data in the CIFAR-10 classification task.

Keywords: manifold regularization; knowledge transfer; knowledge distillation; deep learning with
limited data

1. Introduction

Recent advancements in Convolutional Neural Networks (CNNs) have enabled a
revolutionary growth in several fields of machine vision and artificial intelligence [1]. Their
characteristic ability to generalize well in difficult visual tasks has been a key component in
the diffusion of this technology into numerous applications that are based on the analysis
of 2/3D data. One of the first research questions raised [2] among the deep learning
community was how the “knowledge” stored inside a Neural Network can be efficiently
transferred into another model. From a very early stage, it was obvious [3] that such
a capability could provide a path for the adoption of deep learning in several fields
beyond the typical tasks of computer vision. By enabling a neural model to harness the
information stored into another trained network, the latter effectively acts as an extra
source of information [4]. This could facilitate training with less data, improve the accuracy
of the trained models, train smaller and more efficient models friendlier to the limitations
of edge computing, etc.

For a very large number of important applications, the necessity of acquiring a large
body of training data to benefit from learning features tailored to the task-at-hand renders
the end-to-end learning of deep models prohibitive. Data acquisition and annotation
in several fields, such as biometric recognition, forensics, biomedical imaging, etc., is
notoriously difficult due to various restrictions and limitations [5-7] (e.g., cost of specialized
personnel, privacy issues, etc.). Therefore, research and development in such fields can
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greatly benefit [8] from techniques that enable powerful algorithms such as CNNs to
efficiently learn from limited datasets, or equivalently increase the performance of the
current techniques for training under such restrictions.

Transfer learning has been an active field for several decades, preceding the devel-
opment of deep learning, producing several methods for transforming knowledge from
a source domain/task to a target domain/task [9]. Many methods and approaches, espe-
cially those oriented to knowledge transfer between deep neural networks with the same
topology, exhibit significant overlap with the research field of Domain Adaptation [10]. In
this intersection, transfer learning can be formulated as the quest for an appropriate trans-
formation for the representations learned over the source domain, so that they match the
distribution and characteristics of the target domain/task. Although various approaches
have been proposed for deep transfer learning [11], the most widely used technique is that
of directly transferring (copying) the coefficients from a model trained on a source task
to a target network of equivalent architecture, intended for a different (target) task. The
latter model typically undergoes a “fine-tuning” process, where only the last layers are
updated aggressively, while the transferred layers are only allowed to perform very small
modifications to the corresponding coefficients. This strategy has a dual objective: (1) to ini-
tialize most of the target model’s parameters to a more relevant initial state that can already
produce meaningful representations of the visual information, and (2) to indirectly act as
a regularization mechanism, forcing the optimization to move in a subspace of solutions
largely dictated by the coefficients transferred from the first model. Despite its simplicity,
this is often a very successful strategy that produces models with better generalization than
regular training (with random initial conditions), especially when dealing with limited
data. Some important limitations are naturally occurring, though, since the quality of the
produced solution is related to the similarity between the dataset/task used to pre-train
part of the model, and the target dataset/task [2,12]. Most importantly, this method does
not enable knowledge transfer between different model architectures, therefore it is not
appropriate for various applications such as training smaller models that can benefit from
larger “expert” models trained on the same or similar tasks.

A solution towards this direction was proposed by Hinton et al. with the method
of Knowledge Distillation [4], an approach that allows individual Neural Networks to
gain knowledge from multiple sources, such as external data, large models trained in
the same task and even model ensembles. This approach is based on the relaxation of
the classification task, by softening the target response of the model’s output through
temperature scaling. The authors argue that besides targeting just to a large response for
the correct output node, the trained model can gain more insights into the underlying
information structure of the task, by aiming to replicate the softened response of an expert
model. An expert model is considered a trained (large) model or ensemble that exhibits
good performance on the target task. The goal of this process is to train a smaller model
that is able to generalize better, using less data compared to a regular training. The
authors demonstrated that their approach acts as an efficient regularization mechanism,
and it has since been considered as a very successful method for transferring knowledge
between models.

Similar to Knowledge Distillation, most methods for transfer learning [9] and Domain
Adaptation [10] are aiming to manipulate the global image representation produced by
the trained CNN in the final layer(s) of the model’s architecture, prior to any task-specific
output layer. In this work, partly motivated by recent works demonstrating that local
descriptors can be used to construct effective regularization functions that manipulate
style [13] and texture [14] of images in generative tasks, we investigate ways to utilize
geometric regularization of local features from intermediate layers of the trained CNN,
as a mechanism for knowledge transfer between the models. We explore various ways
to construct computationally efficient regularization functions with geometric context.
By drawing inspiration from manifold-to-manifold comparison literature, we formulate
lightweight regularization terms that incentivize various sections of a “student” CNN to
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gradually learn how to generate local features with similar geometry to those of another—
more knowledgeable—model (“instructor”), which is pre-trained on the same or a different
task. The investigated functions directly act on the local features produced in the intermedi-
ate representations of the trained CNN, by imposing some restrictions on the neighboring
relations of the feature vectors. In this way, the regularization mechanism aims to manipu-
late the local manifolds of the activations in various layers within the model. An overview
of the proposed regularization scheme is shown in Figure 1.
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Figure 1. Overview of the proposed scheme for geometric regularization of local activation features.

We investigate the efficiency of different criteria for the definition of local neighbor-
hoods and propose a technique that proves to be very efficient in transferring knowledge
from the teacher to the student model. An important aspect of this approach is that the
only requirement for the architectures of student and instructor is to have matching spatial
dimensions in the layers chosen for regularization. To the authors’ knowledge, this is the
first method for knowledge transfer between CNNss that utilizes geometric regularization
of the local activations. The proposed method is independent of the target task of the
training process, and also to the features” dimensionality and the models” depth and ar-
chitecture. Finally, it is demonstrated that it can be used complementarily to distillation
or similar methods, thus enhancing the efficiency of knowledge transfer in various ap-
plications. Preliminary results from a partial investigation on a subset of the presented
methods have been recently presented in a conference paper of ours [15]. The current
work provides a significantly extended description of the proposed regularization scheme,
formulating and evaluating additional geometrical criteria that offer valuable insights on
the important parameters of the regularization process. It also includes a significantly
extended experimental section, evaluating different scenarios of knowledge transfer, such
as knowledge transfer from expert models, transfer between models of experts and transfer
from external data. Additionally, we provide experimental evidence regarding the effects
of different formulations and geometrical criteria of the regularization problem, providing
some guidelines for the incorporation of geometric regularization for local activations into
training tasks.
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The rest of the paper is organized as follows: In Section 2, we provide a brief overview
of the related literature, highlighting methods for regularization of global manifolds and
their innate weaknesses to handle data limitations efficiently. We also provide an overview
of approaches to formulating manifold-to-manifold distance measures and draw some links
to other regularization schemes that exploit local features for generative tasks. The detailed
formulation of the investigated functions is provided in Section 3. Experimental results
for knowledge transfer in different settings and applications are provided in Section 4.
Conclusions and future directions are discussed in Section 5.

