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Abstract: In social media, users are spreading misinformation easily and without fact checking.
In principle, they do not have a malicious intent, but their sharing leads to a socially dangerous
diffusion mechanism. The motivations behind this behavior have been linked to a wide variety of
social and personal outcomes, but these users are not easily identified. The existing solutions show
how the analysis of linguistic signals in social media posts combined with the exploration of network
topologies are effective in this field. These applications have some limitations such as focusing solely
on the fake news shared and not understanding the typology of the user spreading them. In this
paper, we propose a computational approach to extract features from the social media posts of these
users to recognize who is a fake news spreader for a given topic. Thanks to the CoAID dataset, we
start the analysis with 300 K users engaged on an online micro-blogging platform; then, we enriched
the dataset by extending it to a collection of more than 1 M share actions and their associated posts
on the platform. The proposed approach processes a batch of Twitter posts authored by users of the
CoAID dataset and turns them into a high-dimensional matrix of features, which are then exploited
by a deep neural network architecture based on transformers to perform user classification. We prove
the effectiveness of our work by comparing the precision, recall, and f1 score of our model with
different configurations and with a baseline classifier. We obtained an f1 score of 0.8076, obtaining an
improvement from the state-of-the-art by 4%.

Keywords: misinformation; social media; nlp; deep learning; sentence embeddings; natural language
processing; multilingual embeddings; fake news; fact checking; user classification

1. Introduction

Since the World Health Organization (WHO) declared COVID-19 a pandemic on
11 March 2020, social media platforms and traditional media have been flooded by in-
formation about the virus and behaviors to be followed to avoid its spread. At the same
time, uncertainty and ambiguity regarding information about COVID-19 brought people
to respond with non-adaptive coping strategies. In [1], Ha et al. stated that messaging to
the public requires not only status reports and behavioral guidelines but also a component
of positive information that can reduce anxiety. When this strategy does not work, people
tend to react by generating harmful scenarios such as fake news production to protect
themselves by trying to minimize the perceived danger. According to these findings,
the COVID-19 pandemic increased the diffusion of wrong and misleading information
on social media. In 2020, there was an exponential growth of cases in which a person
received forged news and spread it rapidly on social media platforms without verifying
its reliability. As reported by Cinelli et al. [2] and by the World Health Organization,
https://www.who.int/news-room/spotlight/let-s-flatten-the-infodemic-curve (accessed
on 15 March 2021), societies worldwide faced a parallel pandemic of fake information that
required effective countermeasures to reduce the human effort needed to detect misinfor-
mation and to slow fake news diffusion. As reported in the survey by Oshikawa et al. [3],
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language models have been widely employed to tackle this problem. In this context, Is-
lam et al. explored multiple deep learning architectures to detect fake news [4]. In parallel,
in [5], Jiang et al. investigated linguistic signals to find emotional markers in text, and they
discovered a different social media interaction by the user when the user is encouraged to
read fact-checked articles. In a similar scenario, Glenski et al. monitored different types of
reactions to misinformation such as answer, appreciation, elaboration, and question [6].
Understanding the stance of a user about the content they share is a fundamental passage
to effectively classify the user as a supporter or a detractor. All of these works reveal how
fake news diffusion mechanisms are linked to the characteristics of the user sharing them.
Actually, the definitions of fake news spreaders and checkers are a consequence of the fake
news phenomenon on social media. Fake news spreaders are social media users supporting
fake news and sharing misinformation. On the other hand, real news checkers are social
media users sharing real news and supporting them. We describe the checked fake news
as content declared false by fact-checking agencies after a human revision process.

The cited research projects report a growing need for automatic solutions to support
fact checking agencies in their monitoring actions as well as to stimulate awareness of
citizens in verifying content before sharing. In fact, when a user spreads fake information,
they reinforce the trust of the community in the content, exponentially extending its reach,
as explained by Vosoughi et al. [7]. When the information goes viral, the authorities must
spend huge efforts to demonstrate its untruthfulness. The existing contributions to this
research field show the effectiveness of language model adoptions combined with social
media interaction analysis to detect misinformation. Even if these solutions have a big
impact on society, we argue that they do not extensively analyze misinformation from
the point of view of the user sharing it. An analysis of the user’s posts and behavior on
social media platforms fills this gap, expressing their perspective explicitly. The solutions
proposed do not explore the encoding of the user’s timeline into sentence embeddings to
classify their tendency to share misinformation. In addition, they do not compare natural
language processing approaches with respect to the machine learning models by exploiting
social media graphs features.

Thus, we conducted our study by answering the following research questions:

RQ1 Is sentence encoding based on transformers and deep learning effective in classifying
spreaders of fake news in the context of COVID-19 news?

RQ2 Which gold standard can be used for classifying spreaders of fake news in the context
of COVID-19 news?

In this paper, we present the FNSC (Fake News Spreader Classifier), a stacked and
transformer-based neural network that combines the transformer [8] capabilities of com-
puting sentence embeddings with our deep learning model to classify users sharing fake
news about COVID-19. This model transforms batches of tweets into sentence embeddings
and processes them to classify users in a supervised approach. Starting from the dataset
produced by Limeng and Dongwon [9], we collected tweet authors and their timelines to
extensively inspect what they shared about COVID-19 and if they support the news they
shared through a stance detection model. We show that our model has state-of-the-art
results with the linguistic features. We also checked our model results using social media
metrics alone, obtaining lower scores than the linguistic ones. The code we built is available
in a publicly accessible repository: https://github.com/D2KLab/stopfaker (accessed on
7 May 2021). The CoAID dataset is also available in a publicly accessible repository:
https://github.com/cuilimeng/CoAID (accessed on 16 January 2021). We shared the
extended version of CoAID on Figshare, https://doi.org/10.6084/m9.figshare.14392859
(accessed on 7 May 2021).

