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Abstract: Colorectal cancer is one of the main causes of cancer incident cases and cancer deaths
worldwide. Undetected colon polyps, be them benign or malignant, lead to late diagnosis of colorectal
cancer. Computer aided devices have helped to decrease the polyp miss rate. The application of
deep learning algorithms and techniques has escalated during this last decade. Many scientific
studies are published to detect, localize, and classify colon polyps. We present here a brief review
of the latest published studies. We compare the accuracy of these studies with our results obtained
from training and testing three independent datasets using a convolutional neural network and
autoencoder model. A train, validate and test split was performed for each dataset, 75%, 15%, and
15%, respectively. An accuracy of 0.937 was achieved for CVC-ColonDB, 0.951 for CVC-ClinicDB, and
0.967 for ETIS-LaribPolypDB. Our results suggest slight improvements compared to the algorithms
used to date.

Keywords: colon cancer; deep learning; detection; classification; localization; CNN; autoencoders

1. Introduction

Medical imaging has gained immense importance in healthcare throughout history. It
has been used in diagnosing diseases, planning treatments, and assessing results. Further-
more, medical imaging is currently used in preventing illness, usually through screening
programs. Aggregating it with demographic and other healthcare data can bring novel
insights and help scientists discover breakthrough treatments [1].

A lot of research has been done in automating the delivery of medical imaging results.
These results still rely on professional radiologists being present when finalizing them.
However, automation can help radiologists be more efficient in their job and deliver
results quicker.

A review of deep learning (DL) applications in medical imaging [2] shows that AI
algorithms will have a significant impact in the healthcare field. The application areas
span from digital pathology and microscopy to brain, eye, chest, breast, cardiac, abdomen,
etc. These algorithms are for all types of imaging machines used nowadays: computed to-
mography (CT), ultrasound, MRI, X-ray, microscope, cervigram, photographs, endoscopy/
colonoscopy, tomosynthesis (TS), mammography, etc. Most of these applications deal with
classification, segmentation, or detection problems and convolutional neural networks
(CNNs), auto-encoders (AE) or stacked auto-encoders (SAE), recurrent neural networks
(RNNs), deep belief networks, and restricted Boltzmann machines (RBM) are the most
used architectures for these settings. The architecture of some of the most used algorithms
is depicted in Figure 1.
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Figure 1. Graph representation of some of the commonly used architectures in medical imaging.
(a) AE, (b) RBM, (c) RNN, (d) CNN, (e) MS-CNN.

In this paper, we focus on colorectal cancer (CRC) and how deep learning algorithms
can help detect colon polyps. The World Health Organization, through the International
Agency for Research on Cancer, has recognized colorectal cancer as responsible for around
881 thousand deaths, or 9.2% of the total cancer deaths [3]. The main concern is that the
incidence rates have been rising, more than 1.85 million cases [3]. This increase could be
prevented by conducting effective screening test [4]. However, a 2020 European study on
colorectal cancer shows that total cancer mortality rates are predicted to decline, and these
numbers for colorectal cancer are 4.2% in men and 8.3% in women [5]. These declines are
expected in all age groups [6]. Another study done in the USA shows declining numbers in
the USA as well [7]. The implementation of screening programs is an essential factor in the
declining numbers various countries have seen. Colonoscopy is the preferred technique
among the used screening tests to diagnose CRC. It is also used as a prevention procedure
for CRC. CRC starts as growth in the lining of the colon or rectum. These growths are
called polyps. Polyps are benign neoplasms; some types can transform into CRC over
the years. Within the latter are adenomatous polyps and serrated polyps. Not all polyps
develop into CRC. The adenomatous colon polyps (adenomas) and polyps larger than 1 cm
have a higher risk of malignancy. Sometimes polyps are flat or hide between the folds of
the colon, which makes their detection difficult.

