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Abstract: In this paper, we propose a fully automated system to extend knowledge graphs using
external information from web-scale corpora. The designed system leverages a deep-learning-
based technology for relation extraction that can be trained by a distantly supervised approach.
In addition, the system uses a deep learning approach for knowledge base completion by utilizing
the global structure information of the induced KG to further refine the confidence of the newly
discovered relations. The designed system does not require any effort for adaptation to new languages
and domains as it does not use any hand-labeled data, NLP analytics, and inference rules. Our
experiments, performed on a popular academic benchmark, demonstrate that the suggested system
boosts the performance of relation extraction by a wide margin, reporting error reductions of 50%,
resulting in relative improvement of up to 100%. Furthermore, a web-scale experiment conducted to
extend DBPedia with knowledge from Common Crawl shows that our system is not only scalable
but also does not require any adaptation cost, while yielding a substantial accuracy gain.

Keywords: information extraction; knowledge graphs; deep learning

1. Introduction

Knowledge graphs (KGs) are widely used in question answering and dialogue systems.
Minimizing the error rate in these graphs without sacrificing coverage of entities and
relationships is essential for improving the quality of these systems. In this paper, we focus
on the problem of identifying relations among entities found in a large corpus with the
goal of populating a pre-existing KG [1,2]. Relation extraction (RE) from text is described
as inducing new relationships between pre-identified entities belonging to a predefined
schema. Expanding the size and coverage of a knowledge graph with relation extraction is
a challenging process as it introduces noise and oftentimes requires a manual process to
clean it.

For example, an automatic system might have reasonably high confidence in the
relationship “SCHINDLER’S LIST - CANDIDATEFOR - BOOKER PRIZE” from the text “Thomas
Keneally has been shortlisted for Booker Prize in four different occasions, in 1972 for The Chant of
Jimmie Blacksmith, Gossip from the Forest in 1975, and Confederates in 1979, before winning the
prize in 1982 with Schindler’s Ark, later turned into the Oscar Award winning film Schindler’s
List directed by Steven Spielberg.” However, as illustrated in Figure 1, other extracted
relationships might contradict this, such as the fact that because STEVEN SPIELBERG
directed SCHINDLER’S LIST, it follows that SCHINDLER’S LIST ISA FILM and therefore it
cannot be CANDIDATEFOR the BOOKER PRIZE, which is a literary award. The first type
of inference is equivalent to identifying a new relation in a KG, and it is typically referred
to as link prediction, as illustrated by Figure 1. The second inference step is equivalent to
assessing the confidence of an existing relation in the KG, and it is typically referred to as
knowledge base validation (KBV). Both processes are very intimately related and interfere
with each other. In the example before, we needed to infer that SCHINDLER’S LIST ISA
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FILM from the explicit information in order to detect the fact that SCHINDLER’S LIST cannot
be a candidate for the BOOKER PRIZE.

Steven

from the Spielberg

forest

Schindler’s Booker
List ) Prize

BasedOn

Schindler’s Thomas
AuthorOf \QaaEl

Ark

Figure 1. Link prediction and knowledge base validation example.

Humans are able to reconcile inconsistencies such as these at an almost subconscious
level, resulting in improved perception capabilities. Unfortunately, this is not the case for
most Al systems, and this is one of the main reasons why pure NLP-based approaches,
whether pattern-based or deep-learning-based, typically perform poorly on this task.

In this paper, we present an approach that overcomes the aforementioned problem
while offering a scalable solution to extend large knowledge graphs from web-scale corpora.
It consists of two main components: relation extraction, a deep-learning-based distantly
supervised system to detect relations from text, and relation validation, a deep-learning-
based knowledge base validation component able to spot inconsistencies in the acquired
graphs and improve the global quality. In order to operate these components, the only
required input is a partially populated KG and a large scale document corpus. In our
experiments, we used DBpedia and Freebase for the KG and Common Crawl web text and
New York Times news articles for the document corpora.