2. Related Work
2.1. Global Manifold Regularization

The literature related to geometric criteria for regularization in deep learning is focused
almost exclusively [16-18] on exploiting the structure of the global data manifold to speed-
up training and improve the robustness of the models. To this purpose, the common aim
of such techniques (e.g., [17-19]) is to force the image representations produced at the final
layers of a Deep Neural Network (DNN) into lying on a global low-dimensional manifold
similar to that of the training data, thus restricting the mobility of optimization within
more “meaningful” subspaces of the parameter space. Such approaches, though, often
suffer some significant limitations inherent [3,20,21] to global manifold approaches, mostly
due to two problems: (1) the difficulty to discover an explicit parametrization of the target
task or directly estimate the intrinsic dimensionality of the data, especially in complex
visual tasks incorporating natural images, and (2) the sufficiently dense sampling of the
underlying manifolds, which is densely linked to problem 1, and is almost prohibitive for
applications with limited data availability. Additionally, it can be challenging to formulate
differentiable regularization functions operating on manifolds.

Recently, several works have tried to tackle some of those limitations, with various
levels of success. For example, Reed et al. [17] used contrastive loss [22] in order to force
similar representations for data of similar classes. Later, Lee et al. [18] proposed a technique
of creating slightly modified images as an adversarial example of the correct class, forcing
the network to produce equivalent representations to those of the reference image. Recently,
Dai et al. [23] followed an approach of partitioning the global manifold in sub-spaces, while
aiming to increase sampling density of the underlying manifold by utilizing external
un-annotated data. The regularization is formulated as a joint optimization of several
classification problems incorporating pseudo-labels assigned to all the data according
to the applied partitioning. A different problem is assigned to each of the final layers
of the DNN, and all problems are solved concurrently to the main classification task.
Finally, in the most direct approach yet, Zhu et al. [24] formulated a regularization function
that encourages input data and the produced feature representation to share similar low-
dimensional manifolds, by directly using the manifold dimension as a regularization term
in a variational function. The resulting problem can be solved by the point integral method
in an efficient manner. In a similar fashion, Yang et al. in [25] utilized an additional
graphical term similar to Laplacian graphs in the objective function, to produce locally
stable mappings via deep auto-encoders in an unsupervised setting. A more explicit
formulation of manifold regularization focused on local areas of the global manifold was
proposed in [26] in order to guide the deep model towards a locally stable representation
that provides robustness against adversarial attacks.

Most of the above approaches, however, do not offer a straightforward way to transfer
knowledge from other DNN models with different architectures, nor do they demonstrate
sufficient benefits in tasks with small data availability. In an effort to overcome the short-
comings of relying on the global data manifold, in this work, we opted for developing a
regularization mechanism for the manifolds of the local features. As local features, we con-
sider the activations with limited spatial support, produced across the intermediate layers
of CNNs. Such manifolds typically exhibit simpler structures, and thus can be sufficiently
sampled even by a single input to the model, since a single image is typically represented
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by hundreds of local descriptors at the outputs of any intermediate layer. Additionally,
local manifolds are not explicitly bounded to any external information related to the target
task (i.e., label, etc.). The most important aspect for pursuing such an approach is to
formulate an efficient and differentiable function that, given two sets of multi-dimensional
vectors sampled from two manifold structures, can estimate the dissimilarity between the
two underlying manifolds.

2.2. Manifold-to-Manifold Distance

In general, the overall affinity of two sets of multidimensional vectors can be expressed
as a similarity or dissimilarity [27-30] between the sets. Measures of (dis)similarity are
based on either statistical or geometrical qualities of the data. According to the statistical
approach, each set of feature vectors is considered deriving (at least locally) from underly-
ing statistical distributions. Under this consideration, the distance of two sets is formulated
as a problem of estimating the dissimilarity between the underlying distributions. To
this purpose, distributions are first modeled using parametric models such as Gaussian
Mixture Models (GMMs), where the dissimilarity can efficiently be derived using measures
of statistical divergence (i.e., Kullback-Leibler Divergence), as proposed in [31] for the
problem of face recognition with image sets. Non-parametric statistical measures, which
do not rely on any assumption regarding the underlying distributions, have also been used
in the past for the formulation of dissimilarity functions. As an example, the multivariate
extension of the Wald-Wolfowitz runs test (WW-test) [32] was used in such context for gait
recognition [33] and other visual classification tasks [34]. In general, statistical methods can
perform adequately on several occasions, but are often characterized by severe performance
fluctuations in case of discrepancies in statistical correlation between training data, or due
to the presence of outliers, especially in applications with limited training data.

The geometrical approach follows the assumption that the data from each set of
vectors are lying on a low-dimensional manifold inside the feature space. Therefore, the
distance between two sets of vectors is defined as a measure of the dissimilarity between
geometrical properties of the corresponding manifold structures. The most common
approach to measuring the geometrical similarity (or dissimilarity) relies on the hypothesis
that the manifolds are a union of locally linear subspaces; thereby, the overall dissimilarity
between two manifold structures can be derived via pairwise comparisons between the
individual subspaces, utilizing relevant concepts such as principal angles [35-37]. Other
approaches to the construction of manifold-to-manifold dissimilarity functions rely on
tools such as Tangent Distance (TD) [38], Grassmannian distances [39], or reconstruction
errors from Local Linear Coding performed in manifold subspaces [40].

A different approach designed for manifolds of local features was presented in [41]. In
that work, manifold-to-manifold distance was based on the notion of reordering efficiency
of the neighborhood graphs. In its generalized form, the distance function was based
on the similarity of affinity patterns in local neighborhoods defined by a radius over the
Minimal Spanning Tree (MST) of each of the two compared sample sets. This technique
is applicable in problems where (at least a partial) one-to-one correspondence between
samples of the two compared sets is available. The rationale behind this scheme is that
if the underlying manifolds are similar, the affinities of each sample to its neighbors, as
these are dictated by the MST of the opposite sample set, should be similar to its actual
neighbors, and vice-versa. That is, since the nodes of the two MSTs should be located
near similar geometrical features of the underlying manifolds for corresponding samples,
neighborhoods should present similar affinity patterns. The MST was used as the graph
that is the least prone to topological short-circuits, thus generating neighborhoods whose
affinities are more indicative of the underlying manifolds’ features.