The remainder of this paper is structured as follows. In Section 2, we illustrate how
various studies approached the problem of fake news detection and the associated user
classification task through machine learning and natural language processing and how
our work differs from them and contributes to the progress in this field. In Section 3,
we describe how we extend the CoAID dataset and we explain the gold standard for the

https://github.com/D2KLab/stopfaker
https://github.com/cuilimeng/CoAID
https://github.com/cuilimeng/CoAID
https://doi.org/10.6084/m9.figshare.14392859


Information 2021, 12, 248 3 of 18

Spreader and Checker classification challenge. In Section 4, we explain our approach and
our deep learning model. In Section 5, we report the experimental results we achieved
in Spreader and Checker classification when applying our architecture on the CoAID
extended dataset. In Section 6, we discuss the results obtained with our approach and
we explain the choices made for baseline comparison and linguistic model. Finally, we
conclude with insights and planned future works in Section 7.

2. Related Work

Since the 2016 U.S. presidential election, the spread of online misinformation on social
media platforms such as Twitter and Facebook has produced many publications in this
field [10–16]. In [10], Alcott et al. described fake news as articles that are verified as false
with certainty and that mislead readers. An example of fake news is an affirmation of a false
birth place. This information is verified as false thanks to the data from public registries.
In [11], Shu et al. described fake news from a data-mining perspective. In this survey,
they explained the existing differences in fake news and related data from traditional
media, having stronger psychological and sociological foundations, and from social media
platforms, mainly driven by malicious accounts and echo chambers. Once collected, these
fake news have been grouped by their textual content and by their social context. In fact,
they are characterized by news checked as false, by the use of a specific linguistic style, by
their support or denial expressed explicitly beside the news content, and finally by their
diffusion behavior through the social community. In [12], Lazer et al. suggested that social
media platforms and their content diffusion mechanism are natural habitats for fake news.
They advised researching a solution to this problem by creating bot (software-controlled
account) and automatic content detection tools to support human supervision to avoid
either government or corporate censorship. In [13], Stella et al. addressed the problem of
bot detection and effect on social media communities in the case of the Catalan referendum
for independence in 2017. They explored the social graph metrics, such as the source and
destination of messages between groups as well as sentiment analysis. They found that
social bot and humans have different behaviors and that the former tends to stimulate
inflammatory reactions in humans. The approaches in the work of Grinberg et al. [14],
Guess et al. [15], and Pennycook et al. [16] were all lead by social media user characteristics
and related social graph metrics in the context of political elections.

In parallel, the viral content diffusion mechanism through social media has been
studied to understand recurrent patterns [7,17–19]. In [17], Shao et al. developed Hoaxy, a
monitoring tool on Twitter to understand differences in the diffusion behavior between
fake news and fact-checked news. They discovered that social media bots were at the core
of the diffusion network and that fact-checked news affects just the peripheral of the same
network. Their work is completely based on social media graph metrics such as in and
out degree, PageRank, and network diffusion steps. In [18], Dhamal found that exploiting
highly influential nodes of a social network community to spread information on a multiple
phase scenario does not increase the diffusion effectiveness, while using lesser influential
nodes in subsequent phases keeps the pace of the diffusion process high. In [19], Goyal et al.
described how social media users are influenced by neighbors in performing actions such
as sharing news. They developed a mathematical model based on social media graphs to
predict the probability that information is spread through certain nodes of the social media
community. In [7], Vosoughi et al. analyzed true and fake news diffusion behavior on
Twitter, and they found that social media bots spread true and fake news at the same rate,
implying that humans have a major contribution to the phase of cascading the distribution
of fake news.

At the same time, other research projects analyzed the impact of network topologies
and influence characteristics of certain nodes of the social media communities in the
information diffusion mechanism [20–23]. In [20], Zhang et al. developed a new metric
called social influence locality to compute the probability that an information is spread by a
node in a social media graph based on the behavior of surrounding nodes. They reinforced
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the concept that not only the typologies of connection between nodes but also how these
nodes behave independently are important. In [21], Guo et al. compared the impact of
major influences in a social network graph between global influencers and local influencers,
finding that the local ones have an higher probabilistic footprint on a node action. In [22],
Mansour et al. highlighted the role played by interpersonal influences between people
sharing the same experience in the context of information spreading online. This result
suggests that the analysis of users’ features contributes to a better precision in prediction of
users’ sharing action on social media platforms. In [23], Borges et al. investigated what
motivates users to share viral communications on the web communities. They observed
that users involved in the sharing action of viral contents prefer not to participate in the
discussion of the content itself. They classified users in three categories based on their
reactions to viral contents. These categories are heavy, social-driven, and search-driven.
Heavy users are impacted by content meaningfulness because they interact and produce
content heavily on the social media platforms. Social-driven users interact with content
mainly by sharing it without adding information, while search-driven does not interact
or share the content. The last two categories are more interested in the impact that the
information has on how the surrounding users perceive them as a person rather than the
meaningfulness of the news content.