One of the procedures to screen for colon polyps is the colonoscopy, which examines
the large bowel and the distal part of the small bowel with a camera. The advantages of this
procedure include visualization of the polyps and their removal before they grow bigger
and, for biopsy purposes, if the medical personnel suspect a cancerous polyp. According
to [7], colonoscopy is very well established as a procedure to prevent the development of
CRC playing a significant role in rapid declines in incidence cases during the 2000s but not
so much during the recent years. Another study on the impact of CRC screening mortality
found that using colonoscopy indicates a more than 50% decline for CRC mortality [6].
Although colonoscopy has shown meaningful improvements, the colon polyp miss rate
continues the same. A 2017 retrospective study done with 659 patients indicates that among
these patients, the colon polyp miss rate was 17% (372 out of 2158 polyps), and 39% of
patients (255 out of 659 patients) had at least one missed polyp [8]. As mentioned before,
an undetected polyp, be it benign or malignant, may lead to a late CRC diagnosis, which is
associated with a less than 10% survival rate for metastatic CRC. Many elements contribute
to missed polyps during a colonoscopy. Two of them are the quality of bowel preparation
and the experience of the colonoscopists [9]. While the first problem cannot be fixed by
technology, the second one can, and computer-aided tools can assist colonoscopists in
detecting polyps and reducing polyp miss rates.



Information 2021, 12, 245 3 of 13

The aims of this study are to give an overview of the recent deep learning algorithms
used in colorectal images and videos and introduce a new model for colon polyp de-
tection in images. The rest of the paper is organized as follows. Section 2 presents the
recent techniques explicitly used in colon polyp detection, classification and localization
in colonoscopy images and videos. Section 3 describes the databases we used to train,
validate, and test our proposed model. Section 4 presents the results. We close the paper
with Section 5, discussions and conclusions, where we also present the limitations and
future work.

The key contributions of this paper are: (i) presenting the state-of-the-art in deep
learning techniques to detect, classify, and localize colon polyps; and (ii) introducing the
convolutional neural network with autoencoders (CNN-AE) algorithm for detection of
polyps with no previous image pre-processing.

2. Background

Researchers have been applying deep learning techniques and algorithms in various
healthcare applications. Considerable progress is seen in detecting colon polyps [10,11].
Having a public database of colon polyp images played a big role. Examples of such
contributions include using a pre-trained deep convolutional neural network to detect
colon polyps [10], dividing images into small patches or in sub-images to increase the
database′s size, and then classifying different regions of the same image [12]. Other
works include exploring deep learning to automatically classify polyps using various
configurations, such as training the CNN model from scratch or modifying different CNN
architectures pre-trained in other databases and testing them in an 8-HD-endoscopic image
database [13]. Authors in [14] take advantage of transfer learning, a technique where
a model is trained on a task and later re-purposed and used for another task similar
to the previous one. [14] uses CNN as a feature descriptor and to generate features for
the classification of colon polyps. Another CNN was developed to detect hyperplastic
and adenomatous polyps and classify them by modifying different low-level CNN layer
features learned from non-medical datasets [15].

The authors in [16] use a deep CNN model as a transfer learning scheme. Besides
image augmentation strategies for training deep networks, they propose two post-learning
methods, automatic false-positive learning and offline learning. Shin & Balasingham
(2017) [17] compare a handcraft feature method with a CNN method to classify colorectal
images. For the handcraft feature approach, they use the shape and color features together
with a support vector machine (SVM) for classification. On the other hand, the CNN
approach uses three convolutional layers with pooling to do the same. They compare the
strategies by testing them in three public polyp databases. Results show the CNN-based
deep learning framework leads better classification performance by achieving an accuracy,
sensitivity, specificity, and precision of over 90%. Authors in Korbar et al. [18] build an
automatic image analysis method that classifies different types of colorectal polyps on
whole-slide images with an accuracy of about 93%. Mahmood & Durr (2018) [19] use a deep
CNN together with a conditional random field (CRF) called (CNN-CRF), a framework for
estimating the depth of a monocular endoscopy. Estimated depth is used to reconstruct the
topography of the surface of the colon from a single image. They train the framework on
over 200,000 synthetic images of an anatomically realistic colon, which they generated by
developing an endoscope camera model. The validation is done using endoscopy images
from a porcine colon, transferred to a synthetic-like domain via adversarial training. The
relative error of the CNN-CRF approach is 0.152 for synthetic endoscopy images and 0.242
for real endoscopy images. They show that the depth map can be used to reconstruct the
mucosa topography.

