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Abstract: A single VLP-16 LiDAR estimation method based on a single-frame 3D laser point cloud is
proposed to address the problem of estimating negative obstacles’ geometrical features in structured
environments. Firstly, a distance measurement method is developed to determine the estimation
range of the negative obstacle, which can be used to verify the accuracy of distance estimation.
Secondly, the 3D point cloud of a negative obstacle is transformed into a 2D elevation raster image,
making the detection and estimation of negative obstacles more intuitive and accurate. Thirdly, we
compare the effects of a StatisticalOutlierRemoval filter, RadiusOutlier removal, and Conditional
removal on 3D point clouds, and the effects of a Gauss filter, Median filter, and Aver filter on 2D
image denoising, and design a flowchart for point cloud and image noise reduction and denoising.
Finally, a geometrical feature estimation method is proposed based on the elevation raster image. The
negative obstacle image in the raster is used as an auxiliary line, and the number of pixels is derived
from the OpenCV-based Progressive Probabilistic Hough Transform to estimate the geometrical
features of the negative obstacle based on the raster size. The experimental results show that the
algorithm has high accuracy in estimating the geometric characteristics of negative obstacles on
structured roads and has a practical application value for LiDAR environment perception research.

Keywords: LiDAR; negative obstacle detection; single frame point cloud; point cloud projection;
point cloud denoising; geometric feature estimation

1. Introduction

Ambient sensing is the critical technology for ALV (Autonomous Land Vehicles) /UGV
(Unmanned Ground Vehicles) to achieve autonomous navigation in outdoor environments.
Negative obstacles such as ditches, trenches, potholes, puddles, and steep hills in unstruc-
tured environments seriously affect the safe driving of ALV/UGV. Therefore, accurate
negative obstacle detection is of particular importance in the field of unmanned driving.
Estimating a negative obstacle’s geometry at a given distance is still challenging because
the obstacle is located below the ground, which is difficult to detect with vehicle sensors.

Tingbo Hu et al. [1] proposed an image sequence-based negative obstacle detection
algorithm for negative obstacle detection. Their algorithm is based on the phenomenon
that a negative obstacle is ‘darker’ than the surrounding badlands and that the darker
the distance, the more pronounced it is. Also, different cues are combined in a Bayesian
framework to detect obstacles in the image sequence. L. Matthies et al. [2] proposed a
negative obstacle detection method based on infrared features. The method is based on the
phenomenon that negative obstacles tend to dissipate less heat and are warmer than the
surrounding terrain at night, and performs local intensity analysis of the infrared images
to mark areas of significant intensity as potential negative obstacles [3]. The final negative
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obstacle validation is then performed by multi-frame verification and fusion. Arturo L.
Rankin et al. [4] further coupled nighttime negative obstacle detection with thermic feature-
based cues and geometric cues based on stereo distance data, using edge detection to
generate closed contour candidate negative obstacle regions and geometrical filtering, to
determine whether they are located in the ground plane. Negative obstacle cues were
fused from thermic features, geometry-based distance image analysis, and geometry-based
topographic map analysis.

These three typical methods for detecting negative obstacles have some limitations in
temperature or lighting requirements, and are not sufficiently robust [5] to detect negative
obstacles. Image sequence-based methods have the phenomenon of misreporting shadows
of vegetation on the ground as negative obstacles; the most significant limitation of the
thermal infrared image-based method is that it can only detect negative obstacles at
night and greatly influence the climate and environment. Compared with infrared and
visual sensors, LiDAR has the advantage of directly and accurately capturing the distance
information of objects without being affected by conditions such as light and weather, so it
is widely used in ALV/UGV [6] environmental perception technology.

LiDAR has a superior position and role in the field of negative obstacle detection. It
has the advantages of high lateral resolution, high range detection accuracy, and strong
anti-active interference ability. A more accurate detection method uses HDL-64 LiDAR
or VLS-128 LiDAR on large vehicles, but the higher price of multi-beam LiDAR makes
it difficult to popularize. Single-beam LiDAR with a rotating mechanical structure is
frequently used on small and micro vehicles. Shang E et al. [7] proposed a negative obstacle
detection method based on dual HDL-32 LiDAR with a unique dual LiDAR mounting
method and a feature fusion based on the AMFA (adaptive matching filter based algorithm)
algorithm. The FFA (feature fusion-based algorithm) algorithm fuses all features generated
by different LiDAR or captured in different frames. The weight of each feature is estimated
by the Bayes rule. The algorithm has good robustness and stability, a 20% increase in
detection range, and a reduction in calculation time by two orders of magnitude compared
to state-of-the-art technology. Liu Jiayin et al. [8] proposed an environment sensing method
based on dual HDL-32 LiDAR, which can significantly improve the vehicle forward to
LiDAR spot density, compared to the simple HDL-64 LiDAR spot density through a unique
LiDAR mounting method. Wang Pei et al. [9] proposed a negative obstacle detection
algorithm with single-line LiDAR and visionary fusion. The method lacks in the accurate
estimation of negative obstacle geometric features, and the detection range is small and the
accuracy insufficient. The literature [10] uses a Kinect sensor to detect negative obstacles
and convert them into the laser scan data. The literature [11] proposes a set of algorithms
for general obstacle feature extraction using radar and images, and a contour extraction
method using multilayer techniques specifically applicable to negative obstacle detection.
The literature [12] uses stereo information in combination with saliency to initialize the
energy function, and uses color information to optimize the results. Then, the optimization
results are hysteresis thresholds to reach the final negative obstacle region. All of the above
methods can achieve better environmental sensing and save hardware costs compared
to a single multi-beam LiDAR, but the accuracy of the detection methods varies and the
combination of LiDAR methods still fails to completely solve the expensive cost problem.