Similarly, the linguistic tools and the machine learning methods adopted to extract
information from social media posts and text in general have seen an exponential incre-
ment in computational power and effectiveness. Since 2018, when the BERT model by
Google [24] and the transformer-based architecture combined with the attention mechanism
by Vaswani et al. [8] were published, the NLP (Natural Language Processing) methodology
has been applied to the misinformation field to inspect this phenomenon [5,25]. In [25],
Stieglitz et al. found a positive relationship between the quantity of words containing both
positive and negative sentiments rather than the neutral tweets and the probability the
social media post will be shared. This result means that sentiment is also spread through
social media networks alongside the content of the news itself. In a political context, this
concept is validated by the work of Jiang et al. [5].

As for linguistic signals, the user’s personality also has an impact on the action of
sharing fake news. A number of researchers have employed those features to find the
relation between personality traits and the use of social media [26–28]. In [26], Burbach et al.
developed an agent-based simulation of a social media interaction. They created these
agents modeling answers given by an online questionnaire. The information retrieved
were about age; gender; level of education; dimensions of personal social network; and the
personality scores from the Five Factor Model, the Dark Triad, and Regulatory Emotional
self-efficacy. They used Netlogo, https://ccl.northwestern.edu/netlogo/ (accessed on
16 January 2021), to create the virtual environment and to test the interaction of agents
and the diffusion of fake news inside the network. They found that social media graphs,
the number of interconnections, and the centrality of nodes have a greater impact than
personality scores. Even if this project was tested in a simulated scenario, it suggests that
the solution to the problem of fake news diffusion comes from a multi-facets approach
both from the psychology of the users and from the structure of the social networks.
In [27], Ross et al. described how the user’s personality changes their behavior during an
interaction with Facebook. Similarly, in [28], Heinstrom et al. described how personality
dimensions influence the information diffusion in social media platforms. In this field,
Giachanou et al. developed a user-centered CNN model to deal with misinformation
spreaders and fact checkers [29]. They developed a multi-input CNN with linguistic
features associated with personality traits from the Five Factor Model and the LIWC
(Linguistic Inquiry Word Count) [30] dictionary. Their model is word based, and it uses
the 300-dimensional pretrained GloVe embeddings [31] to transform textual tweets into
a 2D embeddings matrix. These embeddings are the input of a convolutional layer; then,
they are processed to compute personality traits and finally merged with manual extracted
LIWC features. This approach is innovative because it uses both the personality traits of a

https://ccl.northwestern.edu/netlogo/
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user and their linguistic patterns in the context of fake news. It also proposes a solution
that leverages the actions and the motivations of the social media users. On the other hand,
this work presents some major limitations; in fact, the computed personality traits have
not been validated with a ground truth dataset or with the support of a questionnaire so
this initial error is further spread in the successive layers of their neural network. This
research project has also some drawbacks in the labeling procedure because it heavily
relies on the presence of specific words associated with fact checks or false claims such as
hoax, fake, false, fact check, snopes, politifact leadstories, and lead stories, while tweets are
labeled as fake if they are a retweet of original fake news. Even if this labeling procedure
is manually checked over five hundreds tweets, it is not fully error proof. In addition,
stance classification to assess the support or denial of the fake news is not considered at all.
Finally, the final number of users analyzed is less than three thousands, and the final f1 is
below 0.6, meaning that the binary classifier has room to be improved.

According to the research projects listed so far, this field of investigation is split into
two macro areas. The first one detects fake news contents with the adoption of natural
language processing models. The second area monitors the social network topologies to
compute how the misinformation spreads among social media users. According to the RQ1,
our work inspects the intersection of these two fields with the creation of a linguistic model,
focused on COVID-19, to classify fake news spreaders and real news checkers increasing
the recall, precision and f1 of the existing baseline by Giachanou et al. [29]. In fact, Limeng
and Dongwon [9] already labeled fake news and real news in their CoAID dataset. We
collected users sharing misinformation about COVID-19 from the CoAID dataset, and we
downloaded the related Twitter timelines they authored. We transformed this source of
information into user embeddings, encoding their tweets, and we exploited their linguistic
signals for classification. We released our dataset on Figshare, https://doi.org/10.6084/
m9.figshare.14392859 (accessed on 7 May 2021), and the code of our Fake News Spreader
Classifier on Github, https://github.com/D2KLab/stopfaker (accessed on 7 May 2021).
In addition, we built the RF Fake News Spreader Classifier, a random forest model that
exploits a list of features from each Twitter account reaching scores comparable to the ones
obtained with the linguistic model. We also developed another deep learning model that
receives both tweet embedding and Twitter information as inputs, obtaining lower results
in precision, recall, and f1 with respect to the baseline by Giachanou et al. [29]. In the
following section, we describe how we collected the data and how we created the gold
standard for this research field to answer our RQ2.

3. Dataset and Gold Standard Creation

The CoAID dataset [9] contains two main resources. The first one is a table storing
information about fake news and real news about COVID-19 such as the news URL, the
link to the fact checking agency that checked it, the title, the content, the abstract, the
publish date, and keywords, as listed in Table 1.

Table 1. Feature descriptions of the news table and user engagement in the CoAID dataset.

