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Abstract: Subtitles are crucial for video content understanding. However, a large amount of videos
have only burned-in, hardcoded subtitles that prevent video re-editing, translation, etc. In this
paper, we construct a deep-learning-based system for the inverse conversion of a burned-in subtitle
video to a subtitle file and an inpainted video, by coupling three deep neural networks (CTPN,
CRNN, and EdgeConnect). We evaluated the performance of the proposed method and found that
the deep learning method achieved high-precision separation of the subtitles and video frames
and significantly improved the video inpainting results compared to the existing methods. This
research fills a gap in the application of deep learning to burned-in subtitle video reconstruction
and is expected to be widely applied in the reconstruction and re-editing of videos with subtitles,
advertisements, logos, and other occlusions.

Keywords: subtitle extraction; burned-in subtitles; image inpainting; text region detection; text
recognition

1. Introduction

As an important clue to the semantics of a video, subtitles use text to emphasize,
supplement, or explain the non-visual content. As video becomes a mainstream medium
for information interaction, subtitles play an increasingly important role as they enrich
the on-screen information, e.g., subtitles may imply commentaries or thoughts from the
creator. In addition, subtitles effectively compensate for simultaneous sound and enhance
the understanding of the video for viewers with hearing impairments.

For more convenient transmission, subtitles exist mainly in the form of burned-in
video frames, especially in most short and old videos. However, the language-specific
burned-in subtitles pose great challenges for the re-editing and communication of the
video between different languages [1], e.g., the translation of the video. Hence, subtitle
extraction has been gaining attention, and some techniques have emerged for the automatic
recognition of subtitles to facilitate the understanding and transcription of videos [2,3].
On the other hand, a video is seriously damaged after the extraction and removal of the
burned-in subtitles, while an intact, subtitle-free video is desired, e.g., for re-adding the
translated subtitles. Hence, the inpainting of the subtitle-removed frames is of great value
for the reuse of the video.

The reconstruction of the burned-in subtitle video is realized by the combined sub-
title removal and video restoration, which can be generally divided into two stages: text
detection and frame inpainting. Existing video reconstruction techniques are based on
traditional text detection and texture reconstruction approaches and have achieved some
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success. However, there are still problems. Previous video reconstruction methods em-
ployed a traditional text detection pipeline [4–8], which consists of a series of steps, such as
stroke filtering, positioning, segmentation, and verification.

The performance of the methods heavily relies on character detection, while the com-
plex steps result in the propagation of errors and, hence, poor robustness and reliability [9].
Few works could generate the subtitle files directly. Furthermore, traditional frame inpaint-
ing approaches are generally diffusion-based or patch-based [10–14]. However, both the
diffusion method based on differential operators and the patching method based on similar
source image filling do a poor job of inpainting heavily damaged and complex details [15].

Recently, deep learning methods have achieved remarkable success in text recognition
and image inpainting [2,3,9,15,16]. For example, Yan et al. [3] used a residual neural
network for subtitle recognition, and Nazeri et al. [15] used a generative adversarial model
for image restoration, and both showed excellent performance. Hence, deep learning
methods open up wide prospects and provide powerful tools for the reconstruction of
burned-in subtitle videos.

However, video reconstruction is a complex task that demands several deep modules.
Thus, how to realize the seamless collaboration among the modules becomes a vital issue.
For now, there is still a lack of an effective method that employs deep learning approaches
to solve the burned-in subtitle video reconstruction challenge.

In this paper, we propose a novel pipeline for burned-in subtitle video reconstruction,
based on deep learning. The pipeline unites subtitle extraction and frame inpainting and
consists of three stages: (1) text detection; (2) text recognition; and (3) frame inpainting,
and is implemented by three state-of-the-art deep neural networks (CTPN [9], CRNN [16],
and EdgeConnect [15], respectively). An intermediate-process as well as a post-process are
designed to implement the coupling of the models and the transformation of the results.
Our contributions are four-fold:

• The inverse conversion of the burned-in subtitle video to an independent subtitle file
and subtitle-free video.