Three 2020 studies focus more on polyp classification by approaching the problem
in different ways. Carneiro et al. [20] studies the roles of confidence and classification
uncertainty in deep learning models and proposes and tests a new Bayesian deep learning
method to improve classification accuracy and model interpretability on a privately owned
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polyp image dataset. Gao et al. [21] use DL methods to establish colorectal lesion detection,
positioning, and classification based on white light endoscopic images. The CNN model is
used to detect whether the image contains lesions (CRC, colorectal adenoma, and other
types of polyps), and the instance segmentation model is used to locate and classify the
lesions on the images. They compare some of the most used CNN models to do so, such
as ResNet50, AlexNet, VGG19, ResNet18, and GoogleNet. Song et al. [22] developed a
computer-aided diagnostic system (CAD) for predicting colorectal polyp histology using
deep-learning technology with near-focus narrow-band imaging (NBI) pictures of the
privately-owned colorectal polyps image dataset. The performance of the CAD is validated
with two test datasets. Polyps were classified into three histological groups. The CAD
accuracy (81.3–82.4%) shows to be higher than that of trainee colonoscopists (63.8–71.8%)
but comparable with that of expert colonoscopists (82.4–87.3%).

There are other works that are focused on colon polyp detection on colonoscopy videos
besides images. Such work includes [23], where authors explore the idea of applying
a deep CNN model to a large set of images taken from 20 videos approximately 5 h
long (~500,000 frames). In [24], authors develop a three-dimensional (3D) CNN model
and train it on 155 short videos. In [25] deep learning method called Y-Net is proposed
that consists of two encoder networks with a decoder network that relies on efficient
use of pre-trained and un-trained models with novel sum-skip-concatenation operations.
The encoders are trained with a learning rate specific to encoders and the same for the
decoder. Yu et al. (2017) [26] proposes an offline and online framework by leveraging
the 3D fully convolutional network (3D-FCN). Their 3D-FCN framework is able to learn
more representative spatial-temporal features from colonoscopy videos by showing more
powerful discrimination capability. Their proposed online learning scheme deals with
limited training data by harnessing the specific information of an input video in the
learning process. They integrate offline learning to the online one to reduce the number
of false positives, which brings detection performance improvements. Another work [27]
includes using a deep CNN model based on inception network architecture trained in
colonoscopy videos. They use only unaltered NBI video frames to train and validate the
model. A test dataset of 125 videos of consecutively encountered diminutive polyps was
used to test the model. However, the confidence mechanism of the model did not generate
sufficient confidence to predict the detection of 19 polyps in the test set, which represented
15% of the polyps. In a more recent study, Poon et al. (2020) [11], the authors design an
Artificial Intelligent Endoscopist (AI-doscopist) to localize polyps during colonoscopy with
the purpose of evaluating the agreement between endoscopists and AI-doscopist for set
localization. Another recent study that deals with colorectal videos is Wang et al. [28],
which is the first double-blind, randomized controlled trial to assess the effectiveness of
automatic polyp detection using the computer-aided detection (CADe) system during
colonoscopy. To the best of our knowledge, this is also the only clinical trial that deals
with the use of artificial intelligence (AI) in colorectal image/video detection, localization
and/ or classification.

There are studies that train and test models in both images and videos. One of them is
Yamada et al. [29], where they develop an AI system that detects early signs of colorectal
cancer during colonoscopy by decomposing tensor metrics in the trained model. Their AI
system consists of a Faster R-CNN and the VGG16 model. Table 1 summarizes the articles
included in this minireview, together with some characteristics of these studies.
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Table 1. Summary of the reviewed work.

Year Authors Nr of images Format Objective Network Metrics Datasets Novelties

2016 Yu et al. [26]
Train: 1.1 M

non-med
Test: 20

Video Detection 3D-FCN F1 = 78.6%,
F2 = 73.9%

Asu-Mayo Clinic
Polyp Database

An integrated framework with
online and offline 3D

representation learning

2017 Byrne et al. [27] Train: 223
Test: 125 Video Detection

DCNN based on
inception network

architecture

Accu = 94%,
Sens = 98%,
Spec = 83%,
NPV = 97%,
PPV = 90%

Private dataset

AI differentiating diminutive
adenomas from hyperplastic

polyps on unaltered videos of
colon polyps. The model

operates in quasi-real-time

2017 Shin & Balasingham
[17]

Train: 1525
Test: 366 Image Classification

HOG + SVM,
Combined feature +
SVM, CNN (gray),

CNN(RGB)