To implement the RE component, we applied a state-of-the-art distantly supervised
relation extraction system that is capable of recognizing relations among pre-identified
entities using a deep neural network approach [3]. Entity recognition is simply achieved
by using a dictionary matching approach in a large corpus without requiring an entity
detection and linking system. As for the relation validation (RV) component, we used a deep
neural network approach trained from the same KG as well as from the relations identified
from text, adopting knowledge base completion (KBC) strategies.

The main contribution of this paper is that we show how combining distantly su-
pervised solutions for RE with KBC techniques trained on top of their output can largely
boost the overall RE accuracy, providing a scalable yet effective solution to extend their
coverage. We describe a system combining those two approaches in a single framework,
and we apply it to the problem of extending KG from web-scale corpora. Previously, KBC
has been applied to hand-crafted knowledge bases and not to the result of the information
extraction system. We empirically show how this combination improves the quality of the
induced knowledge by a large margin, improving the state of the art in a scalable manner.

We tested our approach on three different KBP benchmarks: extending Freebase
with knowledge coming from the NYT, extending DBpedia with knowledge coming from
Common Crawl, and refining the result of pattern-based information extraction systems
used for the never-ending language learning (NELL) task. Our experiments show that the
validation step boosts the performance of RE by a wide margin, reporting error reductions
of 50%, sometimes resulting in a relative improvement of up to 100%.

The rest of the paper is structured as follows. The related work section describes
the background in the area of RE and KBC, as well as alternative approaches such as the
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application of probabilistic logic to the validation of KBs. We then introduce our approach
and provide a description of the RE system we use for our experiments. The evaluation
section describes the benchmarks and provides an extensive evaluation of our framework,
followed by an analysis of the reasoning behind its effectiveness. Finally, we summarize
the main research result and highlight possible directions for future work.

2. Related Work

Deep learning has been widely explored for the task of information extraction. Both
CNN-based [4] and LSTM-based [5] models have been trained successfully for RE. Recently,
cross sentence approaches have been explored by building paths connecting the two
identified arguments through related entities [6]. The context aggregation approaches of
state-of-the-art neural models, max-pooling [7], and attention [8] allow multiple contexts
to contribute to a predicted relation between two entities.

The efforts described above to aggregate information from different sentences are
clearly a step toward our goal of providing a global assessment of the validity of the recog-
nized relation. However, all the systems above lack the ability to handle global knowledge,
for example, derived from sentences involving other related entities, severely limiting their
accuracy. One attempt to leverage background knowledge to improve RE for knowledge
base population is the universal schema [9], where a matrix factorization approach uses
evidence from both the ontology and text to identify new relations. Universal schema,
by closely integrating the textual and knowledge base evidence, limits the approaches to
each. In contrast, by defining a symbolic layer to separate the IE and KBC components,
our approach is able to easily accommodate different implementations of either the IE
component or KBC component.

Probabilistic reasoning has been explored to validate the output of RE systems, includ-
ing Markov logic networks (MLN) [10] and probabilistic soft logics (PSL). For example,
in the never-ending language learning (NELL) project [11], PSL attempts to reconcile the
output of IE systems, which provide heterogeneous and often contradicting sources of
evidence for some relations, with the constraints of the KB [12]. However, probabilistic
reasoning-based approaches require logical statements describing the target knowledge
schema such as domain and range constraints or taxonomies and ground truth of manually
validated facts, as entity-relation-entity triples, for training. After training is performed,
a PSL or MLN system is able to validate statements in a knowledge base, such as detect-
ing inconsistencies. However, on large datasets, the systems often suffer from scalability
problems.

Fact checking is another line of research related to knowledge base validation. A typ-
ical fact checking system gathers more textual evidence for a given proposition through
information retrieval, often a web search [13]. In contrast, our system builds a global model
for the entities and relations considering the interactions of the extractions rather than
gathering more documents.