2.3. Links to Other Local Regularization Schemes

Despite that geometric regularization of local features has not been established as a
knowledge transfer mechanism, there are methods with some affinity to that concept. Style-
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reconstruction loss [13] and contextual loss [14] are functions utilized for regularization
during training of generative models. Under this setting, each image produced during the
forward pass by a generative model that undergoes training is also forwarded through
an external pre-trained CNN model, that acts as an “observer” of both the produced
image and a reference image. The loss functions here aim to enforce similar statistical or
geometrical characteristics between the local features from the reference and the generated
images, at various layers of the external “observer” CNN. The external CNN is not updated
but propagates the errors back into the output of the generative model. In [18], the loss
function utilizes a statistical distance measure to incentivize similar features’ distributions,
by penalizing the Frobenius norm of the difference between the Gram matrices of the local
features from the two images at corresponding layers. The goal is to generate images with
similar artistic style to the reference image. In [42], the same loss function is combined with
feature-reconstruction loss to form a perceptual loss for style transfer and super-resolution.
In [14], a geometric approach aims to regularize spatially non-aligned data, by finding
partial correspondences between local features from the reference and generated images.
The loss function incentivizes neighboring relations with matching similarity patterns for
the two images. The features’ similarity is defined via an exponential (heat-kernel) function
of the cosine distance between corresponding local features. The goal of this technique is to
generate images with similar context to that of the reference, with applications to schematic
style transfer [43], single-image animation, super-resolution [44,45], etc.

3. Proposed Method

In this work, we aim at designing a mechanism that incentivizes a “student” CNN to
create local features that resemble, in overall geometry, those of an “instructor” model, at
various levels across the models” architectures. The hypothesis is that the knowledge of the
instructor model is materialized across all its layers through the specific succession of the
learned encodings. Thus, a reasonable and direct path for the student model to harvest this
knowledge is to learn how to mimic the geometry of those encodings across its architecture.
This approach can be thought of as being complementary to that of Knowledge Distillation
or similar methods, which target only to mimicking the global encodings at the final layers
of the instructor model.

To create a regularization mechanism for the spatial activations, X5 € RHF*W*Cs at the
output of a layer of a student CNN, we have to formulate an appropriate differentiable loss
function that estimates a dissimilarity between X; and a set of corresponding activations,
X; € REXWXC from an instructor CNN. This function will be used as an additional term
in the overall loss function of the learning optimization problem. In the general case:

Lreg = f(XSrXI) 1)

In order to provide a greater flexibility on the architectures of student and instructor
CNNs, we assume that the dimensionality of the local features’” Cs and Cj in the two
models can be different. This assumption automatically disqualifies typical functions for
geometrical alignment, such as the one utilized in [14]. Such techniques try to enforce
each student’s feature vector to be near to its neighbors from the instructor’s features.
Hence, since the two vector spaces could have different dimensionality, this approach is
not applicable. On the other hand, in a knowledge-transfer setting similar to Figure 1, the
local features in two sets with matching spatial dimensions have an implicit one-to-one
correspondence since they stem from the same input image. A convenient way to exploit
this while enabling different feature dimensionality is to formulate a loss function that
tries to enforce similar affinity patterns between corresponding vectors in the instructor’s
and student’s feature sets. In this setting, the affinity pattern of a feature vector is defined
by a function of the distance between this vector and all or a subset of the other vectors
of the same set. In this way, the regularization is imposed on the affinities within the
student’s vector space, thus enabling instructor’s activations to live in a space of different
dimensionality. This type of regularization differs from a more typical approach of vectors’
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geometrical alignment, in the sense that the loss function’s objective is not to locate each
student’s feature in a particular region of the feature space dictated by the instructor model
via some rules, but rather to force all regularized activations of the student to mimic the
neighboring relations exhibited by the corresponding activations in the instructor model.
A general form of the regularization loss in such context is as follows:

Lieg = f(As(Xs), A1(Xp)), A; : REFWG o RNN N = {1 . W )

where Ag and Aj are functions that measure pairwise similarities or distances inside the
C;-dimensional vector spaces at the student’s and instructor’s sides, respectively.

In this work, we will investigate two approaches for such function, designed to be
computationally lightweight and differentiable. First, we aim at the direct comparison
of the neighboring patterns between corresponding activation features from the student
and the instructor models. Second, we study a more relaxed criterion that offers some
additional degrees of freedom to the student model’s activations. This criterion is based on
comparing only the ratio between the sum of distances to each feature’s neighbors to the
sum of distances to all features of the activation map.

3.1. Neighboring Pattern Loss

The neighboring relationships between a set of vectors can be represented either
via a similarity or dissimilarity (distance) measure. Typically, similarity is preferred for
applications that implement geometrical regularization schemes (e.g., [14,25,41], etc.),
since—among other properties—it is naturally bounded in the interval [0, 1]. The most
popular form of similarity functions is the heat kernel exponential function. The disadvan-
tage of this approach in the context of this work is dual. First, it requires an exponential
function evaluated in each regularized local descriptor at every training iteration. Second,
such functions incorporate at least one tunable parameter which is also linked to the di-
mensionality of the features’ space. In order to avoid both of these drawbacks, we opted
for using a more straightforward representation of the neighboring pattern for each vector.
Specifically, the neighboring pattern of a feature vector constitutes its pairwise squared
Euclidean distances to the other vectors, normalized by the sum of these distances to all the
other vectors in the set. In this way, the formation of the neighboring pattern requires less
computations, is still bounded and it does not contain any additional tunable parameters
that affect the representation.

Thus, if we disregard the spatial distribution of the activation features for the moment,
we define the matrix D € RN*N that holds the neighboring patterns of all vectors from a
set of N activation features with C dimensions stored in X € RN*C as follows:

=l

%3

®)

ij

In order to focus the effect of regularization in local neighborhoods of the desired
manifold structure, we formulate the Neighboring Pattern Loss in a way that considers only
the neighbors of each vector. The subset of neighbors, however, is defined by the instructor
model’s corresponding vector’s nearest neighbors. Therefore, the neighborhood does not
need to be estimated in each forward pass based on the constantly updating student model,
but it can be computed once for each input datum based in the static instructor model.
Finally, the Neighboring Pattern loss (NP) is defined as follows:

~S ~1

D -D 4)

LNP:‘
F

where,
~Nn

D =D"oM M e {o1}"*N )
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with ||-||p denoting the Frobenius norm.

In Equation (5), M! is a neighborhood mask that has an entry of 1 in position (i) if the
jth vector of the instructor’s feature set is among the neighbors of the ith vector, and zero
otherwise, hence defining the affinity relations based on the instructor model’s activations.

3.2. Affinity Contrast Loss

The second approach to geometric regularization that we investigate in this work
is based on a criterion presented in [41] for the comparison of the manifold structures
generated by local descriptors on various 1D and 2D signals. Results in that work indicated
that the degree of how well the definition of local neighborhoods—as derived from one of
the two compared manifolds—reflects the relationships of the corresponding vectors in the
other manifold, is directly related to the similarity of the underlying signals. Furthermore,
by simply measuring the contrast (ratio) in the similarity between the neighbors and the
rest of the vectors for each feature set, one can derive an efficient measure of how well
the definition of neighborhoods and the underlying manifold structures match. Hence,
this measure can be used as a dissimilarity measure between the respective signals that
generated the local feature sets.