Accu = 91.3%,
Sens = 90.8%,
Spec = 91.8%,
Prec = 92.7%

CVC-Clinic,
ETIS-Larib,
Asu-Mayo

Compare handcraft feature
based SVM method and CNN
method for polyp image frame

classification

2017 Korbar et al. [18]
Train: 2074 crop

images
Test: 239 full images

Image Classification

AlexNet8, VGG19,
GoogleNet22,

ResNet50,
ResNet101,
ResNet152,
ResNet152

Accu = 93.0%,
Prec = 89.7%,
Rec = 88.3%,
F1 = 88.8%

Private dataset

Identify polyps and their types
on whole-slide images by

breaking them into smaller,
overlapping patches

2018 Mahmood & Durr [19]

Synthetic colon:
100,000

Phantom colon:
100,000

Porcine colon: 1460

Image Detection CNN + CRF RE = 0.242
synthetic data, real
endoscopy images

from a porcine colon

Synthetically generated
endoscopy images

2018 Urban et al. [23] Train: 8641 images
Test: 20 videos Image/Video Detection CNN Accu = 96.4%, AUC

ROC = 0.991 Private dataset

Localization model by
optimizing the size and

location, optimizing the Dice
loss, and a variation of the

“you only look once” algorithm
(“internal ensemble”)

2019 Yamada et al. [29] Train: 4840 images
Test: 77 videos Image/Video Detection Faster R-CNN +

VGG16

Sens = 97.3%,
Spec = 99.0%,
ROC = 0.975

Private dataset

Included 5000 images of more
than 2000 lesions, and

3000 images of more than
500 non-polypoid superficial
lesions It is nearly real-time

processing
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Table 1. Cont.

Year Authors Nr of images Format Objective Network Metrics Datasets Novelties

2020 Carneiro et al. [20] 940 Image Classification ResNet-101 &
DenseNet-121

Accu = 51%,
Avg Prec = 48%

(Z = 0.7)

Private dataset
(Australian &

Japanese)

Deep learning classifier using
classification uncertainty and
calibrated confidence to reject

the classification of test samples

2020 Gao et al. [21] 3413 Image Detection +
Classification

AlexNet, VGG19,
ResNet18,

GoogLeNet,
ResNet50, Mask

R-CNN

Accu = 93.0%,
Sens = 94.3%,
Spec = 90.6%

Private dataset
Detection and classification
models based on white light

endoscopic images

2020 Poon et al. [11]

Pre-trained: 1.2 M
non-med images

Fine-tuned: 291,090
polyp & non-med

images
Test: 144 videos

Video Localizing
ResNet50 + YOLOv2
+ a temporal tracking

algorithm

Sens = 96.9%,
Spec = 93.3%

CVC-ColonDB,
CVC-ClinicDB,
ETIS-LaribDB,
AsuMayoDB,
CU-ColonDB,

ACP-ColonDB,
Selected Google

Images

Real-time AI algorithm for
localizing polyps in

colonoscopy videos, using
different medical and

non-medical datasets for
training

2020 Song et al. [22]

Train: 12,480 image
patches of
624 polyps

Test: two DBs of
545 polyp images

Image Classification

CAD based on NBI
near-focus images +

ResNet-50,
DenseNet-201

Accu = 82.4% Private dataset

A CAD system for predicting
CR polyp histology using
near-focus narrow-band

imaging (NBI) pictures and
deep-learning technology

2020 Wang et al. [28]

CADe group:
484 patients

non-CADe group:
478 patients

Video Detection CAD + AI ADR = 34% Private dataset

The first double-blind,
randomized controlled trial to

assess the effectiveness of
automatic polyp detection

using a CADe system during
colonoscopy.

Accu = accuracy, Prec = precision, Spec = Specificity, Sens = Sensitivity, Rec = recall, NPV = negative predictive value, PPV = positive predictive value, RE = relative error, ADR = adenoma detection rate,
non-med = non-medical, CAD = computer-aided device, CADe = computer-aided detection.
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Our model is a combination of CNN and autoencoders. This model was trained
on three different colon polyp databases, CVC-ColonDB [30], CVC-ClinicDB [31], and
ETIS-LaribPolypDB [32]. All these datasets are open source and can be used for research
purposes to develop techniques to detect colon and rectal polyps making them in a way
the standard datasets in the field.

3. Materials and Methods
3.1. Databases

In this study, we utilize 3 colorectal polyp image datasets, namely CVC-ColonDB,
CVC-ClinicDB, and ETIS-LaribPolypDB. The first colorectal polyp image dataset to be
made available for researchers is CVC-ColonDB, and it contains 380 images. All the
images are part of 15 colonoscopy videos, and each sequence has various numbers of polyp
pictures. The same group that published CVC-ColonDB later made available the CVC-
ClinicDB dataset, which has 612 images taken from 29 sequences. The third dataset is ETIS-
LaribPolypDB which has 196 images, Table 2. Each dataset consists of 2 main folders, the
raw original images, and the masked images, the ground truths, of the corresponding one
in the original image. Figure 2 shows images of polyps taken during several colonoscopies.
As seen from the figure, polyps come in various shapes and sizes, and some of them are
not significantly distinguishable from the mucosa of the colon.