This paper proposes a single multi-line radar method to improve the accuracy of
negative obstacle geometry feature estimation with lower hardware cost to address the
above problems. The specific contributions of the method are as follows:

(1) Since it is difficult to measure feature lengths in 3D point cloud data, this paper
proposes to convert 3D point cloud data into 2D elevation raster maps to estimate
geometric features, which reduces the difficulty of estimation;

(2) Selection of the most suitable filter for denoising negative obstacle point cloud data
and denoising elevation images among many 3D and 2D denoising methods, and
proposal of a denoising system applicable to 3D to 2D maps;
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(3) A proposed method for estimating geometric features based on two-dimensional
elevation negative obstacle images;

(4) A method for detecting the horizontal distance from negative obstacles to LiDAR
is proposed.

The method is simple, computationally convenient, and low-cost, breaking the pre-
vious costly methods such as dual multi-beam LiDAR and joint calibration of LiDAR
and camera or combination of IMU [13] inertial guidance and LiDAR, and using a single
VLP-16 LiDAR to accurately estimate the geometry of negative obstacles on the horizontal
ground by using virtual images generated from the data and some geometric operations.
This method saves hardware costs and frees up more space and money to implement
driverless technology.

2. Data Preprocessing

After calibrating external parameters of the LiDAR [14–16], the original point cloud
was collected, and then a PassThrough filter [17] was applied to detect the negative obstacle.
Then, the denoising effects of the StatisticalOutlierRemoval filter [18], RadiusOutlier re-
moval, and Conditional removal [19] were compared. The StatisticalOutlierRemoval filter
processed the negative obstacle point cloud and achieved an excellent denoising effect. The
3D negative obstacle point cloud was projected onto the XY plane to obtain a 2.5D negative
obstacle elevation image, and 0.02 m and 0. 05 m rasters (rasterization) were added to the
elevation image to obtain the elevation raster image. The denoising effects of the Gauss
filter [20], Median filter [21], and Mean filter [22] were compared, and the Median filter
that best met the denoising requirements of this experiment was used. At this point, it
was determined if the elevation raster image was the first frame of data that hit the front
wall of the negative obstacle precisely and, if so, we continued to estimate the geometric
features; if not, the negative obstacle point cloud needed to be selected again. Based on
the elevation raster map, a distance measurement method was built to estimate the length
and width of the negative obstacle on the image, and then the geometric features of the
negative obstacle were calculated by multiplying the product of the rasterized dimensions
and the number of pixels. The flowchart of the single-frame 3D laser point cloud-based
structured negative obstacle geometry estimation is shown in Figure 1.

2.1. Passthrough Filter to Locate Point Clouds at Negative Obstacles

To precisely locate the negative obstacle point cloud location, we needed to use the
PassThrough filter in PCL (Point Cloud Learning) to filter out the point cloud data other
than the negative obstacle to facilitate our experiment’s continuation [23].

The original point cloud data image and the rendering after the PassThrough fil-
ter are shown in Figures 2 and 3, respectively. As can be seen, many point clouds in
Figure 2 records the raw point cloud data for negative obstacle detection in both environ-
ments, where (a)/(d) is the raw point cloud x-y view in both environments, (b)/(e) is the
raw point cloud y-z view in both environments, and (c)/(f) is the raw point cloud x-z view
in both environments.

More sharp noise and detail was due to the ambient surface’s prismatic structure; as a
result, we used the PassThrough filter in PCL to filter the original point cloud data, i.e., set
a channel based on the original point cloud spatial coordinate system that only belongs
to the negative obstacles, and filtered out the points outside the range of the channel to
keep the point cloud inside the channel. This “channel” in PCL is specifically expressed as
a limited range set for a certain axis, Points outside the range in the Z-axis direction are
filtered out by PassThrough filter (in the case of a certain distance between the background
and the foreground, you can get rid of the background), the filtering effect depends on the
data and filtering parameters.

Figure 3 shows comparison before and after PassThrough filter processing, where (a)
is before processing and (b) is after processing. It can be seen that the other point cloud
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data in (b) are basically cleared, there is some outlier noise near the negative obstacle, and
the negative obstacle point cloud is kept better.
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2.2. Point Cloud Denoising

In the process of scanning and measuring the surface of an object based on LiDAR,
the 3D point cloud data must be denoised and smoothed prior to data processing for these
reasons which are the external vibrations of the LiDAR, roughness of the detected negative
obstacle surface, mirror reflection of the LiDAR and other artificial or random factors.

Outliers exist in the original data due to problems such as occlusion, which will affect
the estimating accuracy. Our method compares three commonly used filters to remove
centrifugal points, namely, the StatisticalOutlierRemoval filter, RadiusOutlier removal,
and Conditional removal. Where the StatisticalOutlierRemoval filter performs statistical
analysis of each point in the point cloud, it defines the number of search points, is used to
calculate the distance mean, and filters outliers by making statistical judgments about the
distance between the query points and the set of neighboring points. The RadiusOutlier
removal is used to set a search radius and determine the number of neighboring points
within the set radius, as shown in Figure 4. If the radius is set and the threshold range
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is 1, then only the yellow target is removed, if the threshold range is 2, then both yellow
and green range points are removed. Conditional removal, on the other hand, is more
versatile and is equivalent to defining a filtered condition that removes specific points from
the target point cloud. Removal can define more complex environmental filtering.
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Figure 4. RadiusOutlier removal schematic.