Type Features

News Information ID, Fact-checking URL, Information URLs, Title, Article title,
Content, Abstract, Publish date, Keywords

User Engagement: tweets ID, Tweet ID

The second one is a list of tweet IDs containing fake and real news and a masked
reference ID of the related author. Tweet IDs are divided into four categories: fake and real
claims, and fake and real news. The former are just opinions with no URLs inside, and the
latter, instead, have an explicit URL redirecting to news. We decided to work with the last
ones because we need both the content of the article and the content of the tweet to perform
the stance classification. The CoAID dataset includes 4251 fact-checked news and 296,000

https://doi.org/10.6084/m9.figshare.14392859
https://doi.org/10.6084/m9.figshare.14392859
https://github.com/D2KLab/stopfaker
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related user engagements about COVID-19. The checked fake news are contents that have
already been demonstrated as false by fact-checking agencies. In this project, six of these
agencies are considered: LeadStories https://leadstories.com/hoax-alert/ (accessed on
13 November 2020), PolitiFact https://www.politifact.com/coronavirus/ (accessed on
13 November 2020), FactCheck.org https://www.factcheck.org/fake-news/ (accessed on
13 November 2020), CheckYourFact https://checkyourfact.com/ (accessed on 13 Novem-
ber 2020), AFP Fact Check https://factcheck.afp.com/ (accessed on 13 November 2020),
and Health Feedback https://healthfeedback.org/ (accessed on 13 November 2020). The
publishing dates of the collected information range from 1 December 2019 to 1 November
2020. We used tweets containing fake news or real news URLs, and from them, we ex-
tracted the social media users who authored them. The CoAID dataset lists the real tweet
ID, but for privacy constraints, the user ID of each author is masked, so we need to query
the Twitter API to retrieve them. We built an extended version of CoAID by retrieving
each user’s entire timeline from 1 December 2019. Our extended version of the CoAID
dataset is publicly available on Figshare https://doi.org/10.6084/m9.figshare.14392859
(accessed on 13 November 2020), and it is one of the two main contributions of this
research project along with the linguistic model to classify fake news spreaders. The
retrieval pipeline is described in Figure 1. We collected 11,465 users with an average
timeline of 2012 tweets per user. Our text preprocessing phase and data cleaning in-
cludes an initial phase of URL extensions because the downloaded tweets contain the
Twitter shortened version of the original posted links. As an example, the shortened
URL https://t.co/3g8dLgoDOf (accessed on 13 November 2020) has to be extended
to https://www.dailymail.co.uk/health/article-9225235/Rare-COVID-arm-effect-leaves-
people-got-Modernas-shot-itchy-red-splotch.html (accessed on 13 November 2020). The
now extended link was searched inside the CoAID dataset, and if there was a match,
we performed the stance detection using the text contained in the original tweet and the
abstract of the news from CoAID as input. The stance classification model is an adapted
version of the one by Aker et al. [32] in the context of our use case scenario. It is a word-
based Random Forest that features Bag of Words, Part of Speech Tagging, Sentiment
Analysis, and Named Entity Recognition to classify the source tweet with respect to an-
other one. The entire pipeline was further tuned to work with pretrained multilingual
BERT embeddings by the Gate Cloud community, https://cloud.gate.ac.uk/ (accessed
on 13 November 2020), and the source code is available in a publicly accessible repos-
itory, https://github.com/GateNLP/StanceClassifier (accessed on 13 November 2020).
The stance classification output defines whehter the tweet supports, denies, queries, or
comments on the linked news. We discard the query and comment cases while counting
support and deny ones. If a user supports more fake news than real news, they are labeled
as a spreader, and for vice versa, they are labeled as a checker. In the case of an equal
number for real and fake news, the user is discarded. The pipeline describing this process
is presented in Figure 2. The stance classification algorithm avoids labeling a user as a
spreader while they try to refute the fake news spotted. After the data retrieval, data
cleaning, and user labeling, we obtained an extended version of the original CoAID dataset
to be used as a gold standard. The statistics of this dataset are listed in Table 2. There are
5333 spreaders and 6132 checkers, with an average of 19 tweets supporting fake news per
spreader and 55 tweets supporting real news per checker.

real / fake news 
+ tweet id about COVID-19

CoAID

status = api.get_status(tweet id)
user = status.user.id

list of users who shared 
fake/real COVID-19

news
tweepy.Cursor(api.user_timeline, user_id=user,

since_id=since_id, tweet_mode="extended").items()
Collection  of users' timeline

~ 2k tweets per user

Retrieve users writing these tweets Retrieve user timeline

Figure 1. Spreader and checker timeline retrieval extending the CoAID dataset.

https://leadstories.com/hoax-alert/
https://www.politifact.com/coronavirus/
https://www.factcheck.org/fake-news/
https://checkyourfact.com/
https://factcheck.afp.com/
https://healthfeedback.org/
https://doi.org/10.6084/m9.figshare.14392859
https://t.co/3g8dLgoDOf
https://www.dailymail.co.uk/health/article-9225235/Rare-COVID-arm-effect-leaves-people-got-Modernas-shot-itchy-red-splotch.html
https://www.dailymail.co.uk/health/article-9225235/Rare-COVID-arm-effect-leaves-people-got-Modernas-shot-itchy-red-splotch.html
https://cloud.gate.ac.uk/
https://github.com/GateNLP/StanceClassifier
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CoAID
users

Users'
timeline

CoAID
extended

Filter out tweets not containing 
fake/real news URLs as listed in CoAID dataset

COVID-19  tweets with 
fake/real news URLs 

Stance detection
per user per tweet

user's tweets support 
COVID-19 fake news

user's tweets support
COVID-19 real news

User labeled  as Spreader

User labeled as Checker

Figure 2. Pipeline to label each user as a spreader or a checker.

Table 2. The CoAID extended dataset statistics.

Total Number of Users 11,465

Spreaders 5333
Checkers 6132

Average number of tweets per user 2012
Total number of tweets 23,068,006

Average number of tweets supporting Fake News per Spreader 19
Average number of tweets supporting Real News per Checker 55

We created the gold standard dataset for the classification of users sharing misinfor-
mation about COVID-19. The extended version of the CoAID dataset presents a list of
mapped user IDs for privacy concerns, the list of real tweet IDs as retrieved from Twitter,
and the label classifying the tweet author as a spreader or checker. Five randomly selected
rows from the CoAID extended dataset are listed in Table 3. This gold standard answers
the RQ2 listed in Section 1.

