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Abstract: Smart grids integrate advanced information and communication technologies (ICTs) into
traditional power grids for more efficient and resilient power delivery and management, but also
introduce new security vulnerabilities that can be exploited by adversaries to launch cyber attacks,
causing severe consequences such as massive blackout and infrastructure damages. Existing machine
learning-based methods for detecting cyber attacks in smart grids are mostly based on supervised
learning, which need the instances of both normal and attack events for training. In addition,
supervised learning requires that the training dataset includes representative instances of various
types of attack events to train a good model, which is sometimes hard if not impossible. This paper
presents a new method for detecting cyber attacks in smart grids using PMU data, which is based
on semi-supervised anomaly detection and deep representation learning. Semi-supervised anomaly
detection only employs the instances of normal events to train detection models, making it suitable
for finding unknown attack events. A number of popular semi-supervised anomaly detection
algorithms were investigated in our study using publicly available power system cyber attack
datasets to identify the best-performing ones. The performance comparison with popular supervised
algorithms demonstrates that semi-supervised algorithms are more capable of finding attack events
than supervised algorithms. Our results also show that the performance of semi-supervised anomaly
detection algorithms can be further improved by augmenting with deep representation learning.

Keywords: smart grids; cyber-physical systems; cyber attacks; semi-supervised anomaly detection;
deep representation learning; deep autoencoder (DAE)

1. Introduction

There are a number of existing problems in traditional power grids such as a lack
of automated analysis and situational awareness, poor visibility, and slow response time,
which make them unable to meet the greatly increased demand for and consumption of
electricity in the 21st century [1]. With the help of modern information and communication
technologies (ICTs), smart grids provide a bidirectional flow of electricity and information
which enables the more efficient and resilient delivery of power and better demand-
side management [2,3]. There are four main components in a smart grid: generation,
transmission, distribution, and consumption, as shown in Figure 1 [2], which are connected
through a three-tier hierarchical structured communication network [4]. The first level of
the communication network is the home area network (HAN) which is responsible for the
communication of the consumption stage to connect smart appliances in consumers’ homes
to the smart grid through smart meters for more efficient energy management and demand
response. The second level of the communication network, the neighborhood area network
(NAN), is responsible for the communication of the distribution stage, which collects data
from smart meters and sends back control commands for advanced metering applications.
At the top level, the wide area network (WAN) links NANs to utility control centers to
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form the backbone of the smart grid for the communication needs of power generation and
transmission stages.
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Figure 1. The architecture of a smart grid.

Although the integration of advanced ICTs into traditional power grids brings sig-
nificant benefits for power delivery and management, it also introduces new security
vulnerabilities into the grids [5]. Cyber attacks can target any of the four components of
a smart grid from smart home gateways in HAN to control rooms in WAN [6]. Aurora
attack [7] and Stuxnet worm [8] are two typical examples of how cyber attacks can cause
damages to physical power systems. Recently, a cyber attack caused hours of power out-
ages in Ukraine that affected more than 200,000 consumers [9]. All these examples show
the necessity of enhancing the security of smart grids against cyber attacks. In this work,
we aimed to use measurements from phasor measurement units (PMUs) for detecting
cyber attacks. PMU is a sensing device deployed in the WAN level of the smart grid
network which provides the real-time measurements of power system states for wide area
monitoring, protection and control [10,11]. In a wide area monitoring system (WAMS), a
number of PMUs are connected to a phasor data concentrator (PDC). The central authority
of WAMS then collects the information from PDCs. PMU measurements bridge both the
physical and cyber domains, making them an appropriate choice for detecting cyber attacks
targeting the physical domain of the smart grid, such as false data injection (FDI) attacks
and malicious tripping attacks.

The majority of existing works built models for detecting cyber attacks in smart grids
by using supervised learning algorithms. The training of supervised algorithms needs
both normal and attack data. However, collecting representative instances of various attack
events is usually a difficult task if not impossible, which could result in a model with
bad performance in detecting certain attacks, especially attack types not represented in
training data. In this paper, we proposed a scheme for detecting cyber attacks in smart grids
with semi-supervised anomaly detection. Unlike supervised algorithms, semi-supervised
anomaly detection algorithms only employ the data of normal events to train the detection
model which is capable of detecting unknown attack types. Figure 2 shows the difference
between supervised and semi-supervised anomaly detection algorithms. We investigated a
number of representative semi-supervised anomaly detection algorithms and identified
the best-performing ones for detecting cyber attacks in smart grids. The performances of
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semi-supervised algorithms were compared with those of popular supervised algorithms
to show their superiority in finding attack events. We also augmented semi-supervised
anomaly detection with deep representation learning for extracting discriminant features
to further improve the attack detection performance.