We found that both the StatisticalOutlierRemoval filter and Conditional removal can
achieve the results required in this experiment. However, compared to StatisticalOutlier-
Removal, ConditionalRemoval is much more cumbersome, and RadiusOutlier removal is
unsuitable for point clouds with negative obstacles. The point cloud is treated as a noise
filter, but the real noise is not filtered out. The StatisticalOutlierRemoval filter is used to
process point clouds in this paper.

The StatisticalOutlierRemoval filter is used to filter out points with non-conforming
z-values and some outliers. For each point, we calculate the average distance from it to all
its neighbors. It is assumed that the result is a Gaussian distribution, the result shape is
determined by the mean and standard deviation, and that points whose mean distance is
outside the standard range (defined by the mean and variance of the global distance) are
defined as outliers and can be removed from the data set.

The negative obstacle point cloud after PassThrough filtering and the negative ob-
stacle point cloud after StatisticalOutlierRemoval filtering in the PCL library are shown
in Figures 3 and 5, respectively. The presence of significant outlier noise can be seen in
Figure 3. After the noise is removed by the StatisticalOutlierRemoval filter (in Figure 5), the
outlier noise is removed, and the negative obstacle point cloud pattern is well maintained.
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Figure 5. Rendering of negative obstacle point cloud after denoising.

2.3. Projection of 3D Point Cloud to 2D Image

The 3D point cloud collected by LiDAR is based on (x, y, z) space coordinate point
data calibrated in a rectangular space coordinate system containing an x, y, and z We project
the 3D point cloud along the z-axis onto the 2D plane formed by the x and y. Considering
that the point cloud captured by the Velodyne 16 LiDAR VLP-16 is the same as other ranges
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scan data, points scanned by Velodyne can be roughly projected into a 2D image using the
following projection function.

θ = atan2(y, x)
φ = arcsin

(
z/
√

x2 + y2 + z2
)

r = [θ/∆θ]
c = [φ/∆φ]

(1)

where p = (x, y, z)T is the 3D point, (r, c) is the position of its projected 2D image. θ and φ
respectively represent the azimuth and elevation angle when observing the point. ∆θ and
∆φ represent the average horizontal and vertical angular resolution between the continuous
beam emitters, respectively. The projection point map is similar to a histogram. We fill the
elements at (r, c) in the 2D point map with two-channel data (d, z), where d =

√
x2 + y2.

Note that x and y are coupled, and that d denotes rotational invariance around z. The point
of the projection is the same as the point of the observer. Few points are projected to the
same 2D position, in which case the points closer to the observer are preserved. If no 3D
points are projected at the 2D position, the element is populated with (d, z) = (0, 0) [24–27].

2.4. Rasterize

To facilitate subsequent calibration studies and to take the maximum, minimum,
or average values closest to the geometric features we estimate, we also rasterized the
2D image.

The most basic rasterization algorithm renders a 3D scene represented by a polygon
onto a 2D surface. Fixed-scale raster processing is convenient and straightforward, but
there is a contradiction between data volume and accuracy. A grid-scale that is too large
decreases the accuracy of the detection, while a small scale increases the computational
effort and defeats the purpose of gridding. The multi-scale grid can solve this problem
well [28]. The rasterization process is shown in Figure 6.
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Figure 6. Rasterize.

Each small raster contains many three-dimensional pixel points, and the value of the
largest point of the pixel point z value in the raster with both length and width of 0.02 m
is taken as the z value of this raster to generate a single-channel two-dimensional planar
image. In the point cloud data, the z-axis coordinates represent the depth of the point
cloud, so the point cloud depth indicates the color’s depth (the lighter the color, the larger
the z-value, the darker the color, the smaller the z-value).

2.5. High Range Raster Image Generation

At this time, the z value of the 3D point cloud was quantized as the RGB value in the
range of 0~255 of the 2D raster image. 2.5D multi-scale grids are generated, counted each
grid’s characteristics, and marked the grid according to the characteristics. This generated
an elevation raster image. The elevation raster image without grooves is shown in Figure 7a,
and with grooves is shown in Figure 7b.
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2.6. High Range Raster Image Denoising and Smoothing

When generating an elevation raster image, it is inevitable that some new noise will
appear on the image. Unlike the noise in Section 2.2, the noise in Section 2.2 is point cloud
noise and needs to be processed by the above point cloud denoising filter. The noise of the
elevation map is essentially different from the noise of the point cloud, so other methods
are used to further denoise.

Noise burrs generally have definite frequency characteristics, and the use of appro-
priate filtering techniques can effectively suppress noise and improve the signal-to-noise
ratio of the measurement system. The more commonly used smooth filtering methods are
Median filter, Gauss filter, Aver filter, Adaptive filter, and Fit filter. The filter is to establish
a mathematical model; through this model which shows the image data for energy conver-
sion, low energy on the exclusion of noise is part of the low energy. For the eight-connected
region of the image, the pixel value at the middle point is equal to the mean value of the
pixel values in the eight-connected region, which will produce ringing in the image if the
ideal filter is used. If Gauss filter is used, the system function is smooth and the ringing
phenomenon is avoided.