Table 2. Databases used to train and test the CNN-AE model.

Datasets Nr of Images

CVC-ColonDB [30] 380
CVC-ClinicDB [31] 612

ETIS-LaribPolypDB [32] 196

Figure 2. Different shapes and textures of colon polyps taken from colonoscopy videos.

3.2. The Proposed Model

There are some deep learning libraries that can be used to build a neural network
model. One of them is TensorFlow [33], an open-source library created by Google and
community contributors, currently on its 2.0 version. We used this library to train and test
our convolutional encoder-decoder model. The model uses the same architecture as the
SegNet architecture [34], an algorithm programmed using Caffe, another deep learning
library created by Berkeley AI Research and community contributors. The training and
testing were performed on a computer with NVIDIA Titan X GPU.
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Figure 3 shows the architecture of the CNN-Autoencoder model. The model has two
parts, the encoder and the decoder. The structure of the encoder is similar to some image
classification neural networks such as the convolutional layer, which includes the batch
normalization, the rectified linear unit (the ReLu) activation function, and the pooling layer.
The decoder part has the inversed layers used in the encoder, such as deconvolution layers
and de-max_pool layers.

Figure 3. Convolutional encoder-decoder architecture.

The encoder part has 13 convolutional layers and 5 max_pooling layers, where the
first 3 layers of the model have these characteristics: the first convolution layer is with
stride 2, followed by the second convolution layer with stride 1, and a non-overlapping
2 × 2 window max_pooling layer with stride 2. As mentioned above, each decoder layer
contains the corresponding layer of the encoder, which means the decoder network has
13 layers. The output of the last decoder is fed to the Softmax classifier, which produces
for each pixel the probabilities if it is a polyp or a normal colon tissue. The network
input-output dimensions are equal:

• use the same layer for the non-shrinking convolution layer.
• use transposed deconvolution for the shrinking convolution layer adjusted with the

same parameters.
• use the nearest neighbor upsampling for the max_pooling layer.

Open source medical image datasets lack the number of images in them, often only
a couple of hundred images. However, for deep learning algorithms to work, a large
amount of data is needed. In the case of image databases, researchers have used image
augmentation techniques to increase the number of training images. In our case, we used
an image augmentation library in Python called Imgaug Library [35]. Figure 4 shows the
results after applying some image augmentations that we used in our model, which include:

• Crop—parameter: px = (0, 16) which crops images from each side by 0 to 16 pixels
chosen randomly.

• Fliplr—parameter: 0.5 which flips horizontally 50% of all images.
• Flipud—parameter: 0.5 which flips vertically 50% of all images.
• GaussianBlur—parameter: (0, 3.0), blurs each image with varying strength using

gaussian blur (sigma between 0 and 3.0).
• Dropout—parameter: (0.02, 0.1), drop randomly 2 to 10% of all pixels (i.e., set them

to black).
• AdditiveGaussianNoise—parameter: scale = 0.01*255, adds white noise pixel by pixel

to images.
• Affine—parameter: translate_px = {“x”: (-network.IMAGE_HEIGHT // 3, network.

IMAGE_WIDTH // 3)}, applies translate/move of images (affine transformation).
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Figure 4. One image of colon polyp after applying different image augmentations.

By using image augmentation, we not only increased the number of images to train
the model but also increased the robustness and reduced overfitting of our model. Another
technique to deal with the overfitting problem was the Dropout technique with a rate of 0.2.
Each dataset was divided into train set, validation set. Majority of the data in each dataset
was used for training, 75%, 15% was used to validate and the other 15% to test the model.

4. Results

We trained the model on the selected databases using only the training sets and then
we validated and tested with the validate and test sets. As each database has a different
number of images, the time to train the model varied. The same batch size of 100 was used
for all datasets. The accuracy and the total training time for each database are depicted in
Table 3. The best accuracy was achieved on ETIS-LaribPolypDB’s last batch with a score
of 0.967.

Table 3. The accuracy and the total training time for each dataset.