Supervised Anomaly Detection Semi-Supervised Anomaly Detection

Normal instance

Attack instance
Attack instance 
not learned yet

Figure 2. Supervised anomaly detection vs. semi-supervised anomaly detection.

The rest of this paper is organized as follows. Section 2 introduces the related work
on detecting cyber attacks in smart grids using PMU data. The power system framework
and cyber attack datasets generated from the framework are described in Section 3. The
details of the proposed method are presented in Section 4. Section 5 shows the performance
evaluation experiments and results. Finally, we conclude this paper and outline our future
work in Section 6.

2. Related Work

Traditional approaches employ PMU measurements to estimate the state of the power
system and compare the difference between the observed and the estimated measurements
with a threshold for cyber attack detection [12,13]. A lightweight scheme was proposed
in [14], which explores the spatial-temporal correlations between state estimations of the
grid and applies a trust-voting to detect abnormal state estimations in smart grids caused
by FDI attacks in real time. Chi-square detector and cosine similarity matching approaches
were investigated in [15] for detecting cyber attacks in smart grids. Huang et al. [16]
proposed an adaptive cumulative sum (CUSUM) algorithm for the real-time detection of
FDI attacks in smart grids.

Recently, machine learning has been widely used for detecting cyber attacks in smart
grids where the majority of proposed approaches are based on supervised learning algo-
rithms. A number of supervised learning algorithms were explored in [6] to discriminate
power system disturbances and cyber attacks. Ozay et al. [17] applied several popular
supervised algorithms including perceptron, k-nearest neighbor (KNN), support vector ma-
chines (SVMs) and sparse logistic regression (SLR) with ensemble learning and feature-level
fusion for predicting FDI attacks. Their experimental results demonstrate that machine
learning algorithms outperform state estimation-based algorithms. Yan et al. [18] compared
SVM, KNN, and extended nearest neighbor (ENN) for detecting both a direct and stealth
FDI attack in smart grids. Singh et al. [19] proposed a decision tree-based anomaly detec-
tion approach based on PMU measurements to distinguish the normal tripping from power
line faults and malicious attacks tripping the physical relays. An Adaboost-based classi-
fication model using the random forest as the base classifier using individual PMU data
was developed in [20] for detecting power system disturbances and cyber attacks. They
applied feature construction engineering to create new features from PMU measurements
and combined classification models with weight voting for final detection.

To improve the detection performance and reduce computational complexity, feature
engineering approaches such as feature selection and feature extraction were investigated
in the literature. Sakhnini et al. [21] investigated three heuristic feature selection meth-
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ods including genetic algorithm (GA), binary cuckoo search (BCS), and particle swarm
optimization (PSO), for improving the performance of supervised learning algorithms on
detecting FDI attacks in smart grids. As a popular feature extraction method, principal
component analysis (PCA) was used in [22,23] to reduce the dimensionality of feature
space for a lower computational complexity of attack detection.

Compared with a large number of methods based on supervised learning algorithms,
there were only limited studies on using semi-supervised anomaly detection algorithms
for attack detection in smart grids. One-class SVM (OCSVM) was employed in [24] to build
an intrusion detection module for detecting malicious attacks in the supervisory control
and data acquisition (SCADA)) system using network traces. They further combined
OCSVM with K-means recursive clustering for real-time intrusion detection in SCADA
systems [25]. To the best of our knowledge, our work is the first one that applies semi-
supervised anomaly detection algorithms for detecting cyber attacks in smart grids using
PMU data.