In this paper, the three most commonly used filters for elevation raster images are
selected for comparison: Median filter, Gauss filter, and Aver filter.

a. Median filter.

The basic principle of the Median filter is to replace the value of a point in a digital
image or sequence with the median value of each point in a neighborhood of that point, so
that the surrounding pixels are close to the true value, thus eliminating isolated noise points.
The method is used to generate a monotonically ascending (or descending) sequence of
2D data using a structured 2D sliding template that sorts the pixels within the plate by the
pixel value. The output of the 2D Median filter is

g(x, y) = med{(x− k, y− l), (k, l ∈W)} (2)

where f (x, y), g(x, y), are the original image and the processed image, respectively. W is a
2D template, usually a 2 × 2, 3 × 3 area, but can also be different shapes, such as a line,
circle, cross, ring, rhombus and so on.

b. Gauss filter.

A Gauss filter is essentially a kind of signal filter; its use is the signal smoothing
process is to achieve a better image edge. The image is first Gauss-smoothed filtered as
well as noise removed, and then the second-order derivative is found to determine the
edge, which is also calculated as a frequency-domain product to a null-domain convolution.
Set as a given point, its neighborhood is

{
Pi,j =

(
xi,j, yi,j, zi,j

)∣∣−n ≤ i ≤ n,−m ≤ j ≤ m
}

,
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where xi,j = i∆x, yi,j = j∆y, zi,j = f
(
xi,j, yi,j

)
. After Gauss filter smoothing the P0,0 point

after the z-axis directional coordinates of the P0,0 point is

z0,0 =
1
c

n

∑
i=−n

m

∑
j=−m

z−i,−jgi,j∆x∆y (3)

where g(i, j) is the Gaussian function, and c is the normalization coefficient, which are
expressed as

gi,j =
1

2πσ2 e−(i
2∆x2+j2∆y2)/2σ2

c =
n
∑

i=−n

m
∑

j=−m
gi,j∆x∆y (4)

c. Aver filter.

The idea of the Aver filter is to replace the value of a given point with a weighted
average value within the neighborhood of the given point. Set P0,0 for a given point,
its neighborhood is

{
Pi,j =

(
xi,j, yi,j, zi,j

)∣∣−n ≤ i ≤ n,−m ≤ j ≤ m
}

. After the Aver filter
smoothing point P0,0 becomes

P0,0 =
n

∑
i=n

m

∑
j=−m

hi,j pi,j (5)

where hi,j is the normalized weighting factor.
After comparing the three filtering denoising principles and methods, we found that

the Median filter method is very useful in eliminating particle noise. It has a unique role
in the phase analysis and processing method of optical measurement fringe images, but
it has little effect on the fringe center analysis method. The Median filter is a classical
method for smoothing out the noise and is commonly used to protect edge information in
image processing. To further determine whether the filter we chose is appropriate for this
experiment, we de-noise the elevation raster images using three separate filters. Figure 8
shows the comparison of negative obstacles before denoising and the three kinds of filtering
effects. From left to right, they are the image before denoising, the denoising effect of the
Aver filter, the denoising effect of the Gauss filter, and the denoising effect of the Median
filter. It can be seen that the denoising effect of the Aver filter is not significant, and the
Gauss filter redundantly removes the pixels of the negative obstacle, which will affect the
subsequent estimation of the length of the negative obstacle. Only the denoising effect of
the Median filter is most suitable for this method. Therefore, the OpenCV-based Median
filter algorithm was finally chosen to denoise our elevation raster images.
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Based on the premise of the Median filter, this paper adopts the design idea, necessary
operation steps, algorithm flow, and algorithm analysis of a fast Median filter encoding
algorithm, which takes advantage of the position relationship of the elements in the data
window and considers the correlation of the data elements in two adjacent Median filter
windows. It uses the encoding sorting method to retain the encoding sorting information of
the previous window data as a reference for the data sorting in the following window. This
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algorithm reduces the number of comparisons in the Median filter process by combining
two adjacent Median filter operations in a traditional algorithm into one.

3. Estimation of Geometric Features of Structured Negative Obstacles

ALV/UGV research is usually divided into the structured pavement, semi-structured
pavement, and unstructured pavement. Structured pavement refers to a horizontal road
environment with characteristics of typical road edge rules, chromatic aberration charac-
teristics, and street line characteristics, such as highways, national highways, provincial
highways, and urban roads. In a structured environment, the road surface of an ROS
AUTONOMOUS NAVIGATION VEHICLE is relatively horizontal, VLP-16 LiDAR, the
measurement conversion based on the vehicle body coordinate plane, and the z-axis thresh-
old control method can effectively detect negative obstacles. However, since our goal is to
estimate a structured negative obstacle’s geometry, we need to go a step further and accu-
rately estimate a negative obstacle’s geometry based on algorithms such as the Progressive
Probabilistic Hough Transform and geometric methods mathematical models.