• A novel framework for burned-in subtitle video reconstruction based on deep learning.
• The first application of the state-of-the-art deep learning techniques for burned-in

subtitle video reconstruction with significantly enhanced subtitle extraction and frame
inpainting.

• A general pipeline can be applied in the reconstruction and re-editing of videos with
subtitles, advertisements, logos, and other occlusions.

The rest of the paper is structured as follows. Section 2 introduces the related work.
Section 3 describes the framework and methodology for burned-in subtitle video recon-
struction in detail. Section 4 presents and discusses the experimental results. Section 5
concludes our work and looks forward to future work.

2. Related Work

Over the past decade, a few works have addressed the challenge of burned-in subtitle
video reconstruction. In 2010, Favorskaya et al. [4] first proposed a hybrid method based
on contour and color information from sequential frames for text detection, and recon-
structed the texture by statistical analysis in the time-space domain. Then, a priority-based
matching algorithm was proposed by Khodadadi et al. [5] for reconstruction in areas with
texture variation.

Subsequently, Favorskaya et al. [17] proposed a neural network based on time-space
parameters for inpainting small-area damage of videos. In 2016, Vuong et al. [18] proposed
a reconstruction system capable of detecting and extracting burned-in subtitles in the form
of text, avoiding the waste of the original subtitles.

Previous burned-in subtitle video reconstruction methods were based on traditional
text detection and texture reconstruction, which still have many problems despite some
success, e.g., poor robustness due to the complex text detection pipeline (see Section 2.1 for
details), poor generality due to the lexicon-based text recognition (see Section 2.2 for details),
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and the loss of high-frequency information for image restoration (see Section 2.3 for details).
We summarize the pipeline of burned-in subtitle video reconstruction into three subtasks:
(1) text detection, (2) text recognition, and (3) frame inpainting. The following introduces
the related work in each of these three subtasks.

2.1. Text Detection

Previously, there were two common approaches for text detection in videos or images
with complex backgrounds. The primitive methods are based on low-level properties of the
frame such as the contour, color, or gradient, including the gradient method, stroke filtering,
color threshold segmentation, etc. [4–8]. Text detection is implemented through a series of
filtering components, which leads to the transfer and accumulation of errors, resulting in
low accuracy and robustness, especially when dealing with complex backgrounds.

With the development of CNN, character-based text detection methods
emerged [19–22], which detect candidate characters by densely moving a multi-scale
window through an image. The content in the window is judged by a pre-trained classifier.
However, dense window sliding imposes a huge computational overhead, which severely
limits the detection speed. In addition, precise text line positioning is difficult for the above
methods. The Connectionist Text Proposal Network (CTPN) [9] is a mature text detection
framework that combines CNN and Long Short-Term Memory (LSTM) deep networks
to greatly improve the localization accuracy through a vertical anchor mechanism, while
overcoming the inefficiency of sliding window methods.

2.2. Text Recognition

Traditional text recognition is based on character recognition and word recognition.
The primitive approaches crop and detect individual characters from a word image by
sliding a window, and then recombine all characters into a complete word [23,24]. These
approaches require a powerful character detector and strongly rely on a fixed lexicon to
synthesize words. Subsequently, word-based approaches emerged [25], which treat text
recognition as a word image classification task, assigning a category label to each word.

Despite the impressive results achieved by these methods, they require an ultra-
multi-classification model, are seriously confined by the number of classes, and have poor
generalizability. CNN and RNN are important branches of the deep neural network
family, specializing in image feature extraction and sequence analysis, respectively [26–28].
Shi et al. proposed a novel network called the Convolutional Recurrent Neural Network
(CRNN) [16] that integrates CNN and RNN into the text recognition task, to solve the
problems that exist in traditional methods. Compared with previous text recognition
systems, CRNN is end-to-end trainable, able to handle sequences of arbitrary length,
and not limited by any predefined lexicon. It is also an efficient but small model that is
well-suited to real-life scenes.