3. Power System Framework and Cyber Attack Datasets

The datasets adopted in our study (which are publicly available at https://sites.
google.com/a/uah.edu/tommy-morris-uah/ics-data-sets, accessed on 25 June 2021) were
generated from a power system framework [6] consisting of smart electronic devices,
supervisory control systems, and network monitoring devices, as shown in Figure 3. There
are two power generators, G1 and G2, in the system to provide the power. R1–R4 are
four intelligent electronic devices (IEDs), which can be toggled to switch four breakers,
BR1–BR4, on or off, respectively. Two transmission lines, L1 and L2, connect BR1 to BR2
and BR3 to BR4, respectively. The IEDs employ a distance protection scheme such that
breakers can be automatically toggled wherever a fault occurred. Since there is no internal
validation in the IEDs, breakers will be toggled regardless of whether the fault is a natural
anomaly or an attack. Operators can manually toggle the IEDs to perform the maintenance
of the power system and/or system components.

G G

G1 G2
R1 R2 R3 R4

BR1 BR2 BR3 BR4

Substation
Switch

PDC

OpenPDCControl PanelSyslogSnort

Control Room

Figure 3. Power system framework [6].

The power system framework can simulate multiple operational scenarios to generate
data corresponding to three types of events: no event, natural events, and attack events.
Table 1 summarizes the 37 simulated operational scenarios and their corresponding event
types for generating the datasets. The six types of events are described as follows:

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
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• No event: Normal readings.
• Short-circuit fault: A single line-to-ground fault occurred and can specifically be found

by reading the percentage range in data.
• Line maintenance: Operators toggle one or more IEDs to perform maintenance on

certain parts of the power system and its components.
• Remote tripping command injection attack: Attackers can send commands that toggle

IEDs to switch breakers when they can penetrate to the system.
• Relay setting change attack: Attackers change settings, such as disabling primary func-

tions of the settings, causing the IEDs not to toggle the breakers whenever a valid
fault or command occurs.

• Data injection attack: Attackers change the PMU measurements such as voltage, current
and sequence components to mimic a valid fault causing the breakers to be switched
off.

Table 1. Summary of operational scenarios and events.

Scenario No. Description of Event Event Type

1–6 Short-circuit fault Natural
13, 14 Line maintenance Natural
7–12 Data injection Attack
15–20 Remote tripping command injection Attack
21–30, 35–40 Relay setting change Attack
41 Normal readings No Event

There are four PMUs integrated with relays in the system where each PMU measures
29 features which are shown in Table 2. In total, 116 features are obtained from the four
PMUs. As the focus of our study is to use PMU data to detect cyber attacks, additional
cyber-domain features collected by the system from the log information of the control room
were not included. Depending on how to group the scenarios in Table 1, three groups
of datasets—binary, three-class and multi-class—were created from the data generated
from the framework. Since the aim of our study was to differentiate attack events from
other types of events, we adopted the binary group of datasets where no event and natural
events are treated as normal events.

Table 2. Description of features measured by a PMU.

Features (No.) Description

PA1:VH-PA3:VH (1–3) Phase A–Phase C Voltage Phase Angle
PM1:V-PM3:V (4–6) Phase A–Phase C Voltage Magnitude
PA4:IH-PA6:IH (7–9) Phase A–Phase C Current Phase Angle
PM4:I-PM6:I (10–12) Phase A–Phase C Current Magnitude
PA7:VH-PA9:VH (13–15) Pos.–Neg.–Zero Voltage Phase Angle
PM7:V-PM9:V (16–18) Pos.–Neg.–Zero Voltage Magnitude
PA10:VH-PA12:VH (19–21) Pos.–Neg.–Zero Current Phase Angle
PM10:V-PM12:V (21–24) Pos.–Neg.–Zero Current Magnitude
F (25) Frequency for Relays
DF (26) Frequency Delta (dF/dt) for Relays
PA:Z (27) Appearance Impedance for Relays
PA:ZH (28) Appearance Impedance Angle for Relays
S (29) Status Flag for Relays

4. Methodology
4.1. Overview of the Proposed Method

The proposed method is illustrated in Figure 4, which contains two main components:
deep representation learning and semi-supervised anomaly detection. The first step of the
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proposed method is to prepare the training dataset which only contains instances of normal
events. The dimensionality of feature space is then reduced through deep representation
learning where a low-dimensional latent representation is learned from the input by a deep
autoencoder (DAE). Finally, a semi-supervised anomaly detection algorithm is applied
to train the detection model by using the learned feature representation. In the detection
stage, a latent representation is first produced from an unknown input instance by the code
layer of the DAE, which is then fed into the trained detection model to classify the instance
as a normal event or an attack event.

Training

Detection

Deep Representation Learning Semi-Supervised 
 Anomaly Detection

Model Training

Detection Model

Normal

Unknown

Normal

Attack

?