3.1. Length Estimation

The length estimation method adopts the Probabilistic Hough Transform method [29].
The standard Hough Transform essentially maps the image to its parameter space. It needs
to calculate all M edge points so that its computation and memory space will be much
larger. As such, we mapped the 3D point cloud image to the 2D image and determined the
z-value of the color (the lighter the color, the larger the z-value; the darker the color, the
smaller the z-value). If only m (m < M) edge points are processed in the input image, then
selecting these m edge points is probabilistic, so the method is called Probabilistic Hough
Transform. Another essential feature of this method is that it can detect the end of the line;
that is, it can detect the straight line’s two endpoints in the image and accurately locate
its straight line. The HoughLinesP function was used to utilize Progressive Probabilistic
Hough Transform to detect straight lines. The specific steps are:

(1) Randomly select one feature in the elevation raster image, i.e., the edge point where
the laser hits the back wall of the negative obstacle, and if that point has been identified
as a point on a straight-line, continue to randomly select an edge point from the
remaining edge points until all edge points have been selected;

(2) Perform a Hough Transform [30] on the point and perform a cumulative calculation;
(3) Select the point with the most considerable value in the Hoff space, and if the point is

larger than the threshold, proceed to step 4, and if the point is smaller than or equal
to the threshold, return to step 1;

(4) According to the maximum value obtained from the Hough Transform, from that
point, the line is displaced in the direction of the line to find the two endpoints of
the line;

(5) Calculate the length of the straight-line. If it is greater than a certain threshold, it is
just regarded as a straight-line output and goes back to step 1.

The above are the steps we use Progressive Probabilistic Hough Transform to measure
the length of the negative obstacle b in the 2D raster image. The flowchart is shown in
Figure 9.

As shown in Figure 10, the negative obstacle’s elevation raster image contains b pixels
(grid), which is the distance between the two points p and q. Since each pixel of the
elevation raster image represents a raster with a length and a width of 0.02 m, we can
estimate the actual length B of the negative obstacle to be 0.02b based on the scale.

3.2. Mathematical Model for Width Estimation

As shown in Figure 11, we estimate the width of the negative obstacle through the
median value of Figure 8. After filtering and denoising the image, it is known p and q two
point coordinates are (x1, y1), (x2, y2), over the negative obstacle height raster image of
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the two edge points p and q to make a straight line for the line a, from which we can get a
straight line a equation for the

(x− x1)(y2 − y1) = (y− y1)(x2 − x1)

y = y2−y1
x2−x1

x− x1y2−x2y1
x2−x1

(6)

where the slope ka of the line a is y2−y1
x2−x1

.
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Make the perpendiculars of the line a through points p and q respectively, so that the
normal through point p is b1 and the normal through point q is b2; by the above information
the equations of the lines b1 and b2 are

b1 : y = x2−x1
y1−y2

x− x1x2−x1
2

y1−y2
+ y1

b2 : y = x2−x1
y1−y2

x− x2
2−x1x2
y1−y2

+ y2
(7)

where the slope kb1, kb2 of the line b1, b2 is x2−x1
y1−y2

.
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Taking two points p and q as starting points, OpenCV is used to carry out pixel
traversal on the two lines b1 and b2. When a pixel point that meets the requirements (pixel
value less than 255) is retrieved, the traversal is stopped immediately and the coordinates
of this point are recorded. The point on line of b1 is set as m and the point on line b2 are set
at n. Determine the coordinates of m and n as (x3, y3) and (x4, y4), as shown in Figure 11.
Connect the two line segments pm and qn, and calculate the lengths of pm and qn as l1 and
l2 respectively. pm and qn are the width of negative obstacles in the elevation raster image.

To make the experimental results more accurate, we take the average of l1, l2 and
make it l.

L =
l1 + l2

2
(8)

L is the result of the pixel width of the negative obstacle that we finally estimate on the
elevation raster image. Since each pixel of the elevation raster image represents a raster
with a length and a width of 0.02 m, we can estimate the actual width L of the negative
obstacle to be 0.02l according to the scale.

4. Experiments

This experimental code is based on data provided by the Velodyne VLP-16 LiDAR
presented above, and written in RobWare Studio. The working platform uses a computer
with ubuntu 16.04 LTS, Intel i5 Processor, 2.30 GHz, and 8 GB of RAM.

4.1. Experimental Platform and Test Environment

To accurately estimate the geometric characteristics of structured negative obstacles,
this paper uses the laboratory ROS Autonomous Navigation Vehicle equipped with Velo-
dyne VLP-16 LIDAR as the experimental platform for experiments. The ROS Autonomous



Information 2021, 12, 235 13 of 22

Navigation Vehicle is shown in Figure 12. The explicit parameters of the experiment are
shown in Table 1.
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Table 1. Specific parameters of the experiment.

Parameter Technical Indicators

LiDAR Height (m) 0.3
Effective Scanning Angle (◦) −15~+15

Vehicle Speed (m/s) 1
Sampling Frequency (Hz) 20

Multiple sets of data were collected in a structured environment for estimating the
geometric features of negative obstacles, and the performance metrics for evaluating this
algorithm are mainly the measurements of the length and width of negative obstacles.
A negative obstacle’s size and shape affect the detection’s accuracy, with more extensive
geometric features of negative obstacles being estimated with higher accuracy and vice
versa. The length of the negative obstacle is defined as B (the width of the negative obstacle
in the trolley direction), and the width is L (the width of the negative obstacle in the vertical
section of the trolley). The main parameters and specifications of the VLP-16 LiDAR are
shown in Table 2.

Table 2. LiDAR main parameters and technical specifications.