Datasets Best Accuracy Batch Total Time

ETIS-LaribPolypDB 0.967 1300 1120.48
CVC-ClinicDB 0.951 2200 2186.97
CVC-ColonDB 0.937 2000 3659.52

Apart from the accuracy results from each batch and the final test accuracy, we
obtained the images that the algorithm predicted. The test input, test targets, and test
predictions were set to gray scale before all the results were drawn. Figure 5 depicts one
example from each dataset. The three columns represent the three datasets (left to right:
ETIS-LaribPolypDB, CVC-ClinicDB, and CVC-ColonDB) and the three rows, from top to
bottom, the test image, the test ground truth (target), and the result of the segment obtained
from our model.
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Figure 5. Images showing the results after training the convolutional encoder -decoder model on
(a) ETIS-LaribPolypDB, (b) CVC-ClinicDB, and (c) CVC-ColonDB database.

As we presented in Figure 2, polyps have various shapes and characteristics, ranging
from big and recognizable polyps to barely distinguishable circular shapes. In Figure 5, we
can see that the polyp in the first column is not easily detectable by the human eye, while the
polyp in the last is recognizable. This wide variation induces errors in polyp recognition.

5. Discussion and Conclusions

In the background section we presented many techniques and algorithms used these
recent years. A quick glance at summary Tab 1 depicts how diverse these techniques are,
but also how diverse the metrics to evaluate them are. Accuracy was one of the most used
metrics followed by the other metrics such as precision, recall etc. Although the main topic
is the same, colorectal polyps, comparing results is difficult. The first reason is the one
we explained above, different metrics. The others are related to the objectives, for what
purpose are these algorithms used (classification, segmentation, detection, or classification),
and the databases these algorithms are trained.

Among the cited papers we find two other similar studies to ours, meaning they
are focused on detection problem and use the same metric and database/s. By using the
CNN-Autoencoder model, we obtained the highest accuracy of 96.7, which is slightly better
than the current state-of-the-art models that calculated the accuracy, Table 4.

Table 4. Accuracy comparison for the proposed model and previously published studies on colon
polyp detection.

Model Accuracy (%)

CNN-Autoencoder (ours) 96.7
DLL [23] 96.4

AI-APD [24] 76.5
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The main challenges with colonoscopy images seem to fall on the shape and texture of
the polyps [18,22,26], and the quality of the images [21,22,26,27]. The quality of the images
depends on the colonoscopy device itself [21,26] or on the expertise of the endoscopist [18,22,27].
Furthermore, in the case of polyp classification, class imbalance poses another problem [20].
Considering these challenges, we checked the image results and verified that indeed some
of the segments the model predicted are not as expected. The unexpected bad masks are
shown in Figure 6, and again this shows the implications that shape, and texture of the
polyp has, but also the conditions the colonoscopy image was taken. The lighting used
during the examination plays a negative role when it comes to colon polyp detection as the
models misrecognize the normal tissue as a polyp. This phenomenon happens because the
inner surface of the colon is smooth, and the light attached to the colonoscopy used by the
endoscopists to exam the colon reflects, confusing the models to consider healthy colon
tissues as polyps. We have to mention that the patient needs to prepare well and follow the
doctor’s instructions as per the normal colonoscopy session.

Figure 6. False detection of a polyp due to lighting conditions.

Technology has helped progress the medical field enormously, especially when it
comes to medical imaging. Colorectal cancer has been one of the diseases which has gained
attention, and many researchers have worked towards detecting and preventing such
disease. CAD systems have shown that the polyp miss rate has gone down. However,
research shows deep learning has shown even more progress aiding colonoscopists/
endoscopists to perform better.

In this work, we presented the current state of the art of deep learning techniques in
colon polyp detection, classification, segmentation and localization. We contributed by
applying a novel algorithm CNN-AE for detection of polyps, which appears promising
considering that no image preprocessing was performed prior to training the model. Our
model shows better results than the current state of the art, although not very significant.
We believe better results may be achieved if we increase the number of images in the
dataset. Moreover, having a diverse range of polyp images may improve the algorithms
performance. We tested the same model on other medical image databases, namely iris
and pressure ulcer datasets, and the results obtained were better than with the colon polyp
images. In future work we want to address these issues by making changes to the model
and we will add other image augmentations currently not implemented in the Imgaug
library. Besides the technical aspect, we want to address the lack of polyp image datasets.
We are in the process of creating a bigger and more diverse dataset of colon polyp images.
We will test the model as soon as we prepare the dataset which will be made available to
researchers for academic purposes as well.

Author Contributions: Conceptualization, O.B., B.G.-Z. and L.B.; methodology, O.B., D.S.-S., B.G.-Z.
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