Figure 4. Proposed method to detect cyber attacks in smart grids with semi-supervised anomaly
detection and deep representation learning.

4.2. Feature Extraction

It has been shown that the performance of learning algorithms and their computational
efficiency can be improved by reducing the dimensionality of feature space [26]. In our
study, deep representation learning is used for feature extraction which employs a DAE to
learn robust low-dimensional representations from high-dimensional inputs [27]. PCA, a
popular feature extraction method [26], was used as the reference method for comparison.

4.2.1. Deep Representation Learning with DAE

The DAE is a multi-layer neural network with three components—an encoder, a
code layer, and a decoder—as shown in Figure 5. The input data XXX are mapped by the
encoder into the latent representation HHH of the code layer, which is a low-dimensional
representation of the input data:

HHH = f (XXX) (1)

The latent representation HHH is then reconstructed by the decoder as X′X′X′. The training of the
DAE aims to minimize the error between the input XXX and the reconstructed X′X′X′:

X′X′X′ = g(HHH) = g( f (XXX)) (2)

After a DAE trained with the training dataset, the encoder and code layer are retained
for feature extraction while the decoder was removed from the network. The latent
representation of the code layer will be used as the input of the semi-supervised anomaly
detection algorithm.
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Encoder Code Decoder

X X'

H

Figure 5. The structure of a DAE.

4.2.2. PCA

PCA is a widely used feature extraction method for feature dimension reduction.
PCA linearly transforms the data into a low-dimensional subspace while maximizing the
variance of the data. Given the data matrix XXX = [XXX1, XXX2, ..., XXXn] ∈ Rn×m where n is the
number of instances and m is the number of features, the covariance matrix of XXX, SSS, can be
decomposed as

SSS = WΛWTWΛWTWΛWT (3)

where WWW ∈ Rm×m is the utility matrix and ΛΛΛ ∈ Rm×m is the diagonal matrix of eigenvalues.
The columns of matrix WWW are the eigenvectors. The feature dimension reduction in a data
vector xxx can then be done through the following transformation:

xxxp = xxxWWWp (4)

where xxxp is the new data vector with the reduced p features and WWWp is the first p eigenvec-
tors of WWW.

4.3. Semi-Supervised Anomaly Detection Algorithms

A total of eight popular semi-supervised anomaly detection algorithms were investi-
gated in our study, which can be divided into three categories: liner models, proximity-
based methods, and ensembles [28].

4.3.1. Linear Models

• One-class SVM (OCSVM): OCSVM was proposed in [29] as a semi-supervised version
of the popular supervised learning algorithm, SVM. SVM finds a hyperplane to
separate the data of two classes with the maximum margin. OCSVM needs to find
the hyperplane with only normal data. In [29], the data are mapped into a high-
dimensional space first. A hyperplane is then constructed to separate all normal
instances from the origin with the maximum margin, which serves as the boundary
to separate normal and abnormal instances. The working principle of OCSVM is
illustrated in Figure 6. OCSVM solves a quadratic minimization problem to find the
hyperplane, which is shown in Equation (5), where w is the normal vector of the
hyperplane, ρ is the distance from the hyperplane to the origin, ξi are the separation
errors for penalization, φ(·) is the mapping function to map an instance into a high-
dimensional space, and ν ∈ (0, 1]. ν is an important parameter for OCSVM which
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controls the number of training instances to be used as support vectors and the fraction
of anomalies:

min
ω,ξi ,ρ

1
2
‖w‖2 +

1
νn ∑

i
ξi − ρ

subject to 〈w · φ(xi)〉 ≥ ρ− ξi, ξi > 0, i = 1, ..., n
(5)

After solving the quadratic minimization problem, the detection function for an instance p
is obtained as Equation (6), where the dot product is approximated with a kernel function
K(·). The linear, polynomial, and radial basis function (RBF) are the three popular kernel
functions used in OCSVM:

f (p) = sgn((w · φ(p))− ρ) = sgn(∑
i

αiK(p, xi)− ρ) (6)

Origin

hyperplanew

Figure 6. An illustration of OCSVM.