On the other hand, KBC technology has been developed to perform a similar func-
tion and has been applied to knowledge bases curated by humans. State-of-the-art KBC
approaches are usually deep-learning-based. They are trained using triples in the input KB
as positive examples and generate negative examples by random corruption of the training
data. Popular KBC approaches are TransE [14], RESCAL [15], neural tensor network [16],
and HolE [17], whereas newer ones include ConvE [18], ConvKB [19], KBGaN [20], and
many others. In this paper, we exploit a variant of ProjE [21] able to take noisy data
with an associated confidence score as an input. This is KBV}, a core component of our
KBP system.

3. Distantly Supervised Relation Extraction and Validation

In this section, we describe the architecture of our solution for knowledge base popula-
tion (KBP). KBP is the task of identifying entities and relations from a corpus, according to
a predefined schema. It is illustrated by Figure 2, representing the architecture of our final
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KBP solution. It is composed by a distantly supervised information extraction system that
takes a pre-existing KB and a corpus as an input and generates a list of quads representing
induced relations with their associated confidence scores. Its output is then merged with
the triples in the pre-existing KG and fed into a KBC deep net to train a KBV system whose
goal is to re-assess the generated assertions, providing new confidence scores for each of
them. Finally, the scores are aggregated by a logistic regression layer that provides the final
confidence score for each triple. For all these steps, the same KB is always used for training.

More formally, the information extraction component of KBP generates a set of
quads (triples with confidence) Qi = 41,92, ..., 4, from a corpora of text documents
C =cy,c,...,cp. Here, each text document c is represented in the form of a sequence
of words ¢ = wy,...,e1,wy, €2,..., W, containing two entity mentions e; and e;. Quads
have the form q = (e, 1,ep,5), where ¢; € £ are entities found in the corpus, r € R
is a finite set of relations, and s € [0,1] is a confidence score. We define the function
T((eq,7,€2,5)) = (e1,1,ep) to ignore the confidence of a quad, forming a triple. Since KB is
typically the Abox of a handcrafted ontology, we assume all the confidence scores of quads
in KB being equal to 1.
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Figure 2. Pipeline for our RE solution.

For each context ¢ € C, the entity detection and linking (EDL) function ¢(c) =< e1,ep >
returns the two entities contained in it. In our current implementation, EDL is implemented
by a simple string match with regard to the entities in the KB; however, it could also be
replaced with more advanced EDL solutions if available. For each entity e € V, the function
P (e) returns all possible contexts where the entity e appears in the corpus, and ¥(eq, e2)
returns all contexts containing both. The RE process consists of applying a deep net to
the context returned by 1 (ey, ep) for every pair of entities that co-occur in the corpus. The
result of the application of RE to a context is a list of quads g = (ey,7;,€2,s;) forallr; € R,
where s; represents the confidence of the system on the detection of the relation #; in one or
more contexts in (e, e), where the two entities co-occur in the corpus. Obviously, most
of the relations will have very low scores since all the relations are explored and returned
for each pair.

The RE step takes into account mostly information coming from the corpus for each
entity pair to predict the relations, if any, between them. It does not take into account
global information provided by the structure of the KG. The relation validation component
is designed to overcome this problem. It is formally described as a function KBV : £ x R x
£ — R. For any triple produced by IE (7(q) : ¢ € Q1r), KBV returns a confidence score.

The KBV system is to be trained from a knowledge graph KB consisting of a set of
quads. In this paper, we experimented with two different ways of training, producing
two-component systems: (a) KBV, using the ground truth from the knowledge graph
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KBi14in, and (b) KBV, using the output of information extraction Qr. The result is two
different functions returning different confidence scores when applied to the same triple.

The three confidence scores generated from IE and by applying KBV and KBV to
every triple from Qg are then aggregated using a confidence re-estimation layer trained
on a validation set to provide a final confidence score, generating the final output Q- In
the following subsection, we will describe the distantly supervised RE approach and the
knowledge base validation step in detail.