2.3. Image Inpainting

Previous video frame restoration techniques can be divided into two perspectives:
spatial and temporal domains, and three basic approaches: overlaying (as a temporal
algorithm), diffusing, and patching (as spatial algorithms). The overlaying methods
cover the missing texture region on the current frame by the real texture fragment of
the previous or next frame without texture smoothing and compositing [4]. It is diffi-
cult to solve the micro-displacement or out-of-tune state of the texture fragments on the
image. The diffusion methods propagate local background information to the missing
regions [10–12].

However, such methods do not take full advantage of the global information and,
thus, cannot recover meaningful structures in the missing regions and poorly handle
a large missing region. Meanwhile, the diffusion methods require a significant time
overhead to reach appreciable inpainting effects, which is unacceptable for the inpainting
of videos. With the application of deep learning to image inpainting, the patch-based
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methods have emerged [13,14], which implement inpainting by copying similar regions
from the image set.

Such methods strongly rely on the image set and, thus, are suitable for highly patterned
scenes but have difficulty in inpainting unique patterns. Recently, generative adversarial
networks (GANs) have achieved impressive performances in inpainting [15,29–31]. Edge-
Connect [15] is a new GAN-based inpainting method, inspired by the creative idea of “lines
first, color next”, achieving coherence in the inpainting content and refinement of details
by global edge-connecting with high time efficiency.

3. Method

As shown in Figure 1 (model diagram) and Figure 2 (processing flow), the entire
pipeline of the proposed method contains three main modules plus an intermediate process
and a post process. Given a video frame with burned-in subtitles as input, a text detection
network is first adopted to precisely locate the subtitle text region. By taking the text region
bounding box, an intermediate process is conducted to separate the processed video frame
into two parts.

The cropped subtitle image is fed into a text recognition network to recognize the
subtitle character contents, and the video frame together with the subtitle character mask
are sent to an image inpainting network to fill up the missing pixels inside the region of
subtitle characters. After the subtitle recognition and frame inpainting, a post-process is
required to construct the subtitle text file and assemble the inpainted frames into a video
file. The following subsections depict the technical details of each module.

Figure 1. Model diagram of the entire deep-learning-based system for burned-in subtitle video
reconstruction, which consists of three joint deep neural networks: CTPN (for text detection), CRNN
(for text recognition), and EdgeConnect (for video inpainting).

3.1. Text Detection

The subtitle text region detection module employs the CTPN method [9], which
utilizes a seamless combination of CNN and RNN to achieve the high-accuracy detection
of horizontal text in complex scenes. CTPN enables the input video frame of an arbitrary
size (H×W× 3) for text detection. At the beginning of detection, a CNN based on VGG-16
is first adopted to extract the deep features of input raw images. The feature map of layer
conv5 is obtained as the last layer of VGG-16, with the total stride and receptive field fixed
as 16 and 228 pixels, respectively.

Then, a 3 × 3 sliding window with a step size of 1 is performed on this feature map to
obtain 256-D feature vectors. A RNN based on the bi-directional LSTMs (BiLSTMs) is used
to learn feature sequences and predict the position of text according to the preceding and
following texts. The feature vectors corresponding to all windows are fed into a BiLSTM
network, consisting of two 128-D forward and inverse LSTMs. The output of the BiLSTM
network is then fed into three regression layers through a 512-D fully connected layer.

Among the three regression layers, the 2 k vertical coordinates and k side-refinement
are obtained to locate the k proposals (fixed-width, slender rectangular boxes), while 2 k
scores are obtained to determine whether the proposal is text. Finally, every two adjacent
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proposals with scores > 0.7 are merged to obtain the bounding box of the subtitle text
region. The network configuration summary of CTPN is detailed in Table A1.