4.3.2. Proximity-Based Methods

• Histogram-based outlier score (HBOS): In [30], HBOS was proposed as a fast outlier
detection method with a computational complexity of O(n), which has been applied
for problems involving a large amount of data such as network anomaly detection [31].
For each feature of the dataset, HBOS constructs a univariate histogram first. The
frequency of occurrence of the values is used by HBOS for a categorical feature.
Numerical features can be dealt with by two different methods:

– The static method, which separates the range of feature values into k equal-width
intervals—he number of instances falling in the interval is the height of the
corresponding bin;

– The dynamic method, which sorts the instances based on the feature values, where
a fixed amount of successive values is then grouped into a bin—the width of the
bin is determined by the feature values of the instances.

The constructed histogram is then normalized such that the maximum bin height is
one. Finally, the HBOS of an instance p is calculated as shown in Equation (7):

HBOS(p) =
n

∑
i=1

log
(

1
histi(p)

)
(7)

where n is the number of features and histi(p) is the density estimation of the i-th feature
of p. A higher HBOS indicates that the instance is more abnormal.
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• Local outlier factor (LOF): LOF is a popular density-based outlier detection algorithm
which estimates the abnormality of an instance according to its deviation with respect
to its local neighbors [32]. The algorithm first defines the local locality of an instance
p as its K nearest neighbors, NK(p), and the K-distance of p as the distance between
p and its K-th nearest neighbor. The reachability distance between p and any other
instance q is then calculated as the distance between p and q but at least K-distance(p).
Figure 7 shows an example for determining the reachability distance where K equals
3. In Figure 7, the reachability distances of instances a to c are the same which equal
to K-distance(p), i.e., d(p, c). Since the instance d is not one of p’s K nearest neighbors,
its reachability distance equals the real distance between p and d:

reachability-distanceK(p, q) = max{K-distance(p), d(p, q)} (8)

p

a

b

c

d

reachability-distance(p, a) 
= d(p, c) = K-distance(p)

reachability-distance(p, d) = d(p, d)

Figure 7. An illustration of reachability distance.

The local reachability density (LRD) of p can then be calculated as the inverse of the
average reachability distance of p from its K nearest neighbors, as shown in Equation (9):

LRDK(p) = 1/

 ∑
q∈NK(p)

reachability-distanceK(p, q)

|NK(p)|

 (9)

Finally, we can obtain the LOF score of p using the LRDs of p and its neighbors:

LOFK(p) =

∑
q∈NK(p)

LRDK(q)
LRDK(p)

|NK(p)| (10)

when the LOF score of p is less than or equal to 1, it is identified as normal as it is in a
denser area than its neighbors or has a density similar to its neighbors. When p has a LOF
score significantly larger than 1 showing that its nearest neighbors are far away from it, it
should be identified as an anomaly.

• Clustering-based local outlier factor (CBLOF): the LOF algorithm has a high compu-
tational complexity of O(n2). CBLOF was proposed by He et al. [33] as an efficient
method with a computational complexity of O(n). CBLOF first applies the Squeezer
algorithm [34] to partition the input data into clusters, which are then divided into
two groups of large cluster (LC) and small cluster (SC) based on a parameter b. Sup-
posing that the clusters are ordered based on their sizes as |C1| ≥ |C2| ≥ ... ≥ |Ck|, b
separates the clusters as LC = {Ci|i ≤ b} and SC = {Cj|j > b}, which is determined
by satisfying the conditions in Equations (11) and (12) where α and β are two numeric
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parameters and |D| is the size of the dataset. Equation (11) is derived based on the
fact that a large portion of instances are normal so that they should be in the LC
group, while Equation (12) means that clusters in the LC and SC groups should have
significant differences in cluster size:

(|C1|+ |C2|+ ... + |Cb|) ≥ |D|α (11)

|Cb|/|Cb+1| ≥ β (12)

The CBLOF score of p is defined as

CBLOF(p) =


|Ci|min(distance(p, Cj)) where p ∈ Ci, Ci ∈ SC and

Cj ∈ LC for j = 1 to b
|Ci|distance(p, Ci) where p ∈ Ci and Ci ∈ LC

(13)

Equation (13) shows that the CBLOF score of p depends on the type of cluster it
belongs to. The CBLOF score is calculated as the product of the size of the cluster and the
distance to its closest LC if p is in a SC. If p is in a LC, the CBLOF score is the product of
the size of the cluster and the distance to its own cluster.