Table 3. The CoAID extended gold standard dataset used for fake news spreader classification. The
user mapped ID is a transformation of the original Twitter user ID to preserve privacy. Tweet ID
represents the numerical identifier of the tweet as given by the Twitter platform. The third column
represents whether a user is a spreader or a real news checker.

User_MAPPED_id Tweet_id Label

2442 1340854864562311168 1
8885 1346408723330314241 0
6260 1367096980762226688 1

10728 1285659580677193734 0
1956 1352412905199681538 1

4. Approach and Contribution

We created a linguistic model based on a sentence level attention mechanism enhanced
by a neural network architecture that differentiates real news checkers and fake news
spreaders. The extended version of the CoAID dataset provides the gold standard on
which we test our model in three different configurations, and we compared it with the
work by Giachanou et al. [29]. We developd a spreader and checker classifier with a
text-based linguistic model. In the following, we outline how we process the input batch
of tweets and how we develop the stacked neural network. We describe a stacked neural
network as a combination of publicly available neural network architectures in which
the features are extracted at an intermediate layer of the network and then concatenated
together to form a larger feature set. This approach is involved both in the sole text model
and in the ensemble with social media metrics used as a comparison model.

4.1. Tweet Embeddings with Transformers

We structure the CoAID extended dataset as a collection of tweets paired with their
authors. This data format manifests our attention towards a heavily user centered model.
This collection of raw textual tweets, batched per user, represents the written production
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of an author. We represent the features of a single tweet transforming its text into a
sentence embedding as illustrated in Figure 3. We perform this operation through the
multi-headed attention layers [33] in the BERT encoder [24] in Figure 4. Equation (1)
describes how the attention mechanism works. Given a sequence of n d-dimensional
vectors x = x1, . . . , xn ∈ Rd and a query vector q ∈ Rd, the attention layer parametrized
by Wk, Wq, Wv, Wo ∈ Rdxd computes the weighted sum in Equation (1). Wk represents the
matrix of key weight vectors, while Wq is the matrix of query weight, then Wv is the value
weight matrix, and finally the Wo is the output matrix of weight by which the concatenated
attention head are multiplied. The training phase of these four matrices is described in
detail in [33]. In self-attention, every xi is used as the query q to compute a new sequence
of representations. Each attention head, A in the equation, is composed of the four W
matrices (Wk, Wq, Wv, and Wo) that are learnt during training. Wo and Wv are elements
of the weighted average of word vectors, and Wq and Wk are involved in computing the
αi weights. Equation (2) computes the multi-headed attention, M in the equation, where
Nh is an independently parameterized attention layer applied in parallel to obtain the
final result.

AWk ,Wq ,Wv ,Wo (x, q) = Wo

n

∑
i=1

αiWvxi

αi = so f tmax(
qTWT

q Wkxi√
d

)

(1)

M(x, q) =
Nh

∑
h=1

AWk, Wq, Wv, Wo(x, q) (2)

uj = max
1≤i≤768

cij (3)

The resulting batch of embeddings is an intermediate synthesis of a user’s textual
production. The final combination step is described in Section 4.2. Thanks to the tweet
transformation from text to tweet embedding, we obtained a sentence level representation,
while the max pooling 1d, described in Equation (3), creates a user embedding u to be
processed for the user classification task. In Equation (3), the initial matrix of tweet
embeddings is C = (cij)1≤i≤m,1≤j≤768, where m is the total number of tweets collected for
the user in analysis and 768 is the dimensions of each tweet embedding. The original
text preserves its complete meaning as given by the author because no data cleaning
is performed on the original text. As shown in Figure 3, the tweet is split into words
and further into smaller tokens. The BERT-tokenizer is able to handle vocabulary words
splitting them into smaller sub-strings. At the end of the tokenization phase, each tweet
appears as a string type list of tokens. It is important to add a special CLS token at the
beginning of the tweet. This is a custom token used for the classification task. The list
of tokens is then processed by the successive twelve encoding layers of the architecture
to transform each input token into output word embeddings. A representative encoding
layer is displayed in Figure 4. All of the word embeddings but the CLS are discarded. We
used the CLS embedding as representative of the tweet as a whole because it has been
constructed thanks to the attention mechanism and tuned by the surrounding context. In
the case of a short tweet, the surrounding context is the entire sentence. A single token
has 768 dimensions, following the optimal configuration of the BERT base model [24].
The number 768 comes from the empirical experiment reported in [24], where the authors
suggested it as the best number of features comparing the obtained results in different
tasks: General Language Understanding Evaluation, Stanford Question Answering Dataset,
Named Entity Recognition, and Multi-Genre Natural Language Inference. We adapted the
original version of BERT architecture with the multilingual pretrained embeddings to our
specific context through the transformers library by Hugging Face: https://huggingface.
co/transformers/model_doc/bert.html (accessed on 22 November 2020). The sentence-
level attention mechanism is suited to our scenario, where each word is relevant for social

https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
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media post understanding. In particular, we have medium and short sentences; thus, the
weight of each word is greater in this context. Once each tweet is transformed into an
embedding, the user is represented by the list of all their tweet embeddings from their
timelines. Each embedding contributes to the dense feature set given as input to the
following layers of FNSC to perform the user classification.