3.2. Text Recognition

The recognition module used to recognize the characters in the video subtitles is
mainly based on CRNN [16]. The architecture of CRNN consists of three components
from the bottom to top, including the convolutional layer (CNN, for extracting features),
the recurrent layer (RNN, for predicting distributions) and the transcription layer (CTC,
for synthesizing sequences), to achieve accurate recognition of indefinitely long text se-
quences. At the beginning of recognition, The gray-scale image of the subtitle text region is
sent to the CRNN, and the image is deflated to 32 ×W and then fed into a CNN based on
the VGG network.

After a series of convolution, pooling, and batch normalization operations on the
image, the CNN extracts a 512 × 1 × 40 feature map and converts it into 40 × 512-D
feature vectors for the prediction in recurrent layers. On top of the convolutional layer,
a BiLSTM-based RNN is built, which uses a 256-D BiLSTM network to learn feature vectors
and predict the probability distribution of the labels.

At the end of the RNN, the propagated sequence is concatenated again into a map and
fed back to the CNN, implementing a custom network layer called “Map-to-Sequence”,
which serves as a bridge between the CNN and RNN. On top of the recurrent layer,
the transcription layer converts the label probability distribution from the RNN into an
indefinitely long text sequence by de-duplication and integration, as the final output result.
The network configuration summary of CRNN is detailed in Table A2.

3.3. Frame Inpainting

The inpainting of subtitle-removed frames is based on an adversarial edge learning
image inpainting network named EdgeConnect [15]. EdgeConnect consists of two GAN
cascades, including an edge generator and an image completion network, to generate
hallucinated edges and inpaint the missing pixels by edge-guiding, via adversarial learning.
Each GAN follows the adversarial model, consisting of a generator and discriminator.

For the GAN of EdgeConnect, the generator consists of an encoder, eight residual
blocks, and a decoder, and the discriminator consists of five convolution layers. In the
generator of the first-stage GAN (edge generator), the gray-scale map of the subtitle-
removed frame and subtitle mask are used as pre-conditions to predict the edge map of
the masked area. The input image is down-sampled twice by the encoder and fed into the
residual blocks for dilated convolutions with a dilation factor of 2, resulting in a receptive
field of 205 at the final residual layer. The final map is up-sampled twice by the decoder
and resized to its original scale.

Similar to the first stage, the generator of the second-stage GAN (image completion
network) takes the RGB map of the subtitle-removed frame and the predicted edge map as
pre-conditions to complete the image by combining the background area of the ground
truth edges with the predicted edges in the damaged area. For discriminators, a 70 × 70
PatchGAN architecture is used, which determines whether or not overlapping image
patches of size 70 × 70 are real.

The discriminator of the edge generator discriminates whether the generated edge
map is real with a joint loss as the training goal, including an adversarial loss and feature-
matching loss. The discriminator of the image completion network discriminates whether
the inpainted color map is real, with a joint loss as the training goal, including an L1 loss,
adversarial loss, perceptual loss, and style loss. The network configuration summary of
EdgeConnect is detailed in Table A3.

3.4. Intermediate-Process

As shown in Figure 2, an intermediate-process stage was designed to connect the text
region detection stage and the following text recognition and frame inapinting stages. This
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process takes the bounding box (bbox) of the subtitle text area obtained from CTPN and the
original video frame as input, and consists of three main steps. In the first step, the original
frame is copied and cropped by the bbox. The cropped subtitle text image is fed into the
CRNN, achieving end-to-end recognition of the subtitle by CRNN.

In the second step, the contour of the original frame in the bbox is extracted and
expanded. The subtitle mask is obtained, which ensures the complete removal of subtitle
text at the cost of minimal information loss. In the third step, the original frame is corroded
by the subtitle mask. And the subtitle-removed frame is fed into EdgeConnect along
with the subtitle mask. The whole process improves the accuracy of subtitle recognition
through the precise-segmentation of the subtitle text area, and minimizes the error of frame
inpainting through the careful-removal of subtitle text.