• Angle-based outlier detector (ABOD): ABOD was proposed in [35] as a proximity-
based method to detect outliers in high-dimension data, which primarily relies on
the angle between a pair of distance vectors instead of the distance. This is due to
the fact that the distances may be quantitatively meaningless in high-dimensional
space [36,37]. Figure 8 shows the working principle of ABOD. As a normal instance is
generally located within a dense cluster with other normal instances, the variance of
angles between its distance vectors is large as the angles vary in a wide range. On the
other hand, an anomaly is generally located far from the cluster so that most of the
angles between its distance vectors are small, leading to a low variance of angles. Since
the computation of all angles for an instance has high complexity, an approximate
method was proposed in [35] called FastABOD, which only calculates the angles of
pairs within an instance’s K nearest neighbors.

γ 

β 
α

Figure 8. An illustration of ABOD.

• K-nearest-neighbor outlier detection (KNNOD): KNNOD was proposed in [38] as a
simple but efficient proximity-based method for outlier detection. The information
of an unknown instance’s K nearest neighbors is used by KNNOD to evaluate its
abnormality. The anomaly score of the unknown instance is calculated as the distance
of the instance to its K-th nearest neighbor, where the distance can be calculated
based on any Lp norm such as Euclidean distance (L2 norm) or Manhattan distance
(L1 norm). A larger distance indicates a higher abnormality unknown instance. The
average distance or the median distance to an unknown instance’s K nearest neighbors
can also be used as the anomaly score, as proposed in [39].
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4.3.3. Ensembles

• Feature bagging: Lazarevic and Kumar proposed feature bagging in [40] as an ensemble-
based approach for outlier detection in high-dimensional and noisy data. Multiple-
base outlier detection algorithms are combined in feature bagging and a randomly
selected feature subset is used to train each base algorithm. The anomaly score of an
unknown instance is determined by calculating the combination of the outputs of all
base algorithms. LOF was used as the base outlier detection algorithm in [40].

• Isolation forest (iForest): iForest was proposed by Liu et al. [41] for anomaly detection,
which is an ensemble of binary search trees (BSTs) called isolation trees (iTrees). iTrees
are built by randomly selected data subsets, features and split values. There are two
types of nodes in an iTree: internal nodes with two children and leaf nodes without
children. The rationale behind iForest is that abnormal instances are more likely to be
isolated from other instances in early tree partitioning. Thus, the abnormality of an
instance, p, is corresponding to the path length, h(p), from the root node to the leaf
node including p, which is illustrated in Figure 9. The average path length of all leaf
node terminations can be estimated as the unsuccessful searches in BST, as shown in
Equation (14):

c(n) = 2H(n− 1)− (2(n− 1)/n) (14)

where n is the number of training instances and H(i) is a harmonic number estimated as
H(i) = ln(i) + 0.5772156649 (Euler’s constant).

Abnormal

Normal

iTree iTree iTree

iForest

Figure 9. An illustration of iForest.

The anomaly score of p, s(p, n), is then estimated as

s(p, n) = 2−
E(h(p))

c(n) (15)

where E(h(p)) is the average h(p) obtained from all iTrees in the iForest. A smaller value
of E(h(p) results in a larger anomaly score. The abnormality of p can be assessed based on
s(p): (i) p is abnormal if s(p) is very close to 1; (ii) p is likely to be normal if s(p) is smaller
than 0.5; (iii) it is safe to assume that p is not abnormal if s(p) is approximately 0.5.

5. Performance Evaluation and Results
5.1. Experiments and Performance Metrics

The binary group of the power system attack datasets [6] adopted in our study
contains 15 datasets covering the 37 scenarios shown in Table 1. We used the min–max
normalization to normalize the data. The method was implemented using Python and
PyOD [42], a Python toolbox for anomaly detection. The parameters used by the algorithms
investigated in our study are listed in Table 3.
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Table 3. Parameters used by the semi-supervised and supervised algorithms investigated in our
study.