Parameter Technical Indicators

Number of Laser Lines 16
Measuring range (m) 100

Weight (g) 830
Measurement Accuracy (cm) ±3

Horizontal Measurement Angle Range (◦) 360
Horizontal Angle Resolution (◦) 0.1~0.4

Vertical Angle Resolution (◦) 2
Vertical Measurement Angle Range (◦) 30 (−15~+15)

Detection Frequency (Hz) 5~20

According to the point cloud distribution density of the radar at different distances
and the size of the target negative obstacle, the grid map is divided into two different
sizes, 2 cm × 2 cm and 5 cm × 5 cm, to estimate the geometric characteristics of the
negative obstacle as accurately as possible, While reducing the amount of calculations,
this paper uses a 5 cm × 5 cm grid before the point cloud denoising, and the elevation
grid image uses a 2 cm × 2 cm grid after denoising and smoothing. A typical negative
obstacle scenario for the data collected in this experiment is illustrated in Figure 13. The
unstructured experimental scenario is shown in Figure 14, where the maximum diameter
of Figure 14a is 1 m; the maximum diameter of Figure 14b is 1.5 m; and the maximum
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diameter of Figure 14c can cover the whole LiDAR detection range, so we mainly estimate
its width.
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4.2. Validation Experiment
4.2.1. Structured Environment

This paper verifies the experimental measurement’s accuracy by comparing the man-
ual marking’s geometric features with the experimental measurement’s geometric features
and verifying the negative obstacle estimation accuracy in many cases. First, this experi-
ment analyzed and verified the size of the negative obstacle on geometric feature estimation
accuracy. Three types of negative obstacles were selected, as shown in Figure 13. Figure 13a
is a 40 cm × 40 cm square negative obstacle. Figure 13b is a 100 cm × 40 cm rectangular
negative obstacle, and Figure 13c is a 120 cm × 60 cm negative obstacle. Secondly, we
wished to verify the distance between the LiDAR and the negative obstacle to estimate
accuracy. The detection range of the Velodyne VLP-16 LiDAR was 100 m, but the detection
range of negative obstacles was far from 100 m, so we needed to calculate the detection
range of negative obstacles ourselves based on the detection principle of the LiDAR.

According to known parameters, the LiDAR was mounted on the ROS Autonomous
Navigation Vehicle with a height of 0.3 m. The vertical measurement angle range of the
VLP-16 LiDAR was −15◦~+15◦, and there was a laser scanning beam every 2◦. Figure 15
shows the establishment of a distance measurement method schematic diagram based on
known parameters.
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where 1 8d d  is the distance between the downward eight lines launched to the ground 
and the cart in the distance measurement method of negative obstacle detection range 
estimation, input h  to the model as 30, input ( )1 2 3 4 5 6 7 8θ θ θ θ θ θ θ θ  as 

( )15 13 11 9 7 5 3 1  respectively finally get 1 8d d  as 111.96 cm, 129.94 
cm, 149.55 cm, 189.41 cm, 244.33 cm, 324.9 cm, 497.32 cm, 1718.7 cm. 

 
Figure 15. Schematic diagram of negative obstacle detection range estimation. 

Figure 15. Schematic diagram of negative obstacle detection range estimation.



Information 2021, 12, 235 15 of 22

LiDAR−15◦ laser beam (purple line) was the nearest detection distance, and−1◦ laser
beam (red line) was the farthest scanning distance; thus, we could estimate the negative
obstacle detection range of LiDAR from 1.1~17.2 m under stationary conditions.

d1
d2
d3
d4
d5
d6
d7
d8


= h×



cot θ1
cot θ2
cot θ3
cot θ4
cot θ5
cot θ6
cot θ7
cot θ8


(9)

where d1 ∼ d8 is the distance between the downward eight lines launched to the ground
and the cart in the distance measurement method of negative obstacle detection range
estimation, input h to the model as 30, input (θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8) as (1 2 3 4 5 6 7 8)
respectively finally get d1 ∼ d8 as 111.96 cm, 129.94 cm, 149.55 cm, 189.41 cm, 244.33 cm,
324.9 cm, 497.32 cm, 1718.7 cm.

According to the calculated range, this experiment was equipped with LiDAR on an
ROS Autonomous Navigation Vehicle, starting measurements from 20 m away from the
three negative obstacles at a speed of 1 m/s and a measuring frequency of 20 Hz, and
recording the experimental data. The LiDAR recorded 30 frames of data per second, and it
took 20 s for a 20 m distance to record 600 frames of data. Three sets of experiments in total
recorded 1800 frames of data. Each group of experiments selected each frame of data in
which the laser scanning beam hit the edge of the front wall of the negative obstacle from
600 frames of data. Each group of experiments collected eight groups of valid data.

Figure 16 shows the results of detecting a negative obstacle to a size of 100 × 40 cm at
different distances, based on the distance measurement method of Figure 15. Figure 16a–h
are respectively 111.96 cm, 129.94 cm, 149.55 cm, 189.41 cm, 244.33 cm, 324.9 cm, 497.32 cm,
and 1718.7 cm structured pavement field scenes (left side), and LiDAR detection point cloud.

Each set of data measures the length and width of negative obstacles, and the statistical
results are shown in Table 3.