In the context of knowledge transfer considered in the current work, a similar function
could measure the dissimilarity between sets of activation features. Hence, if the input
signals to the instructor and the student models are equivalent, such a function can act
as a manifold-to-manifold distance metric between the local activation manifolds at cor-
responding layers of the two models. In this scheme, the regularization function aims
at imposing to the student model’s activations a similar geometry to the corresponding
instructor’s activations manifold for each input signal, similar to the functionality of NP
loss defined in Equation (4).

Following the same reasoning described in Section 3.1, we opted for using the normal-
ized square Euclidean distance defined in Equation (3) as the pairwise vectors’ comparison
measure. Additionally, the definition of the neighborhood is again computed only on the
instructor’s side, similar to the definition provided in Equation (5). To construct the loss
function, we first define a measure of Local Affinity Contrast for a set of N feature vectors
with neighborhood mask M and normalized pairwise distances D, as follows:

dij - mij
j=1 N
Jy=——,J€eR 6)

where d;; is provided by Equation (3).

The main criterion for defining the neighborhoods that we will investigate here
is again inspired by [41]. In that work, the Minimal Spanning Tree (MST) connecting
the nodes representing the feature vectors is used as a minimalistic backbone on which
neighborhoods are defined via a radius of geodesic distance. The rationale behind this
decision is that the MST is a graph that is less prone to topological short-circuits than,
e.g., k-NN. Therefore, by considering the neighbors of each node based on their geodesic
proximity to this node’s position on the MST, it is less possible for the neighborhoods
to contain members which are distant from a geometric perspective, but adjacent in a
Euclidean fashion. Therefore, by following a similar scheme, the neighborhood of each
feature can be defined by computing the MST on the activation features of the instructor’s
model, and use the following definition of the neighborhood mask:

1

1’ giI}/IST <r
0, giI}ASTI >r

M! € {0, 13NN, my; = { %)
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where gf-}/ls ' is the geodesic distance between the ith and jth node on the MST computed
on the instructor’s activation features. In the Experimental Section, we will compare this
criterion to the more straightforward approach of using the k-NN rule to the activation
features of the instructor’s model, constructing a neighborhood mask M; that indicates the
k-nearest neighbors of each feature in the feature space.

Using either of the above definitions of neighborhood, we can define the Affinity
Contrast loss (AC) for the student model’s activations as follows:

®)

M gM!
Lac = ||1& - 1%

2

Again, since the instructor network is not updated during training, either the MST-
or the k-NN-based neighborhoods can be computed only once for each training sample.
Thus, the overall computational overhead of the proposed regularization scheme is kept
very small, originating mostly from the pair-wise distance computations between the local
features, DS.

Note that either of the above criteria for defining the neighboring relations and
constructing the neighborhood masks can be used in Equation (5) in order to regularize
the activations with the NP loss, thus enabling different combinations of regularization
functions and neighborhoods to be implemented.

3.3. Relation to the Local Manifold Distance

In the method presented in [41], the topology of two compared manifold structures, M
and My, is considered to be encoded through the corresponding neighborhood graphs
G1(E1, V1) and Gy (Ep, V), with E, and V;, representing the sets of nodes and edges re-
spectively, constructed over two corresponding sets, X, € RN*C with N vectors of C
dimensions each, using the k-NN rule. The corresponding weights between nodes i and j
of the nth graph are denoted as w}’ and are derived via a standard heat kernel. Then, a mea-
sure of the reordering efficiency of a graph G with weights W, using a multidimensional
ordering of its nodes represented by an MST graph with unary edge lengths, is defined as:

Y wij - mjj
 Wij ~ Mij

E(G,M) = P ©)
— 1]
L]

with M being a neighborhood mask defined similarly to Equation (7), but computed on
either of the two feature sets.

The dissimilarity between the manifold structures M7 and M, represented by the
corresponding neighborhood graphs G; and Gy, with respective neighborhoods M; and
My, is defined as:

Er(Gl,Mz) + Er(GZer))
E/(G1,My) ' E/(Gy,Mp3)

2

The distance measure of Equation (10) is essentially defined as the average normal-
ized bi-directional reordering efficiency of each neighborhood graph, reordered according
to the opposite MST. Although that function proved very successful as a measure for
local manifold dissimilarity [41], it exhibits two main disadvantages for its usage as a
regularization function in a deep learning setting: (1) even a unidirectional variation of
Equation (10) necessitates the computation of the MST and k-NN graphs for each com-
pared layer of the student CNN, and (2) the derivation of a term E,(Gs, My)/E:(Gs, Ms)
should contain components that affect the connectivity of the Mg which are very difficult
to approximate in a differentiable manner. The proposed modified AC loss was designed
specifically to overcome these drawbacks, allowing for knowledge transfer between vastly
different CNN architectures, even with multiple instructor models, with the only require-
ments being to create activations with matching spatial dimensions at various layers of the
respective networks.

d(My, Ma) =1 — ( (10)
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4. Experimental Evaluation

The objective of the evaluation procedure is to investigate whether the two variants
of geometrical criteria through the corresponding loss functions can provide an efficient
regularization mechanism that improves the generalization of the trained model. Addi-
tionally, we aim to compare the two regularization criteria in terms of efficiency, so as
also to investigate the role of the definition of neighborhood to the effectiveness of the
regularization. For this purpose, we performed several experiments in various settings
using different CNN architectures in the roles of student and instructor models.

4.1. CNN Models and Datasets

Since the objective of this work is to propose a mechanism for knowledge transfer
between models of different architectures, we utilized a collection of CNN models with
different topologies. An overview of the architectures used for the various experiments
is shown in Figure 2. The first is a simple vanilla CNN with three convolutional layers,
followed by two fully connected layers. This is used as an example of a small model
with ~146,000 parameters, requiring 12.35 million MAC (Multiply-ACcumulate) operations
for inference on a 32 x 32 px input image. Models of this scale are often the targets
of knowledge transfer operations, aiming to create lightweight models with improved
accuracy for embedded inference using larger models for guidance. Second, the Network-
in-Network (NiN) [46] architecture is comprised by 3 convolutional layers using kernels
of spatial dimensions 5 x 5 (Convl and Conv2) and 3 x 3 (Conv3). Each convolutional
layer is followed by two layers with 1 x 1 kernels, acting as a two-layer Neural Network,
mapping each activation from the convolutional layers to a new space. A model based
on NiN architecture as shown in Figure 2b, which has ~967,000 parameters and requires
222.5 million MAC operations for inference on a 32 x 32 image, constituting an example of
a medium- to large-sized model. Models built on NiN architecture were utilized in both
the roles of instructor and student in the following experiments.
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Figure 2. Overview of the different CNN architectures utilized in the experimental evaluation. (a) Scheme 3. convolutional
and 2 fully-connected layers, (b) Network-in-Network (NiN) [46] architecture and (c) ResNet-20 [47] architecture.