3.1. Relation Extraction

We use knowledge-level supervision, sometimes called distant supervision, to gener-
ate the training needed for deep-learning-based RE systems from a KG and an unannotated
corpus. To this aim, we first match all entities in KBjy,,;, to gather their context sets. That
context set provides all the sentences that contain two entity mentions. If those two en-
tities are related by some relation in the input KG, they become positive examples for
that binary relation. We then use all the context sets collected from the corpus to train a
deep-learning-based RE classifier. We use the system of [3] based on the PCNN model
from NRE [8].

It is worth noticing here that for each entity pair, we predict a probability distribution
for all the possible relations in our KB. To avoid generating a very large list of quads, a
confidence threshold is chosen, below which quads are discarded before passing to the
KBV system.

After the system is trained, it is applied to all context sets for every pair of entities
in the corpus C and generates a set of quads Qr, where for each pair of entities e; and
ey, up to |R| triples are generated and associated with their confidence score. Minimum
confidence is set for extracted quads to control the size and quality of the output.

3.2. Relation Validation

We implement KBV using a deep network inspired by a state-of-the-art KBC ap-
proach where we modified the loss function in order to take into account the fuzzy truth
values provided by the output of IE. This network considers a set of quads Qjf as the
probabilistic knowledge graph for training and learns a function KBVjg({ey,r,ez)) that
returns a confidence score s for the triple at hand. This score is informed by the global
analysis of the knowledge graph Q differently from the RE that uses the evidence from the
corpus (ey, e2) for the same purpose.

KBC algorithms are trained from a set of triples T, usually produced manually, wherein
each entry t € T comprises two entities e, e; and a relation r. The KBC system assigns
tensors to the entities and relations and trains them by exploiting a local closed world as-
sumption.

In this work, we use a state-of-the-art model for KBC, called ProjE softmax [21].
A block diagram architecture of such a model is shown in Figure 3. The network is trained
for each triple t in the training data by providing an input vector representation for the
subject and the relation, while the output of the network exploits a one-hot representation
encoding the probability for each possible object in £. Negative examples are provided by
a random sampling of the objects.

However, this approach cannot be directly applied to implement KBV} because many
triples extracted by IE are actually not true. This is usually reflected by a lower confidence
score associated with the triple. To overcome this issue, we modified the loss function
described in Figure 3 (Box A) to use confidence scores, rather than labels, following an
approach proposed for computer vision in [22].

Let us assume that the inputs are ¢; and r, and the system needs to predict appropriate
ep. Let v°1" (of dimensions |€|—number of entities in vocabulary) represent the final layer
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of predicted probabilities corresponding to input entity e; and input relation r. Define a
vector s°" of dimensions || that uses the input confidence scores as follows:

)

) if (e1,7,e;,5) € Q
! 0, otherwise

Recall that s represents the confidence score for the quad (el,r, ei,s) € Q. The
modified loss function is now the cross-entropy between the confidence vector and the
prediction vector.

1 €]
“1g] L L log v @)
geQi=1
In Equation (2), the s vector is now a vector of confidence scores (rather than a one-
hot encoding).

E:

Box A
Ground Truth | <1,0,0,1....0>

Maximize log likelihood

dims |€] | Final layer of predicted prob ‘

|E| 1 Sampled softmax

8:8: ‘Matrixmultiplication }4&
00.00

".. tanh layer

Entity Embedding Matrix

Add dropout
e

F s

Elementwise Elementwise
multiplication multiplication

Frodo _— Character

(Entity) Two Combination Operators (Relation)
Figure 3. Base ProjE softmax architecture for KBC.

After the network is trained, it can be used for both link prediction (i.e., generating
the object from a subject and relation input) or validation (i.e., assessing the validity of
a new triple composed of known entities and relations). In this paper, we explore the
second option.

The predictions of KBV and KBV make use of the embeddings of entities that are
determined by the training set. Embeddings for an entity can be effectively trained only
when the number of triples in which the entity appears meets some minimum threshold:
three in our work. The KBC system cannot provide a confidence estimate for triples
involving entities that do not occur in the training set or occur more rarely than the
minimum threshold. This is a critical limitation of typical KBC systems, which can only
predict new relations between existing entities in the knowledge base. KBV solves this
issue by using the output of the IE system for training, which can include new entities.