To verify the accuracy of the method in this paper, an error analysis was performed
on the data collected in Table 3. The absolute error was calculated from the data in Table 3,
which was the measured value minus the actual value. In order to verify the relationship
between the error and the size of the negative obstacles, and because the length and width
of each negative obstacles were different, it is not enough for us to calculate the absolute
error alone, so we further calculated the relative error based on the absolute error, i.e., the
absolute error as a percentage of the actual negative obstacles size, so that we could have a
more intuitive understanding of the relationship between the size of the negative obstacles
and the error. As showed in Table 4, where ALE is the absolute length error, RLE is the
relative length error, AWE is the absolute width error, and RWE is the relative width error.
This experiment compared the size relationship between the relative errors of length 40 cm,
100 cm and 120 cm and the size relationship between the relative errors of width 40 cm and
60 cm at a certain distance from the negative obstacles, respectively, and the trend of the
relative errors at a certain length and width of the negative obstacles is shown in Figure 17,
where Figure 17a is the length relative error analysis, and Figure 17b is the width relative
error analysis. Figure 18 shows the trend of the absolute error in the case of different
lengths of negative obstacles and different distances from the negative obstacles, with error
bars to help the reader to understand the error relationship more clearly and intuitively.
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Table 3. Experimental results of multidimensional, multi-group negative obstacle measurements.

Experiment No. Distance (cm)
Hand Mark Experimental Measurement

Length (m) Width (m) Length (m) Width (m)

1

<111

0.4 0.4

- -
111.96 0.4 0.4
129.94 0.400143 0.400567
149.55 0.4032 0.40416
189.41 0.4087 0.40772
244.33 0.4123 0.41497
342.90 0.4225 0.4357
497.32 0.36491 0.370384
1718.70 0.32 0.3004
>1719 - -

2

<111

1 0.4

- -
111.96 1 0.4
129.94 1 0.4
149.55 1.000212 0.40034
189.41 1.0008 0.40087
244.33 1.00443 0.4047
342.90 1.00753 0.4192
497.32 1.01847 0.4345
1718.70 1.0456 0.47432
>1719 - -
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Table 3. Cont.

Experiment No. Distance (cm)
Hand Mark Experimental Measurement

Length (m) Width (m) Length (m) Width (m)

3

<111

1.2 0.6

- -
111.96 1.2 0.6
129.94 1.2 0.6
149.55 1.200333 0.601333
189.41 1.2004 0.60384
244.33 1.201332 0.59357
342.90 1.2078 0.62
497.32 1.210322 0.620384
1718.70 1.24 0.540357
>1719 - -

Table 4. Length and width error analysis table.

Distance (cm) 111.96 129.94 149.55 189.41 244.33 342.9 497.32

40 cm
ALE 0 0.0143 0.32 0.87 1.23 2.25 −3.509
RLE 0% 0.03575% 0.8% 2.175% 3.075% 5.625% −8.7725%

100 cm
ALE 0 0 0.0212 0.08 0.443 0.753 1.847
RLE 0% 0% 0.0212% 0.08% 0.443% 0.753% 1.847%

120 cm
ALE 0 0 0.0333 0.04 0.1332 0.78 1.0322
RLE 0% 0% 0.02775% 0.033% 0.111% 0.65% 0.86017%

40 cm
AWE 0 0.0567 0.416 0.772 1.497 3.57 −2.9616
RWE 0% 0.14175% 1.04% 1.93% 3.7425% 8.925% −7.404%

60 cm
AWE 0 0 0.1333 0.384 −0.0634 2 2.0384
RWE 0% 0% 0.22217% 0.64% 0.10567% 3.33% 3.3973%
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According to the data of Tables 3 and 4 and Figures 17 and 18, we can see that in the
case of a certain distance from the negative obstacles, the longer the length or the wider the
width of the negative obstacles, the smaller the estimated geometric feature error, and the
shorter the length or the narrower the width, the larger the estimated geometric feature
error; in the case of a certain length and width of the negative obstacle, the further the
distance from the negative obstacles, the larger the estimated geometric feature error, and
the closer the error. The closer the distance, the smaller the error. From this we conclude
that the detection effect of this experiment on the geometric features of negative obstacles
is positively correlated with their length and width, i.e., the longer the length of negative
obstacle (the wider the width) the higher the detection accuracy and the smaller the error,
and vice versa: the lower the detection accuracy the larger the error. The accuracy of this
method in detecting the geometric features of negative obstacles is negatively correlated
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with the distance between the LiDAR and the negative obstacles, i.e., the farther the LIDAR
is from the negative obstacles, the lower the detection accuracy and the larger the error,
and vice versa: the higher the detection accuracy and the smaller the error.
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4.2.2. Unstructured Environment

Further, to verify the applicability of the present method in different environments,
this experiment also detected negative obstacles in an unstructured environment and
tried to estimate their geometric characteristics. Since the negative obstacle of the non-
institutionalized pavement were irregular, it was difficult to define their lengths and
widths. According to the applicability of this method, the maximum diameter of the
negative obstacle is taken as the criterion for measurement and estimation. The results of
the detection of the non-structural environment are shown in Table 5.

Table 5. Experimental results of negative obstacle measurement in non-structural environments.