Figure 2. The processing flow of the entire deep-learning-based pipeline for burned-in subtitle video
reconstruction, mainly consisting of two processes: an intermediate-process (for network coupling)
and a post-process (for output conversion).

3.5. Post-Process

In order to obtain the final subtitle file and the subtitle-free video file, a post-process
stage is needed. The subtitle text sequences are output by CRNN, while the inpainted
frames are output by EdgeConnect. Hence, a post-process is required to synthesize the
outputs into the subtitle file and video. As shown in Figure 2, the post-process takes all the
inpainted frames and subtitle text sequences as input, where each inpainted frame and each
sequence has an index corresponding to its position in the original video. The post-process
consists of two parallel steps.

In the first step, all subtitle text sequences are sorted by the indices and the beginning
and end of each subtitle in the time domain are calculated according to the original frame
rate. Then, each subtitle is time-stamped and synthesized to a subtitle file. In the second
step, all the inpainted frames are sorted by the indices and are assembled into a video at
the original frame rate. Finally, the entire pipeline is completed with the post-process to
convert the burned-in subtitle video to an integral subtitle file and video in reverse.

4. Results and Discussions

The proposed burned-in subtitle video reconstruction algorithm was implemented
based on python programs. The three deep neural networks in the system were each
trained on different training sets by adopting different strategies. Among them, CTPN
was trained end-to-end on 3000 natural images by standard error back-propagation and
stochastic gradient descent (SGD), with a learning rate of 10−3 for the initial 16 K iterations
and 10−4 for the subsequent 4K iterations, using 0.9 momentum and 0.0005 weight decay.
CRNN was also trained end-to-end on the Synth dataset [32] by back-propagation and
SGD, using ADADELTA [33] to automatically calculate the learning rate for each dimension
and iterating until convergence.

EdgeConnect uses the Adam optimizer [34] to optimize the model, with β1 = 0 and
β2 = 0.9. The generators were trained end-to-end until convergence on the Places2 [35]
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dataset with learning rates set to 10−4, 10−5, and 10−6, gradually, while the discriminator’s
learning rate was one-tenth of the generator’s. Finally, the network was fine-tuned by
removing the discriminator of the first-stage GAN. The entire pipeline of burned-in subtitle
video reconstruction was tested on 2186 video frames, and the experimental results of each
stage are discussed in detail next.

4.1. Text Detection

As shown in Figure 3, frames with both Chinese and English subtitles are input to
CTPN for text detection. The bboxes of the Chinese and English subtitle text areas are
obtained at the output side of CTPN, and the Intersection over Union (IoU) [36] is calculated
to measure the accuracy of subtitle detection.

IoU =
The overlapping area o f prediction and ground− true bounding boxes

The union area o f prediction and ground− true bounding boxes

After testing, the IoUs of the output Chinese and English subtitle detection were 91.9%
and 91.1%, respectively. As the input-processing-layer of the joint deep networks, CTPN
achieved the precise positioning of multilingual subtitles in detection, ensuring accurate
extraction and removal of the burned-in subtitles.

Figure 3. Precise bboxes were obtained with CTPN text detection.

4.2. Intermediate-Process

As shown in Figure 4, the bboxes of the Chinese/English subtitles from the CTPN and
the original video frame were fed to the intermediate-process pipeline, and two groups of
outputs were obtained: (1) images of the text area of the Chinese/English subtitle, and (2)
subtitle masks and the subtitle-removed frames. The first group was input to the subtitle
recognition network, and the second group was input to the frame inpainting network.

The whole process is based on the precise positioning of the subtitle text area, and the
end-to-end recognition, and the minimal removal of subtitles is achieved by subtitle area
segmentation and text contour extraction, which enhances the recognition accuracy of the
subtitle text and the inpainting effect of the subtitle-removed frames.