3.3. Confidence Re-Estimation

The confidence scores sz from the three systems & € {IE, KBVg, KBV} are combined
to produce a final confidence for each triple 7(q) : 9 € Qjg, yielding Qfiys- This step
uses a simple logistic regression, typically trained on a validation set separate from the
training set.
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We use four groups of features based on the confidence of each system: the raw confi-

denceitself f;" = s¢, & € {IE,KBVig, KBV}, thelogit of the confidence fé"gif = log(% -1),

and binary features for what range the confidence is in fé’i”, with g € {[0,0.2),[0.2,0.4),
[0.4,0.6),[0.6,0.8),[0.8,1.0] }. If one of the entities occurs too few times, either in Tgkp
for KBV or Qg for KBVy, it will not have an embedding and therefore will not have a
score from KBC. In this case, the re-estimation uses a binary feature to indicate that the

confidence from the system is missing féﬂ 8 & ¢ {KBVig,KBV}.

We also introduce a binary feature to indicate the relation in the triple to enable learn-
ing a per-relation bias f!°,r € R. Finally, we form quadratic features by adding a feature
for the product of every pair of features (captures basic interactions). L1 regularization is

applied to reduce overfitting.

4. Evaluation

We tested our approach on three different KBP benchmarks: extending Freebase
with knowledge coming from the NYT, extending DBpedia with knowledge coming from
Common Crawl, and refining the result of pattern based information extraction systems
used for the never-ending language learning (NELL) task. We choose the first task to
provide a comparison with the existing state-of-the-art methods for RE, while we use the
second benchmark to show the scalability aspect of our approach. We chose the third task
to compare the performances of our KBC approach with regard to previous alternative
attempts to refine the output of the IE system using probabilistic reasoning methods.
Benchmarks are described in Section 4.1, evaluation is reported in Section 4.2, and an
analysis of the results is provided in Section 4.3.

4.1. Benchmarks

We used the following evaluation benchmarks (details in Table 1):

NYT-FB: Extending Freebase with New York Times articles is a standard benchmark for
distantly supervised RE, developed by [23] and used in many subsequent works
[7,24,25]. The text of the New York Times was processed with the Stanford NER
system and the identified entities linked by name to Freebase. The task is to
predict the instances of 56 relations from the sentences mentioning two arguments.
The state of the art for this dataset is the NRE’s (neural relation extraction)
PCNN+ATT model (piecewise convolutional neural network with attention) [8].

CC-DBP: Extending DBpedia with Web Crawls. This is a web-scale knowledge base pop-
ulation benchmark that was introduced by [26] and has been made publicly
available.It combines the text of Common Crawl with the triples from 298 fre-
quent relations in DBpedia [27]. Mentions of DBpedia entities are located in text
by gazetteer matching of the preferred label. This task is similar to NYT-FB, but
it has a much larger number of relations, triples, and textual contexts.

NELL: Never-ending language learning (NELL) [11] is a system that starts from a few
“seed instances” of each type and relation, which it then uses to extract candidate
instances from a large web corpus, using the current facts in the knowledge
base as training examples. The NELL research group released a snapshot of
its accumulated knowledge at the 165th iteration, hereby referred to as NELL-
165 consisting of a set of triples with associated confidence scores coming from
different extractors. Later, [28] provided a manually validated set of triples
divided into train and test.
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Table 1. Knowledge base population dataset statistics.

NYT-FB CC-DBP NELL-165
|OLE| 23,687 6,067,377 1,030,600
|KBks| 15,417 381,046 2928
€] 17,122 545,887 820,003
IR| 13 298 222

In the case of NELL, the ground truth is in the form of manually validated extractions
provided by [28]. In the cases of CC-DBP and NYT-FB, the ground truth for a triple is
determined by its presence or absence in DBpedia or Freebase respectively. This is a
positive-unlabeled evaluation, and therefore precision is underestimated. In all cases, the
recall is the correct percent of triples that were extracted by the IE system above minimum
confidence. This recall basis is logical in the case of KBV, but note that KBV or KBV|r could
also be used to predict triples outside the set extracted by an IE system.