Experiment No. Distance (m) Maximum Diameter
Measurable (m)

Measurement
Results (m) Error (%)

1

1

1.19

- -
2 0.8479 28.75
3 0.9432 20.74
4 0.5014 57.87
5 0.6470 45.63
6 - -

2

1

1.62

- -
2 1.9502 20.38
3 2.2335 37.87
4 0.8274 48.97
5 1.1193 30.91
6 - -

3

1

0.5

- -
2 0.4735 5.3
3 0.5596 11.92
4 0.4324 13.52
5 0.3350 33
6 - -

According to the data in Table 5, we can see that the detection range and accuracy
vary in different non-structural environments, but in the case of no obstruction in front of
the negative obstacle, the negative obstacle within 5 m from the LiDAR can be detected.
Due to the uneven terrain in the nonstructural environment, the geometric characteristics
of the negative obstacles have large errors and no regularity.
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4.3. Comparison Experiment

To further verify the accuracy of the proposed method in this paper. It is compared
with two typical negative obstacle detection methods. One of the papers [9] is a negative
obstacle detection algorithm based on the fusion of single-line LiDAR and monocular vision.
The literature [2] is a negative obstacle detection method based on infrared features. As well
as this, the literature [3] further couples thermal feature-based cues and geometric retrieval
based on stereo distance data for nighttime negative obstacle detection. At the same time,
to verify the accuracy of the estimation method of the negative obstacle geometric features
proposed in this paper, the data estimated based on the mathematical model in this paper
are also counted, and subjected to error analysis. For comparison purposes, only the errors
within the detection limits of each method are counted. In order to objectively compare the
relationship between the measurement errors of each method, we took the middle value
for all experimental environments, i.e., the statistics were conducted under the condition
that the length of the negative obstacle was 100 cm and the width was 40 cm. Due to the
high testing conditions in the literature [2,3], the comparison experiments were performed
in two groups: daytime and nighttime.

From Figure 19, it can be found that the negative obstacle detection performance of
the method in this paper is better than the methods in the literature [2,3,9], both in daytime
and nighttime. We can see that the detection error of the VLP-16 LiDAR-based method in
this paper does not change much in the two sets of experiments at day and night, while the
error of the method in the literature [9] at night is significantly larger than that at daytime,
which is because the detection capability of the monocular sensor at night will be greatly
discounted, leading to the fact that the method in the literature [9] at night is almost equal
to the detection of negative obstacles by single-line LiDAR only, and the single-line. The
real-time and stability of LiDAR is much lower than that of 16-line LiDAR. Figure 20a for
single-line LiDAR to detect negative obstacles, (b) for 16-line LiDAR to detect negative
obstacles) shows the gap between the point cloud map generated by single-line LiDAR and
multi-line LiDAR to detect negative obstacles under the condition of the same environment
and the same distance, obviously multi-line LiDAR generated. The point cloud is more
easily recognized by the machine. The method in the literature [2,3] is based on the
phenomenon that negative obstacles tend to dissipate less heat and higher temperatures
than the surrounding terrain at night, and local intensity analysis is performed on the IR
images to mark significant intensity regions as potential negative obstacle regions, and
then the final negative obstacle confirmation is performed by multi-frame verification and
fusion. The biggest limitation of this method is that it can only detect negative obstacles at
night, and is affected by the weather environment relatively significantly, while there will
also be animals and other living things mistakenly detected as negative obstacles, and the
detection error at night is also greater than the error of this method.

The experimental results show that when the distance between LiDAR and negative
obstacles is less than 111 cm or more than 1719 cm, LiDAR cannot detect negative obstacles,
which belong to the detection blind area of this method, and the error of detecting negative
obstacles in unstructured pavement is greater compared to structured pavement because
the sensor is more single. The method of Yunfei Cai [31] will be referred to in the subsequent
study. At the same time, the speed of the trolley cannot be too fast; when the speed of the
trolley is greater than 1 m/s, in 20 Hz sampling rate, even a flat road will miss detection
of smaller negative obstacles (diameter less than 15 cm), while reducing the detection
accuracy of larger negative obstacles (diameter greater than 15 cm).

Overall, the present method is very accurate in estimating the geometric features
within 5 m from the negative obstacles, and the driving speed of the unmanned vehicle
(1 m/s). A driving time of 5 m is fully capable of timely obstacle avoidance. Therefore, the
practicality of this method is very strong.
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Figure 20. Performance comparison of single-line LiDAR and 16-line LiDAR. (a) Single line LiDAR detects negative obstacle;
(b) 16-line LiDAR detects negative obstacle.

5. Conclusions

This paper proposes estimating geometric features of negative obstacles based on a
single-frame 3D laser point cloud. The method is composed of two parts: negative obstacle
location and geometric feature estimation. The point cloud denoising (PassThrough filter
to locate the precise position of the negative obstacle point cloud, StatisticalOutlierRemova
filter to handle the noise, Median filter to smooth the denoising) presents an accurate
2D negative obstacle image, improving the intuitiveness and accuracy of the detection.
The estimation method is based on a mathematical model combined with Progressive
Probabilistic Hough Transform and OpenCV pixel traversal, doing multi-feature correlation
estimation. Finally, the number of traversed pixels and the raster size to obtain the final
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result. The experiments show that the VLP-16 LiDAR has sparse coverage compared to the
HDL-64 LiDAR and HDL-32 LiDAR but can scan fast (20 Hz) during the travel of the ROS
Autonomous Navigation Vehicle and detects the geometric features of negative obstacles
more clearly than the single-line LiDAR.

Moreover, since it is based on single-frame detection, this method’s detection estima-
tion efficiency is much higher than other methods. The experimental results show that the
method in this paper has high reliability, realizes the function of complex LiDAR with low
hardware cost, can improve the detection accuracy of negative obstacles, and has practical
application value for the research of LiDAR environment perception. The experiments’
performance also demonstrates the practicality of the method to meet an autonomous
unmanned platform’s need. It is of high value in unmanned technology, forest fire-fighting,
and many other unmanned situations.
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