Algorithm Parameters

OCSVM RBF kernel, degree = 3, ν = 0.5
HBOS # of Bins = 50
LOF K = 20
CBLOF # of Clusters = 50, α = 0.9, β = 5
ABOD K = 3
KNNOD K = 5
Feature bagging # of base learners = 10, base learner = LOF
iForest # of iTrees = 100
KNN K = 5
SVM RBF kernel, degree = 3, C = 1.0

Two metrics were used in our study for performance evaluation: area under the ROC
curve (AUC) and F1 score. The ROC curve plots the relationship between true positive rate
(TPR) and false positive rate (FPR) by varying the detection threshold. Equations (16) and (17)
define TPR and FPR, where TPs, TNs, FPs and FNs are true positives, true negatives, false
positives, and false negatives, respectively:

TPR =
TP

TP + FN
(16)

FPR =
FP

FP + TN
(17)

AUC measures the area under the ROC curve to indicate the performance of the model on
distinguishing normal and attack events. A higher AUC value means that the model has a
better capability to distinguish normal and attack events.

F1 score is defined as the harmonic mean of the precision and recall:

F1 = 2× Precision× Recall
Precision + Recall

(18)

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

To calculate the F1 score of a detection algorithm, an optimal threshold needs to be de-
termined based on the ROC curve. We adopted the distance to corner (d) [43,44] as the
criterion which is defined in Equation (21), which determines the optimal threshold as the
point on the ROC curve closest to the corner point (0, 1):

d =
√
(1− TPR)2 + FPR2 (21)

5.2. Performance of Semi-Supervised Anomaly Detection Algorithms

The performances of eight semi-supervised outlier detection algorithms described in
Section 4.3 using all 116 PMU features were investigated first. Among the normal instances
of a dataset, 50% were randomly selected to train a detection algorithm. The other 50%
of normal instances and all attack instances were then used for testing. The process was
repeated 10 times for each dataset.

Examples of ROC curves obtained by the eight algorithms on datasets 1 and 11 in
one run of the experiment are shown in Figure 10. The average AUCs of the algorithms
calculated from the 10 runs for each of the 15 datasets are shown in Figure 11. It can be
observed from Figure 11 that the three best-performing algorithms in terms of average
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AUC are OCSVM, KNNOD, and ABOD followed by CBLOF. Those four algorithms show
significantly better performance than other four algorithms. We then used the distance to
the corner d to determine the detection threshold of an algorithm to obtain the precision,
recall, and F1 score. The top three algorithms in terms of average F1 score are OCSVM,
KNNOD, and CBLOF followed by ABOD as shown in Figure 12:
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ABOD (AUC = 0.8068)

(a) Dataset 1
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(b) Dataset 11

Figure 10. Examples of ROC curves obtained from semi-supervised anomaly detection algorithms using all features on
datasets 1 and 11 in one run of the experiment.
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Figure 11. Performance of semi-supervised anomaly detection algorithms using all features in terms
of average AUC.
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Figure 12. Performances of semi-supervised anomaly detection algorithms using all features in terms
of average precision, recall, and F1 score.

5.3. Performance Comparison of Semi-Supervised and Supervised Algorithms

We then compared the three best-performing semi-supervised algorithms in terms of
average AUC (OCSVM, KNNOD, ABOD) with two popular supervised algorithms—KNN
and SVM—that have been used for detecting cyber attacks in smart grids [6,17]. For each
of the 15 datasets, the training dataset for the semi-supervised algorithms was formed by
randomly selecting 50% of normal instances. These normal instances were combined with
the same number of randomly selected attack instances to form the training dataset for the
supervised algorithms. The remaining 50% of normal instances and attack instances were
used to form the testing dataset for both the semi-supervised and supervised algorithms.
Similarly to Section 5.2, the experiment was repeated 10 times for each dataset.

Examples of ROC curves are shown in Figure 13 which were obtained by the five semi-
supervised and supervised algorithms on datasets 1 and 11 in one run. The performance of
the algorithms in terms of average AUC on the 15 datasets are shown in Figure 14. Among
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all the algorithms, SVM had the worst performance while supervised KNN algorithm has
significantly better average AUCs on 14 out of 15 datasets than other algorithms, as can be
seen in Figure 14. The good performance of supervised KNN algorithm in terms of AUC is
due to its significantly better TPR compared with the three semi-supervised algorithms
when FPR is low as demonstrated by the ROC curves of Figure 13. On the other hand, one
can also observe from Figure 13 that as FPR increases, the three semi-supervised algorithms
can approach high TPR much quicker than an supervised KNN algorithm.
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(a) Dataset 1
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(b) Dataset 11

Figure 13. Examples of ROC curves obtained by semi-supervised and supervised algorithms using all features on datasets 1
and 11 in one run of the experiment.
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Figure 14. Performance comparison of semi-supervised and supervised algorithms in terms of
average AUC.