4.2. Results

To understand the impact of each component for our distantly supervised relation
extraction and validation system (RE, KBV, and KBV|g), we report an ablation analysis:
we train the re-estimation component from a subset of the features and plot the preci-
sion/recall curve.

RE performance is illustrated by the three gray lines in Figures 4—6. It is worth noticing
that we used our deep-learning-based approach on CC-DBP and NYT-FB, which provides
state-of-the-art results in those tasks. For NELL, the reported results are obtained by using
triples provided by the NELL organizers and generated with their system.

1
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Figure 4. Precision recall curves for CC-DBP.
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Then, we trained both KBV and KBV, for all the benchmarks. The training set for
KBV, KBiy4ip, is derived by the triples validated by humans for NELL, whereas it consists
of the intersection of Qg with KBy, for both CC-DBP and NYT-FB. In all cases, KBV
is trained on the output of the IE systems. Then, we apply both systems to validate
QE, the output of the IE system, generating two additional confidence scores. Precision
recall curves for those experiments are given in Figures 4-6. Both KBV g and KBV largely
improve the ranking of output triples, promoting the right ones on top. Remarkably, KBV;g
tends to perform better than KBV in spite of the fact that the latter uses manually curated
training triples from KBj,,;,,, while the former uses the noisy output of the RE system.
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Finally, we combined all three output scores: IE, KBVr, and KBV. Results are
reported by the blue line in the three PR curves. The blue line is consistently above all
the other lines, showing that there is some complementary signal from the three features.
However, this improvement is marginal compared to what is provided by KBV/r alone.
Table 2 provides the AUC for all the systems.

Table 2. Results: Area under precision recall curve (AUC) on KBP datasets.

Approach NYT-FB CC-DBP NELL
IE 0.499 0.294 0.872
IE,KBV 0.609 0.636 0.931
IE, KBV 0.629 0.760 0.951
ALL 0.630 0.785 0.966

The NYT-FB experiments clearly show that our approach outperforms state-of-the-art
solutions for distantly supervised RE, represented by the performance of the RE component
alone, by a large margin of 0.13 AUC improvement. However, NYT-FB is a relatively small
benchmark and might not be a realistic setup to benchmark large scale solutions for KBP.

To demonstrate the scalability of our approach, the CC-DBP experiment is performed
on a much larger web-scale corpus with hundreds of different relations. In these settings,
the improvements over state-of-the-art distantly supervised RE solutions are even higher,
reporting an absolute increase of AUC of 0.491, reflecting a relative improvement of
167% . This extraordinary boost in performances can be explained by the fact that larger
graphs tend to provide a more valuable signal to the KBV process, as demonstrated in the
following subsection.

The NELL experiment demonstrates how KBV can be an effective alternative to
PSL on the task of validating the output of IE systems. It is worth noting that the best
reported result on the task of validating the output triples in NELL is 90.4 AUC, obtained
by [12] using PSL. This approach requires constraints from the KG schema and a sample
of manually validated triples to train from. In our unsupervised settings (i.e., using KBV
trained on top of the result of RE only), we achieve an improvement of +0.027 without
even requiring constraints from the ontology. Remarkably, in its supervised settings (i.e.,
when KBV is also trained from the available manually validated triples), this solution
performs much better than the PSL approach, achieving an AUC of 96.6%. This result
is particularly impressive because PSL requires constraints from the ontology such as
taxonomies and domain and range as well as supervised data, whereas KBV does not have
any such requirements.

Finally, we conducted an error analysis in order to determine the most problematic rela-
tion types to predict by our model. We selected the top-10 relation types for each of the three
datasets sorted by the sum of the false positives and negatives on their test set. Tables 3-5
show the results of this error analysis on CC-DBP, NYT-FB, and NELL, respectively.