Information 2021, 12, 333

11 of 22

Finally, models based on the ResNet [47] architecture are very popular in many
applications, given their good accuracy/effort tradeoff. In this work, we utilize two smaller
variants, namely ResNet-20 and ResNet-32. The ResNet-20 architecture, illustrated in
Figure 2c, is comprised by 6 residual blocks, divided into 3 groups, each of which operates
on a different scale. Each residual block has two convolutional layers with 3 x 3 kernels,
trained using batch normalization. In the first block of groups 1 and 2, the spatial resolution
changes at the first layer of the block using convolution with stride 2, and an additional
layer with 1 x 1 kernels, also with stride 2, is added to the bypass branch. ResNet-32
has a similar architecture to ResNet-20, with the only difference being that each group
is comprised by 5 blocks instead of 3. In terms of capacity and load, ResNet-20 has
273,000 parameters, requiring 41 million MAC operations for inference on an image of
32 x 32 px size, while the corresponding metrics for ResNet-32 are 468,000 parameters and
~70 million MAC operations. Despite their smaller number of parameters compared to
NiN, due to their greater depth and architectural features such as the bypass connections,
these ResNet can typically achieve higher accuracy than NiN. The bypass connections and
residual operations create activations with special qualities at the output of each residual
block, hence their value to this study since we can assess the ability of the investigated
regularization mechanism to transfer knowledge between very different architectures.

All the experiments were performed on visual classification tasks, due to the more
unambiguous way to assess the effectiveness of the trained model compared to other tasks.
Due to the large number of experiments and training operations, we opted for datasets and
tasks with small image sizes so as to limit the required time for evaluating all settings into
a reasonable frame. The three benchmark datasets utilized in this study are the popular
CIFARI10, CIFAR100 [48] and SVHN [49], all consisting of color images with dimensions of
32 x 32 px. The CIFAR10 dataset is comprised of 50k training images and 10k validation
images from 10 visual categories. The CIFAR100 dataset consists of 50k training images
and 10k validation images from 100 visual categories. Finally, the Street View House
Numbers (SVHN) dataset consists of real-world images with 10 numerical digits, with
73,257 single-digit training images and 26,032 validation images.

By considering input images of 32 x 32 px, the size of the activation tensors in
the output of each layer or block of the utilized architectures is shown in Table 1. It is
evident that a requirement for matching feature dimensionality should have severely
limited the applicability of the technique, since the number of channels in each scale is
significantly different across the various architectures. By using the proposed formulation
that is based on the patterns of affinity within each model’s activations, it enables the
regularization for any pairs of layers at the same spatial scale for any combination of
student and teacher models.

All experiments were conducted using a PC equipped with 2x NVIDIA GTX 1080ti
GPUs, using the Caffe [50] framework. Unless otherwise stated, training was performed
using SGD for 120 epochs, with an initial learning rate of 0.01, multiplied by a factor of 0.1
every 40 epochs. For the NiN models, the learning rate was reduced once at 100 epochs. For
ResNet models, the initial learning rate is 0.1 and is reduced by the same factor. To ensure a
fair comparison between the different methods and testing parameters, all training sessions
of the same models were performed using the same random seed for the initialization of
models’ parameters, and the same random permutations on the training data throughout
the training iterations.
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Table 1. Size of activations at the output of every layer or block for all utilized CNN architectures for 32 x 32 px

input dimensions.

Simple CNN NiN ResNet-20 ResNet-32
Layer Name Activation Layer Name Activation Layer/Block Activation Layer/Block Activation
Size Size Name Size Name Size

Input 32x32x3 Input 32x32x3 Input 32x32x3 Input 32x32x3
Convl 32 x 32 %32 Convl 32 x 32 x 192 Convl 32 x 32 x 16 Convl 32 x32x16
pooll 16 x 16 x 32 Ceepl 32 x32x160  GroupO_block0 32 x 32 x 16 Group0_block0 32 x32x16
Conv2 16 x 16 x 32 Cccp2 32 x 32 x 96 Group(_blockl 32 x32x16 Group0_block1 32 x32x16
pool2 8 x 8 x32 Pooll 16 x 16 x 96 Group(0_block2 32 x 32 x 16 Group(O_block2 32 x 32 x 16
Conv3 8 x 8 x 64 Conv2 16 x 16 x 192 Group1_block0 16 x 16 x 32 Group0_block3 32 x 32 x 16
pool3 4 x4 x64 Cccp3 16 x 16 x 192 Groupl_blockl 16 x 16 x 32 Group0_block4 32 x 32 x 16
FC1 64 Cccp4 16 x 16 x 192 Group1l_block2 16 x 16 x 32 Group1_blockO 16 x 16 x 32
FC2 c Pool2 8 x 8 x 192 Group2_block0 8 x 8 x 64 Group1_blockl 16 x 16 x 32
Conv3 8 x 8 x 192 Group2_blockl 8 x 8 x 64 Group1_block2 16 x 16 x 32
Ccepb 8 x 8 x192 Group2_block2 8 x 8 x 64 Group1_block3 16 x 16 x 32
Cccpb 8 x 8 x 100 Pool 64 Group1_block4 16 x 16 x 32

Pool 100 FC c Group2_block0 8 x 8 x 64

FC c Group2_blockl 8 x 8 x 64

Group2_block2 8 x 8 x 64

Group2_block3 8 x 8 x 64

Group2_block4 8 x 8 x 64

Pool 64
FC c

4.2. Knowledge Transfer from Experts

The first setting that we tested is the typical scenario of knowledge transfer, where
the target is to boost the accuracy of a small model, using a single or an ensemble of
bigger—more “knowledgeable”—model(s) as the expert instructor. For this setting, we
trained models with NiN architecture for all tasks, and used them as the instructors during
the training of the Simple CNN models in the respective tasks. The instructor models
achieved 86.19% classification accuracy in the CIFAR10 task, 63.24% for the CIFAR100 task
and 95.57% in the SVHN classification task.

The selection of layers for the regularization in the student’s architecture is trivial. We
leave the first layer without regularization since its scope is the creation of a set of primary
filters, thus we do not expect significant differences between the behavior of different
models at this level. Additionally, the first layers due to their larger spatial grid require
more computational and memory resources compared to the deeper stages with smaller
expected returns. Thus, the two activation tensors that will be subjected to geometric
regularization are the outputs of the Conv2 and Conv3 layers with spatial grids of 16 x 16
and 8 x 8, respectively. In order to choose the corresponding layers on the instructor’s
side that will define the neighborhoods and the target affinity relations for the student’s
activations, the rationale is to select the deepest possible features for each spatial grid. In
this way, the student is aiming at the most informative representations that the instructor
generated at each spatial scale. Thus, the student’s Conv2 layer is regularized with targets
from the instructor’s Cccp4 layer. In this particular case, an additional consideration is that
the Simple CNN has no operators with learnable parameters between the two regularized
layers, thus the feasible transformations of the output from Conv2 that can be achieved
are limited to what a single convolutional layer can learn. With this in mind, in order to
provide a realistic target for the activations of the Conv3 layer, we opted to follow the same
structure at the instructor’s side and choose the output of the next convolutional layer,
pairing student’s Conv3 with instructor’s Conv3 layers. Note that the dimensionality of
activation features is different between the two models with feature vectors of 192 elements
for the instructor, and 32 /64 for the student model.
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The overall loss function for the training process is formulated as a weighted sum
of the regular multinomial logistic classification loss, and a loss term for each of the
regularized layers according to the utilized function, therefore:

L= ‘leclassification + DCZL%O[?/U%C + “3L1(\j]0]§l/v,%1c (11)
with «; representing the weights for each term that contributes to the overall loss. The
weights are set to 1 for a1 and a3, and to 0.1 for ay. As a general rule of thumb, we found
that training was stable when earlier layers (e.g., Conv2) have a smaller contribution
than the deeper ones in the overall loss, thus we tuned the &, so that the contribution
of the regularization on Conv2 in the beginning of the training was roughly half that for
layer Conv3.