Similarly to Section 5.2, the detection threshold of a detection algorithm was obtained
by using the distance to corner d to calculate the precision, recall, and F1 score. It can be
observed from Figure 15a that the three semi-supervised algorithms have slightly worse
precision than the supervised KNN algorithm due to their higher FPRs. On the other hand,
the two supervised algorithms have much worse recall than the three semi-supervised
algorithms, as shown in Figure 15b. This indicates that semi-supervised algorithms have a
better capability than supervised algorithms in finding attack events. Figure 15c shows
that the overall performance of the three semi-supervised algorithms in terms of F1 score
are significantly better than those of the two supervised algorithms.
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Figure 15. Performance comparison of the semi-supervised algorithms with supervised algorithms in terms of average
precision, recall, and F1 score.

5.4. Performance Improvement with Deep Representation Learning

Finally, the impact of DAE-based deep representation learning on the performance of
semi-supervised anomaly detection algorithms for detecting cyber attacks in smart grids
was investigated. As mentioned in Section 4.2, PCA was adopted as the reference method
for comparison. We set the number of extracted features as 30 for both DAE and PCA. The
input and hidden layers of the encoder in the DAE have 116 and 60 nodes, respectively.
The three best-performing semi-supervised algorithms in terms of average AUC, OCSVM,
KNNOD, and ABOD, were included in this study. The results in terms of average AUC and
average F1 score are shown in Figure 16 to Figure 17, respectively, which were obtained by
averaging the results of all runs of all 15 datasets. It can be observed from the figures that
DAE can further improve the performance of the three semi-supervised algorithms in terms
of both performance metrics. Statistical tests (two-sample paired t-test, α = 0.05) show
that the AUCs obtained by the three semi-supervised algorithms with deep representation
learning are significantly higher than using all features (p < 0.001). The F1 scores obtained
by OCSVM and KNNOD with deep representation learning are also significantly higher
than using all features (p = 0.041 for both OCSVM and KNNOD). The p-value for ABOD
is slightly higher than the significance level α (p = 0.069). On the other hand, PCA does
not perform well in improving the performance of the three semi-supervised algorithms.
The p-values obtained by the three semi-supervised algorithms with PCA compared with
using all features are all higher than 0.1. This shows that deep representation learning
methods such as DAE are more powerful than linear feature extraction methods such as
PCA in extracting discriminant features to improve the performance of semi-supervised
anomaly detection algorithms for detecting cyber attacks in smart grids.
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AUC

OCSVM KNNOD ABOD

All Features 0.8444 0.8348 0.8353 All Features

PCA 0.8452 0.8353 0.8354 PCA

Deep Representation Learning 0.8596 0.8574 0.861 Deep Representation

Figure 16. Performance of semi-supervised algorithms with and without feature extraction in terms
of average AUC.

Figure 17. Performance of semi-supervised algorithms with and without feature extraction in terms
of average F1 score.

6. Conclusions and Future Work

Smart grids provide efficient power delivery and management by integrating ad-
vanced ICTs into traditional power grids. On the other hand, new security vulnerabilities
introduced in the cyber domain could be exploited by potential adversaries to launch cyber
attacks leading to devastating damages. By utilizing PMU measurements which bridge the
physical and cyber domains, we developed a scheme based on semi-supervised anomaly
detection and deep representation learning to detect cyber attacks in smart grids. Unlike
supervised algorithms, semi-supervised anomaly detection algorithms only employ in-
stances of normal events to train detection models, which makes them capable of detecting
events of unknown attack types. The best-performing semi-supervised algorithms were
identified in our experiments by using publicly available power system attack datasets. The
performance comparison with popular supervised algorithms shows that semi-supervised
algorithms have a better capability of finding attack events. In addition, our results show
that the detection performance of semi-supervised algorithms can be further enhanced
with DAE-based deep representation learning.

Although semi-supervised anomaly detection algorithms have shown good perfor-
mance in finding attack events, our experiment results also show that they have a relatively
high FPR compared with supervised algorithms. In the future, we aim to further improve



Information 2021, 12, 328 18 of 19

the detection performance of semi-supervised algorithms by reducing the FPR. To achieve
this goal, we will explore advanced techniques such as ensemble learning [45] and deep
anomaly detection [46,47].
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