Table 3. False negative/positive relation predictions for CC-DBP.

Relation Type False Negative False Positive
odp:coparticipatesWith 2447 575
odp:hasLocation 1834 109
odp:sameSettingAs 1248 315
dbo:country 354 260
odp:isMemberOf 373 233
dbo:starring 472 122
dbo:birthPlace 334 233
dbo:location 417 144
odp:hasMember 371 174

dbo:artist 353 186
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Table 4. False negative/positive relation predictions for NYT-FB.

Relation Type False Negative False Positive
/location/location/contains 242 201
/people/person/place_lived 168 13
/people/person/nationality 37 126
/people/person/place_of_birth 101 9
/business/person/company 27 69
/people/deceased_person/place_of_death 37 14
/location/administrative_division/country 31 17
/location/country/administrative_divisions 17 6
/location/neighborhood /neighborhood_of 11 10
/location/country/capital 12 1

Table 5. False negative/positiverelation predictions for NELL.

Relation Type False Negative False Positive
actorstarredinmovie 136 3
teamplaysincity 39 97
producesproduct 86 0
teamwontrophy 60 20
acquired 72 2
citycapitalofcountry 56 8
stadiumlocatedincity 51 5
teamhomestadium 34 7
Cat 33 7
teamplayssport 13 11

4.3. Analysis

Further analysis considers the improvement in the connectivity of the triples to the
other triples in the same group. Our hypothesis is that the KBV will improve the confidence
score mostly for statements containing entities that we know many facts about, enabling
implicit reasoning.

To test this hypothesis, we define minimum connectivity for a triple to be the minimum
of the number of triples in which each argument is present. Thus, triples with high
minimum connectivity have arguments with KBC embeddings that were influenced by
many other triples. We group the triples by their minimum connectivity and calculate
the increase in AUC for IE, KBV, KBV relative to IE alone for different buckets of triple
minimum connectivity. Table 6 shows these results. NYT-FB and CC-DBP, and to a lesser
extent NELL, show a consistent picture, with increasing minimum connectivity leading
to the largest increases in performance. For NELL, we excluded the Cat relation, which
connects an entity to its type, since this relation behaves very differently. The NELL Cat
relation increases from 0.925 to 0.997 AUC.

Table 6. KBP’s increased AUC by minimum connectivity group.

Min. Conn. NYT-FB CC-DBP NELL-Cat
1,2) —0.001 —0.002 N/A
2,4) 0.198 0.038 0.054
[4,8) 0.265 0.210 0.049

[8,16) 0.442 0.460 0.036
[16,00) 0.377 0.634 0.084

This supports our hypothesis that KBV can improve RE through background knowl-
edge, since triples with higher minimum connectivity interact with larger amounts of
relevant background knowledge.
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5. Conclusion and Future Work

In this paper, we introduced a novel approach to extend the coverage of knowledge
graphs, consisting of a combination of relation extraction and knowledge base validation
deep nets. This approach can be applied to a wide range of information extraction systems
as it does not make assumptions about the knowledge representation, language, and
domain of the data. Experiments clearly show the benefit of using this combined approach
on the three different benchmarks, providing a significant improvement over the state-of-
the-art solution based on distantly supervised RE only. The experiments also demonstrate
that the proposed system is highly scalable, as we were able to apply it to a web-scale corpus
and hundreds of relations. In addition, we show that the proposed relation validation
methods are more effective than alternatives based on probabilistic soft logics, while they
require neither ontological constraints nor manually supervised data. For the future, we
plan to explore the generative aspect of the KBC networks, such as predicting triples outside
the set drawn from IE, with the goal of extracting implicit information from corpora. In
addition, we plan to explore this methodology to automatically induce KG in the context of
enterprise search engines, with the goal of generating infoboxes and a discovery experience
over domain-specific document collections in any domain.
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