Using this setup, we first trained the student model for all tested tasks using a regular
(without geometrical regularization) procedure with the same hyperparameters to obtain
the baseline performance. Subsequently, the training process was repeated with geometrical
regularization, using both NP and AC approaches, as described above. In all trainings, the
models were initialized to (the same) random parameters. The neighborhoods are defined
using the MST criterion as defined in Equation (7), and student models were trained for
three different values for radius r. For each training, we report the best accuracy obtained
by the respective model on the test set. The comparative results for the baseline models
(regular training) and the functions of geometric regularization for all tested neighborhood
radii and tasks are reported in Table 2.

Table 2. Classification accuracy of the student model (Simple CNN) with regular training versus
geometric regularization with AC and NP functions for knowledge transfer from a NiN instructor
model. Neighborhoods are defined for radius r on the instructor’s MST. The best obtained accuracy
for each dataset is indicated in bold.

Class. Neighborhood
Accuracy (%) Regular Regularization Radius
———————— Training Function
Dataset/Task r=2 r=5 r=10 r=o00
AC 77.30 77.98 78.34 -
CIFAR10 76.24
NP 77.03 77.21 78.00 76.14
AC 45.14 46.71 46.1 -
CIFAR100 44.49
NP 44.90 4542 46.03 45.74
AC 92.8 92.84 92.9 -
SVHN 92.76
NP 92.79 92.8 92.82 92.8

Results clearly show that geometric regularization has a positive impact on the student
model’s performance. This behavior is more evident for the more difficult classification
tasks, as seen for the results on CIFAR100 (up to 2.22% accuracy improvement) compared to
SVHN (~0.14% improvement). It is also evident that the AC approach clearly outperforms
the NP function in all tested configurations. In fact, by using the AC criterion for regu-
larization, the obtained accuracy was always better than that of the reference model. The
direct solution of regularizing all the neighboring relationships via the NP loss (for r = c0),
although it can deliver an accuracy improvement in 2 of the 3 tasks, delivers inferior results
compared to a setting where the regularization is focused on the neighborhood of each
feature. This result shows the importance of the locality in the geometric regularization,
that provides some degrees of freedom to the student model to learn a more appropriate
representation for its architecture, which still inherits some useful geometric properties
inherited by the instructor.

To gain a sense of the size of neighborhoods formed via this criterion, we can compute
the average and median number of neighbors for each feature, derived from the neighbor-
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hood masks, M!. The mean and median number of neighbors for both regularized layers
are show in Table 3. These numbers show that for a small radius, the neighborhoods are
indeed small, but for larger radii, the number of neighbors increases steeply. This indicates
that the smoothness of the activation maps creates many similar local features, inducing
higher branching to the MST, which in turn increases the number of neighboring nodes
within a given radius.

Table 3. Number of neighbors for various neighborhood radii using the MST criterion on the NiN
instructor models.

Number of Neighbors
Activation =2 r=5 +=10
Layer
Mean Median Mean Median Mean Median
Conv2 5.4 5.3 36.8 22 148 161
Conv3 4.5 4.5 17.3 15 45 48

An interesting observation that arises from Table 2. is that both the investigated
regularization functions perform well for large- of medium-sized neighborhoods, bet-
ter than focusing only on the affinity relationships in the close vicinity of each feature
vector. The NP criterion delivers its maximum benefits for » = 10 in all tasks, but with
decreased performance in the full-graph regularization (r = c0), indicating that trying to
replicate the most distant relationships can have some detrimental effects on the student
model’s generalization.

In the context of the AC criterion, the results in Table 3. imply that for a small radius,
the regularization mechanism emphasizes more on whether the more similar features are
simultaneously kept together in the two compared feature sets. On the other hand, for
large radii, the focus naturally shifts more into whether the more dissimilar features are
adequately distanced in the respective sets. Results from Table 2 indicate that when using
AC regularization for easier tasks, the larger radius, r = 10, has a slight advantage compared
to the smaller 7, but for the much more difficult task of CIFAR100, the small radius has a
significant advantage in terms of the obtained accuracy boost. Interestingly, these results are
consistent with the findings in [41], where—despite the different formulation of the distance
function—the authors showed that radius plays an atypical role of tuning the sensitivity of
their distance function, with a medium and smaller neighborhood radii having significant
performance advantages for more fine-grained visual classification tasks.

4.3. Comparison with Knowledge Distillation

A clear picture regarding the efficacy of the proposed regularization mechanism can
arise from the comparison to the popular Knowledge Distillation [4] technique. This
technique is maybe the most established scheme that enables knowledge transfer between
vastly different architectures and is based on the regularization through the activations
produced at the final layer of the student CNN model. In order to make a fair comparison
of the different methods, we used the same “instructor” models and training procedures
for the “student” models, but the regular classification loss function was augmented
by the Distillation term that utilizes the softening of the outputs at the final layer with
temperature scaling. After testing several configurations, the optimal Distillation between
the instructor and student model was obtained for temperature factor T = 6 and loss weight
of T2, as suggested in [4]. Therefore, these values were constant during all experiments
involving Distillation.

The results obtained by knowledge transfer through Distillation for all the utilized
tasks are shown in Table 4. For easier comparison, in the same table, we provide the
best result for both the geometric regularization methods presented here. In addition
to these, since Distillation and AC or NP target different parts of the CNN graph, it is
easy to combine the two schemes to attempt to regularize the training of the student
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model more intensely and on multiple levels. To test that setting, the Distillation loss and
geometric losses were combined with the standard classification loss, at the same weights
as if training with each method individually, using the same instructor models and training
hyperparameters. In order to compare a consistent setting across the different tasks, for
the geometric losses, we chose the radius at which they performed best overall (largest
improvement over baseline). The corresponding results are also provided in Table 4.

Table 4. Comparison of geometric regularization (G. Reg.) of local activations to Knowledge Distillation (Distil.) and

their combination.