"is very well rested Off to starbucks to
catchup with a friend"

"[CLS]" + "is very well rested Off to starbucks to
catchup with a friend" + "[SEP]

Add special
tokens namely
CLS and SEP

['[CLS]', 'is', 'very', 'well', 'rested', 'off', 'to', 'starbucks', 'to',
'catch', '##up', 'with', 'a', 'friend', '[SEP]']

Split sentence
into tokens

WordPiece
Vocabulary

Search for
each token in
the vocabulary

[101][2003][2200][2092][8614][2125][2000][29500][2000]
[4608][6279][2007][1037][2767][102] map 

token to id

[1][1][1][1][1][1][1][1][1][1]
[1][1][1][1][1]

segments_ids
tensor

Transform
into tensor

token_ids
tensor

Transform
into tensor Segments ids

pre-trained word
embeddings from

BERT model

CLS or
 tweet embedding

"is"
embedding

"very"
embedding ... "friend"

embedding
SEP

embedding

Output

Discarded Output

Word
Embeddings

Positional
Embeddings

self-attention

feed-forward

x 12 
encoding 
   layers  

Figure 3. Tokenization and encoding with the transformer. Each tweet in the CoAID extended dataset
is processed as shown in the figure. We added a CLS token (classification task special token) at the
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beginning of the tweet and the SEP token (separation between sentences) at the end of the tweet. We
then split the tweet in tokens. The second part of the splitted words is preceded by ## to tag it as a non
standalone word. Tokens are mapped into the ID containing the WordPiece vocabulary and the array
so it is transformed into a tensor. We also need a tensor with the same length of token_ids tensor,
called segments_ids tensor made of 1s. The segment_ids is useful for dividing tokens belonging to
the first sentence (0s) to the second one (1s) when we perform a task that needs two sentences. In
our case, we need just a sentence, so we load segments_ids with 1s. We load pretrained embeddings
from the BERT model to output word embeddings from our tensors, and we add to them initially
random positional embeddings. At the bottom of the figure, there are twelve encoding layers with
self attention and a feed forward network inside that encode the input into the final tweet embedding.

Figure 4. This is a representation of one encoding layer mentioned in Figure 3. There are twelve of
these encoding layers in the final architecture. The word embedding of each token passes through
these encoding layers, and at the end, we obtain the transformed word embeddings.

4.2. Fake News Spreader Classifier

The Fake News Spreader Classifier, as illustrated in Figure 5, outlines our deep
learning model. It receives a batch of tweets, it transforms them into 768-dimensional
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arrays, and it stores them in a bidimensional tensor (number of tweets per author, 768).
At this point, the intermediate FNSC layer performs a 1d max pooling extraction for each
of the 768 dimensions the highest float value. We decided to extract the highest value
after empirical tests to make a dense representation of a user’s timeline without losing the
most specific features of each user. After this stage, the user level embedding is processed
by a combination of a Linear Layer paired with Leaky ReLu activation function plus
the output layer that is a sigmoid function. The Linear Layer uses the linear function
hθ(x) = ∑j θjxj = θ>x to represent h(x), where hθ(x) acts as the linear function family
parameterized by θ. The Leaky ReLu function is described in Equation (4) as f(x), and it
allows for a small, positive gradient when the unit is not active. This choice improves
the performance and speeds up the learning phase. It is also used to avoid the vanishing
gradient problem. We have a vanishing gradient in the feed-forward network when we
back-propagate the error signal, and it decreases/increases exponentially with respect to
the distance from the final layer. Finally, the single neuron with the sigmoid activation
function returns a probability that, with a threshold at 0.5, is used to decide the label as 0 or
1 for the final binary classification. We use BCE-loss (Binary Cross Entropy Loss) as a loss
function of the architecture. The Equations (5) and (6) presents the Binary Cross-Entropy
Loss as used in FNSC to decide how far the prediction is from the expected output, and
then, it tunes the neural networks weights with the error back propagation. In particular, y
is the label (1 for spreader and 0 for checker) and p(y) is the predicted probability if the
sample is a spreader for all N samples in the batch. The formula adds log(p(y)) to the
loss, the probability of being a spreader. Conversely, it adds log(1− p(y)) to the checker
samples. Equation (6) is the contracted form of Equation (5).

f (x) =
{

x if x > 0
0.01x if x ≥ 0

(4)

Hp(q) = −
1

Npos + Nneg
[
Npos

∑
i=1

log(p(yi)) +
Nneg

∑
i=1

log(1− p(yi))] (5)

Hp(q) = −
1
N

yi × log(p(yi)) + (1− yi)× log(1− p(yi)) (6)

The architecture, presented in Figure 5, is adaptive because it is independent from the
number of tweets that a user produces in their timeline. In any case, a user with more than
a thousand tweets is better represented than one with few Tweets due to the unbalanced
weight of each Tweet in the intermediate user embedding representation.

4.3. Model Optimization

Hyperparameters must be defined both for the encoding phase and the classification
phase architectures. In Table 4, regarding the architecture of Figure 3, we set these parameters:

• Pretrained embeddings, the starting point of the original BERT weights to further
fine-tune the model based on our data.

• Tokenizer max length, the maximum number of tokens accepted by the BERT-tokenizer.
• Return Tensor, the return tensor format after encoding.
• Hidden Size, the number of neurons in each hidden layer.
• Hidden Layers, the number of layers represented with the self-attention plus

feed-forward.
• Attention Heads, this number tunes the self-attention mechanisms described in the

work of Vaswani et al. [33].
• Intermediate Size, it represents the number of neurons in the inner neural network of

the encoder feed-forward side.
• Hidden Activation Function, it is the nonlinear activation function in the encoder.

GeLu is the Gaussian Error Linear Unit.
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• Dropout Probability, this number represents the probability of training a given node
in a layer, where 0 is no training and 1 is always trained.

• Maximum Position Embedding, it is the maximum sequence length accepted by
the model.

Spreader
or Checker

User 
Timeline

 tweet_1  tweet_2  tweet_3 tweet_n

Multilingual 
Transformer-based

Encoder

tweet_
embedding_1 

(n,768)

Max Pooling

user_embedding

Linear Layer 
+

Leaky ReLu

Sigmoid

Binary Cross
Entropy Loss

Output
Label

CLS

tweet_
embedding_2 

tweet_
embedding_3

tweet_
embedding_n

(768) (768) (768) (768)

Figure 5. FNSC (Fake News Spreader Classifier) architecture description.
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Table 4. Parameters chosen to configure the encoder architecture of Figure 4.

Parameter Value Parameter Value

pre trained embeddings bert-base-multilingual-cased tokenizer max length 128
return tensor pt hidden size 768

num hidden layers 12 num attention heads 12
intermediate size 3078 (768 × 4) hidden act gelu

hidden dropout prob 0.1 max position embedding 512

On the other side, as shown in Table 5, we also have to optimize our neural network
architecture with the following parameters:

• Optimizer, it changes the weights of the neurons based on loss to obtain the most
accurate result possible.

• Learning Rate, it is the correction factor applied to decrease the loss. Too high values
of learning rate lose some details in weights setting, while too low values may lead
the model to a very slow convergence.

• Loss Function, it computes the distance between predicted values and actual values.
• Batch Size, it is the number of training examples utilized in one iteration.

Table 5. Parameters to configure the neural network of Figure 5: optimizer, learning rate, and loss
function batch size.

Parameter Value

optimizer Adam, Adagrad, SGD
learning rate 2× 10−5, 1× 10−2, 1× 10−7

loss function Binary Cross Entropy Loss
batch size 8, 16, 32

The parameters chosen in our neural network architecture are listed in Table 5. The
choices we made are validated empirically.

5. Experimental Results

In this section, we analyze the above model results to assess that we improved the
actual state-of-the-art in fake news spreader classification. We compare our model with
a previous one by Giachanou et al. [29] as well as different machine learning and deep
learning approaches.

The experiment was performed with the CoAID extended dataset (11,465 users and
23 M tweets). In Table 6, we present the results of our model compared with the other
configurations and the previous state-of-the-art results, adopting as validation metrics
recall, precision, and f1 score. We used a ten fold cross validation, and we averaged the
results obtained for each split. We then performed a ten-fold cross validation to verify the
model is effective in each split of the CoAID extended dataset.

Validation metrics, in the binary case, compute how many candidates are well classi-
fied with respect to the expected output as described in the following. tp (true positive)
represents the number of spreaders correctly classified. tn (true negative) represents the
number of checkers correctly classified. fp (false positive) represents the number of checkers
classified as spreaders. fn (false negative) represents the number of spreaders classified
as checkers.

p =
tp

tp + f p
(7)

r =
tp

tp + f n
(8)
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f1 = 2× p× r
p + r

(9)

As shown by the Equations (7)–(9), where p is the precision metric and r is the recall
metric, these metrics give insights about spreader classification effectiveness. This project’s
goal is primarily to find fake news spreaders because they are the one socially dangerous
rather than fact checkers that behave normally. In the binary case, precision and recall are
more suitable than accuracy to address this issue. With these premises, we explain the
results of each tested model.

Table 6. Precision, recall and f1 scores computed as a comparison between our proposed Fake News
Spreader Classifier model; our RF Fake News Spreader Classifier, that is a Random Forest model
exploiting Twitter user’s information; the baseline by the work of Giachanou et al.; and a mixed
model receiving Twitter user account information and tweet embeddings as input in a stacked neural
network. As suggested by the results, we consider the Fake News Spreader Classifier as the most
effective in user classification thanks to the overall higher scores.

Model Precision Recall f1

Fake News Spreader Classifier 0.8042 0.8110 0.8076
RF Fake News Spreader Classifier 0.7977 0.8104 0.804

Giachanou et al. [29] 0.7789 0.7536 0.7660
Mixed Fake News Spreader Classifier 0.7364 0.7430 0.7234

The first line of Table 6 reports the scores obtained with our model as described in
Section 4 that uses the sole textual information collected in the user timelines as input.

In parallel, we have in row two the results obtained with the RF Fake News Spreader
Classifier, a random forest with 100 estimators, and Gini split criterion with no max depth.
Random Forest is an ensemble method that operates by constructing a multitude of decision
trees and by outputting the class that is the mode of the classes or mean prediction of the
individual trees. In our case, there are two classes: fake news spreader or real news checker.
We use 11 as the max_feature parameter, derived from the number of features listed and
described in Table 7. We collected the Twitter account information of each user found in
the CoAID extended dataset. We transformed the string type features (location and created
at) with one hot encoding, while the boolean features (protected, verified, default profile,
default profile image) were mapped to 1 or 0. All of the features were then min–max scaled
and translated individually such that they are in the given range between zero and one. It
is interesting to notice that its metrics are closer to the best performing ones so that it is an
index to express the great amount of information contained in social media graph features
related to each Twitter user.