G. Reg. Knowledge _
Class. Regular G. Reg. NP Loss Distillation ~ AC (r=5) +Distil. L0 =10
Accuracy (%) Training AC Loss (Best) +Distil.
(Best) [4]
CIFAR10 76.24 78.34 78.00 78.25 80.03 78.61
CIFAR100 44.49 46.71 46.03 44.71 46.10 46.22
SVHN 92.76 929 92.82 92.98 93.05 9291

The obtained accuracies shown in Table 4 indicate that the geometric regularization
of the local activations, especially via the AC function, achieves better accuracy for most
experimental settings. An important observation is that the advantage of AC regularization
over Distillation is greater for the more challenging tasks. These findings indicate an
important potential for regularizing activations with the aim to direct training in more
efficient solutions, rather than relying only on the global descriptors generated at the final
layers of the models, which are typically exploited by Distillation and global manifold
regularization techniques.

Most importantly though, it can be easily observed that in most settings, the accuracy
of the combined knowledge-transfer training is better than that of any of the individual
techniques. The only exception is the more challenging CIFAR100 task, where the weak
performance of Distillation worsened the accuracy achieved by only applying AC regu-
larization. Nevertheless, the results clearly show the potential benefits of a combined and
multi-level regularization approach for transferring knowledge between CNN models.

4.4. Effects of Neighborhood Criteria

An important aspect of the methodology presented in this work is the criterion for
defining the neighbors of each feature vector, as described in Equation (7), which has
innate links to the method in [41]. A question that naturally arises however, is whether this
criterion contributes to the efficiency of the regularization, or a more straightforward and
much simpler k-NN neighborhood has the same results. In order to investigate this aspect,
we performed a set of experiments comparing the accuracy of a student model trained with
geometric regularization via the AC function, where the neighborhoods are determined
either by the k-NN rule or by the MST-base criterion. We focused only on AC loss, since it
was the best-performing formulation of geometric regularization on all tasks and settings.

The experiments are focused on the two more challenging tasks of CIFAR10 and
CIFAR100, since the margins for accuracy gains in the SVHN are small, making the results
less informative. The instructor and student models are the same as described in Section 4.2,
as well as the regularization weights and learning hyperparameters. Since the MST criterion
defines the neighborhood based on a radius, the number of neighbors in not constant, as
shown in Table 3. To perform a fair comparison, the number of neighbors, k, in the k-NN
rule is set separately for each layer, to the average number of neighbors at each respective
radius, following Table 3. The results are shown in Table 5.
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Table 5. Comparison between different neighborhood criteria for geometric regularization with AC
loss using the NiN instructor model.

Accuracy (%) MST-Based Neighborhood k-NN Neighborhood
Dataset re2 r=5 r=10 Equivw. to Equiw. to Equiw. to
r=2 r=5 r=10
CIFAR10 77.30 77.98 78.34 76.92 77.07 78.23
CIFAR100 45.14 46.71 46.1 43.87 44.87 45.05

The obtained accuracy of the student models clearly indicates that the MST-based
criterion is crucial to the efficiency of the presented regularization scheme. In all tested
settings, the student models regularized with the MST-based definition of neighborhoods
achieved better accuracy. In fact, for the more challenging CIFAR100 task, the utilization
of the k-NN rule significantly deteriorated the efficiency of the regularization for all
radii. It is also noteworthy that for most experiments, the performance of AC loss with
k-NN neighborhoods was worse than those achieved by the NP loss with MST-based
neighborhoods, as is easily seen by combining with the results of Table 2. These findings
support the choice of a more complex neighboring criterion, which is more informative
in terms of the underlying activation features’ geometry, such as the one proposed here.
Additionally, they are aligned with the observations made in [41], where the authors found
that in more difficult and fine-grained tasks that require smaller radii, the advantage of the
MST-based definition of neighborhoods is even greater compared to other methods.

4.5. Knowledge Transfer between Experts

Another application of knowledge transfer with large practical significance arises in
situations where two or more architectures can achieve similar performance in the target
task, with possibly diverging characteristics. In such case, all models can be considered
experts in the target task. The aim of knowledge transfer in such a setting is to instill the
different perspectives on the target task provided by the different architectures, to a single
model with an improved performance envelope. To evaluate the proposed scheme in a
relevant setup, we utilized the NiN architecture in the role of the student, and models
with ResNet architecture as the instructors of the regularization. The specifics of the model
architectures are the same as described in Section 4.1.

Initially, we trained ResNet-20 and ResNet-32 models for the CIFAR10 and CIFAR100
tasks, using the typical training profile for ResNets as described in Section 4.1. The obtained
accuracies for both tasks are shown in Table 6. As can be seen by the corresponding metrics
obtained by the student architecture via regular training, the capacities of the student and
instructor are not very different. Especially for the CIFAR100 case, the accuracy difference
between the reference training of the student and instructor architectures is ~2%. Therefore,
this setup falls into a transfer-between-experts scenario rather than a transfer from expert
to a small student, as in the case studied in Section 4.2.

Table 6. Knowledge transfer via AC loss to student models with NiN architecture, and instructors
with ResNet architecture.

Regularized w AC Loss
Accuracy (%) Instructor Architecture Instruct. Re_gu.lar &
Accuracy Training r=5 r=10
ResNet20 91.40 88.06 88.75
CIFARIO ResNet32 92.48 86.19 88.35 88.82
CIFAR100 ResNet32 64.95 63.24 65.80 66.40

In order to utilize the proposed geometric regularization scheme, we need to define
layer correspondence between student and instructor models. Following a similar rationale
to that of Section 4.2, in this experiment, we opted for pairing the deepest layers from each
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architecture for each spatial grid. Thus, the activations at the output of the final residual
block of group 1 in ResNet models are used to regularize the activations of the Cccp4
layer in the NiN student model, and respectively the activations from the last block of
group 2 are used for the regularization of the Cccp6 layer’s activations. The experimental
results obtained with geometric regularization of the NiN student models via AC loss are
provided in Table 6.

The accuracies achieved via regularization highlight the capacity of the proposed
scheme for improving the performance of already capable models. Furthermore, they
indicate the value of exploiting models with different architectures as an additional source
of knowledge. The results in the CIFAR10 show that there are small differences between
ResNet20 and ResNet32 in the role of instructor. We argue that such behavior could imply
that, in similar situations, the improvements stem primarily from the different architectural
characteristics between student and instructor, and secondarily from the actual depth and
accuracy achieved by the instructor. An even more important finding is that in the case of
CIFAR100, the accuracy achieved by the student models is higher than both the instructor’s
and student’s reference training, for both the tested radii. Such behavior clearly shows the
potential of geometrical regularization as a mechanism for knowledge transfer, even with
objectives outside the typical model-shrinkage applications.

In an aim to illustrate the relationship between the reference, student and instructor
models, we provide a graphical representation for the class-wise accuracy obtained by each
model in the CIFAR100 task in Figure 3. Although accuracy is not the only metric to assess
the performance envelope in classification tasks, it can be easily seen that for the classes
where the three models exhibit notable performance differentiation, the regularized model
usually achieves accuracy either in-between or better than both of the reference models.
Such behavior signifies that through regularization, the student model can indeed accumu-
late information from the instructor model, thus differentiating the learned representations
in a beneficial manner.