The third line in Table 6 shows the final results of the model by Giachanou et al. [29]
running on our CoAID extended dataset. We considered their model as the previous state-
of-the-art in this field because their work explicitly searches for spreaders and checkers
considering user-related features and not just the news. They collect personality traits and
psychological signals from the LIWC dictionary of each user.

In the last line, Mixed Fake News Spreader Classifier reports the results we have when
we concatenate tweet embeddings and the tabular data containing Twitter user information
in the penultimate layer of the FNSC stacked neural network. In the last configuration, the
additional information from the users account does not improve the final score. The results
presented in Table 6 and the related comments answer the RQ1 listed in Section 1. In fact,
we demonstrate that tweet encoding based on transformers and deep learning is effective
in fake news spreader classification because they obtain results above 80% in precision,
recall, and f1. It is also better with respect to solutions adopting standard machine learning
as the RF Fake News Spreader Classifier described previously.
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Table 7. Twitter account user information used for classification with the RF Fake News Spreader Classifier described in
Section 4.

Attribute Data Type Twitter Attribute Description

location string The user-defined location for this account’s profile

protected boolean When true, indicates that this user has chosen to protect their tweets

verified boolean When true, indicates that the user has a verified account

followers count integer The number of followers this account currently has

friends count integer The number of users this account is following

listed count integer The number of public lists that this user is a member of

favourites count integer The number of tweets this user has liked in the account’s lifetime

statuses count integer The number of tweets (including retweets) issued by the user

created at string The UTC datetime that the user account was created on Twitter

default profile boolean
When true, indicates that the user has not altered

the theme or background of their user profile

default profile image boolean
When true, indicates that the user has not uploaded

their own profile image and a default image is used instead

6. Discussion

In Section 5 we used precision, recall, and f1 reported in Table 6 to show that our
results improve the current state-of-the-art. Precision registers an increment of 3%, recall
registers an increment of 6%, while f1 registers an increment of 4%. We also highlighted the
importance of latent information in written text as well as social media graph features. Even
if these two sources of information are meaningful for fake news spreader classification
tasks, they are not as effective when combined in a single deep learning architecture. This
finding suggests that further exploration in this direction should be made. These results
and their related considerations answer our RQ1; in fact, we proved that sentence encoding
based on transformers and deep learning are the most effective in classifying spreaders
of fake news in the context of COVID-19 news. Another important specification has to be
made with respect to data retrieval. We were able to collect a greater amount of tweets
thanks to the Twitter Academy License, https://developer.twitter.com/en/solutions/
academic-research (accessed on 1 February 2021), which was recently released by Twitter
for approved research projects. This licence allows us to collect data usually restricted to a
standard developer licence account. For privacy concerns, our CoAID extended dataset is
released with a mapped user ID so that the anonymity of the authors is preserved. This
condition is even more necessary due to the sensible topic and the restricted access we
obtained. Another consideration is about the topic of the collected tweets. The original
collection of fake and real news as presented in the CoAID dataset are all related to
COVID-19 topics, so a broader application with more general topics should be performed
to extend the validity of this research project. The extension of the CoAID dataset with
the collection of Twitter timelines for more than 12k users, the phase of stance detection
to check the support of a user about the fake news they share, and the labelling of the
users as fake news spreaders or checkers are the answers to RQ2. The extended CoAID
dataset we released is a gold standard for classifying spreaders of fake news in the context
of COVID-19 information. Finally, it is important to notice that we do not want to enact
a censorship process, instead, acting with the user-centered approach, the consequent
step is to activate awareness-raising campaigns towards those users. In parallel with this
specification, we affirm that, if the fact checking process requires heavy human supervision,
the detection of sensitive users as the target of guidelines suggestions is much easier to
scale and automatize.

https://developer.twitter.com/en/solutions/academic-research
https://developer.twitter.com/en/solutions/academic-research
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7. Conclusions and Future Work

We analyzed the socially dangerous issue of misinformation spread from the users
perspective. We developed a linguistic model to classify users as fake news spreaders
or real news checkers. In this project, we described a language model that processes
social media posts written by users; it transforms them into high-dimensional arrays
through a transformer-based encoder and max pools them to obtain a user-related high
level embedding. This embedding was further used to perform the classification task by
the last layer of our FNSC (Fake News Spreader Classifier) stacked neural network. We
outperformed the actual state-of-the-art of Giachanou et al. [29] by 4% in f1 score. We
answered RQ1, demonstrating that, even if the social media graph features have a high
impact in the fake news spreader classification task, they are less effective than the features
extracted from the sole text. In fact, tweet encoding based on transformers and deep
learning are effective in classifying spreaders of fake news in the context of COVID-19 news
when they are processed in batches as user embeddings. The outcomes of this research
project create a new classification parameter in the development of countermeasures against
misinformation. The second main contribution of our work is the creation and release
of a gold standard for classifying spreaders of fake news in the context of COVID-19
news. The lack of a gold standard in the field of a user-centered classification of fake
news spreaders led us to answer RQ2 with the development of the extended version of
the CoAID dataset. In future work, we want to address the problem of bot detection
in the field of misinformation spread to understand if their semantics are different from
real users that spread fake news. We also want to develop a real-time analysis tool to
monitor users spreading misinformation on social media by aggregating features from
social media metrics, personality metrics, and sentiment in addition to the one related to
the text embeddings. We plan to expand the dataset to include other topics in addition to
COVID-19 as collected in the original CoAID dataset, and by doing this, we will further
expand our CoAID extended dataset. We aim to build automated tools and conversational
agents to support human effort in the misinformation contrast and to suggest positive
behavior to users who spread fake news in the past or who have characteristics similar to
fake news spreaders.
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