Student architecture (NiN)

Instructor Architecture (ResNet32)

NiN Regularized by ResNet32 (AC loss with r=1(0)

Figure 3. Class-wise accuracy obtained by reference NiN, ResNet32 and regularized NiN via AC loss in CIFAR100.
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4.6. Knowledge Transfer from External Data

Another important goal of this work is to assess the efficiency of geometric regular-
ization in a simulated scenario of learning with limited data. In this configuration, an
instructor model was trained using external data, in a task unrelated to that of the student
model. The aim here is to exploit the knowledge gained by the instructor model on the
external data and transfer that to the student. As described in the Introduction Section,
the most popular way of doing that is by training the same architectures for both the
external data and the target task, and simply copy the model parameters to the student
model. This is often a successful strategy, but it has several limitations. The solution that a
regularization method offers to this problem is a more sophisticated method to transfer
the knowledge from the instructor model to a student with different architecture. In this
way, there is no limit as to how experienced the instructor could become on the external
task, since there is no restriction on its size, depth, etc. In such a scheme, the student model
could achieve improved generalization, even if trained with limited data, since overfitting
is restrained by the involved regularization mechanism.

In order to evaluate geometric regularization in a similar setting, we assessed the
efficiency of training a student model with the architecture of Simple CNN on the CIFAR10
task, using between 25% and 75% of the training data, uniformly sampled across the classes.
The instructor model in this experiment has a NiN architecture, but this time is trained on
a subset of 200 randomly selected categories of the 32 x 32 px downscaled version of the
ILSVRC2012 [51] dataset. From the pool of categories, we excluded any category similar
to one of the CIFAR10 categories. Subsequently, the trained instructor model was used to
regularize the activations of the student model using the same layer pairs as described in
Section 4.2. To also evaluate the Distillation technique in this setting, the instructor’s final
layer was fine-tuned to the respective training set to obtain a classification layer matched to
the CIFAR10 task. Learning hyperparameters for the student model are the same as in the
previous experiments. To ensure that corresponding results are directly comparable in a fair
manner, all training sessions with the same amount of training data use the same training
subset and permutations of the training images. Experiments were conducted only for AC
loss with radius r = 5, since this was the best-performing value for AC loss overall (best
average accuracy improvement across all datasets). The obtained generalization curves
depicting the relation of classification accuracy to the available training data for all tested
configurations are illustrated in Figure 4.
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Figure 4. Validation accuracy vs. training data availability for Simple CNN on CIFAR10. Comparison
between regular training and different regularization techniques.

The obtained generalization curves demonstrate the potential benefits of using knowledge-
transfer techniques in tasks with limitations in the availability of training data. All the
tested regularization schemes generalize significantly better than a regular training across
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all sizes of training datasets. The best-performing scheme is once more the combined
Distillation and AC loss. It is noteworthy that according to Figure 4, by using the combined
regularization scheme, the baseline accuracy obtained by the student model with regular
training on CIFAR10 can be achieved with ~50% of the training data. The same accuracy is
achieved with ~60% of the data if only Distillation is used and with ~65% when using only
AC loss is used.

5. Conclusions

We have presented a method for knowledge transfer based on the geometric regular-
ization of local activations in the intermediate layers of Convolutional Neural Networks.
According to the proposed scheme, the student model is incentivized to produce local fea-
tures that follow the geometrical properties of those stemming from the instructor model,
at corresponding spatial scales. In order to eliminate the necessity of matching features’
dimensionality between the instructor and student—taking advantage of the explicit one-
to-one correspondence between the local features at matching spatial grids—we opted for
encoding the geometric properties in terms of affinity patterns exclusively within each
feature set. Thus, the objective of the regularization is transformed so as to enforce specific
similarities between the local features, mimicking the corresponding similarities between
the features in the instructor model for the same input data.

We formulated and assessed two variants for the regularization loss that exhibit
different qualities. The Neighboring Pattern Loss aims to directly penalize any deviation of
the distance patterns from the target patterns. The Affinity Contrast loss compares the ratio
between the sum of distances between each feature vector and its neighbors, to the sum of
distances to all the other features. Thus, it provides some additional degrees of freedom to
the student model for penalty-free alteration of the learned representations that still retain
some important characteristics of the target geometry. We have investigated the behavior
of both functions, and highlighted the importance of the definition of neighborhoods,
by comparing the regularization efficiency of an MST-based criterion and the simple
k-NN rule.

Experimental evaluation revealed very promising results regarding the benefits of
geometric regularization under the presented scheme. In all experiments, the regularized
models consistently exhibited an accuracy improvement compared to the regularly trained
models under the same conditions and initializations. The AC loss consistently delivered
greater performance improvements compared to NP loss, indicating that the more relaxed
objective could have some advantages under the investigated context. Additionally, ex-
periments showed that the MST-based criteria for defining the neighbors of each local
feature can be beneficial compared to the simple k-NN rule, especially in more challenging
classification tasks.

Geometric regularization, especially via AC loss, was tested under various experimen-
tal settings, such as: (a) knowledge transfer from an expert model to a smaller student,
(b) knowledge transfer from external data via an instructor with different architecture
and (c) knowledge transfer between experts for accuracy improvement. Especially in the
latter case, the regularized model achieved better performance from both the reference
and instructor models in the most challenging of the tested tasks. The comparison to the
established technique of Knowledge Distillation revealed similar levels of performance
improvement, but most importantly provided positive evidence for the combination of
both local and global feature-based regularization techniques to the same learning problem.

The comparative runtime for regular versus regularized training was measured at
x 1.6 slower for training a regularized Simple CNN and x2.1 slower for training a regular-
ized NiN model, with negligible variations between different regularization functions. The
training time, however, is heavily affected by the configuration of the training H/W, the
particularities of the utilized deep learning framework and the specific implementation
of the training routine. As an example, the higher GPU memory utilization of the Caffe
framework utilized here, imposes restrictions to the size of batches, casting the read-time
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and bandwidth of the SSD hard disk as the predominant sources of delay. However, prelim-
inary experiments with different setups indicate that through an appropriate combination
of H/W configuration and S/W implementation, the overhead of the regularization can be
reduced below 40% even for deeper models with up to 5 regularized layers.

Despite the positive evidence, there is a lot of room for improving the regulariza-
tion objectives by investigating different formulations and geometrical criteria, and also
thoroughly investigating the efficacy of the presented techniques in different tasks (e.g., de-
tection, segmentation, etc.). Furthermore, recent advances in self-supervised [52] learning
have revealed great potential for regularization methods to be used in new tasks, beyond
the typical knowledge transfer. In the future, we are committed to investigate different
appropriate formulations of the geometrical similarity in local activations and apply these
techniques to larger and more diverse visual tasks. Furthermore, we are working to as-
sess the effectiveness of the presented techniques in a self-supervised setting, either as
standalone loss functions or combined with objectives which are formulated around the
geometry and statistics of the global image features.
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