Figure 4. The burned-in subtitle frame with bboxes to subtitle text images and the subtitle-removed
frame and mask, via the intermediate-process.
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4.3. Text Recognition

The text images of Chinese and English subtitles were input to the CRNN for text recog-
nition. As shown in Figure 5, the recognized texts of Chinese and English subtitles were
output by the CRNN, respectively. Recognition was also performed on the entire frames
without processing, as a comparison to demonstrate the advantages of the end-to-end
recognition strategy. The recognition accuracy was calculated for the numerical evaluation.

Figure 5. The recognized results of Chinese and English subtitles output by the CRNN.

Table 1 lists the accuracies of the entire frame recognition and end-to-end recognition
for Chinese/English subtitles, which indicates that the end-to-end recognition strategy
significantly improved the dual-recognition accuracy of Chinese/English subtitles by mini-
mizing the interference of irrelevant background information. Despite the acceptable result
obtained by CRNN, it can still be seen that some non-negligible errors existed in the recog-
nition of subtitles, due to the complex video image background. Fortunately, the proposed
joint deep networks are partially modifiable; hence, the boosted text recognition network
can be used to replace the existing text recognition part in the future.

Accuracy =
Number o f words correctly recognized

Total number o f recognized words

Table 1. Accuracy of Chinese and English subtitle recognition under different strategies.

Accuracy

Strategy Chinese English

Entire frame recognition 70.5% 72.1%
End-to-end recognition 81.6% 79.3%

4.4. Frame Inpainting

Subtitle masks and the subtitle-removed frames were input to the EdgeConnect for
inpainting, and the inpainted frames were obtained at the output of the EdgeConnect
network. A traditional method and a state-of-the-art deep learning method were also
tested as a comparison. As a representative diffusion-based inpainting method, the Fast
Marching Method (FMM) [37], which utilizes existing domain pixels for gradient estimation
to achieve fast marching of missing pixels, is suitable for video processing with high
inpainting efficiency among the traditional methods.

As a representative GAN-based inpainting method, Globally and Locally Consistent
Image Completion (GLCIC) [31] uses a fully convolutional network as a generator to
inpaint pixels in arbitrarily shaped missing regions and discriminates the global and local
consistency of the inpainted content by means of two discriminators. Hence, these two
methods are used as traditional and state-of-the-art deep learning inpainting strategies,
respectively, compared with our strategy.

In order to make an objective comparison between other existing methods and our
method in terms of frame inpainting, the image quality metrics: Peak Signal-to-Noise
Ratio (PSNR) [38], Structural SIMilarity (SSIM) [39], Normalized Root Mean Square Error
(NRMSE), and Fréchet Inception Distance (FID) [40] were calculated for the entire inpainted
frames to evaluate the inpainting performance. Figures 6 and 7 show the inpainting effects
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of the traditional method (FMM), state-of-the-art deep learning method (GLCIC), and our
method (EdgeConnect).

It can be seen that the textures inpainted by FMM method are blurred with insufficient
details, while the textures inpainted by the GLCIC method are far from the ground true
texture, albeit with more details. The inpainted textures of our method are significantly
more vivid than those of the other existing methods and fit excellently with the ground
true frames with higher fineness and realism. The frames inpainted by EdgeConnect are
visually coherent and were produced faster than the FMM and GLCIC methods, making
the video reconstruction system ideal for real-life applications.

Figure 6. Comparison of the original frames and the inpainting results of other existing methods as
well as our method.

Table 2 lists the evaluation metrics of the traditional method (FMM), state-of-the-
art deep learning method (GLCIC), and our method (EdgeConnect). PSNR was used
to measure the distortion, SSIM was used to measure the similarity, NRMSE was used
to measure the pixel error, and FID was used to measure the feature vector distance
between the ground-truth frames and the inpainted frames, using a pre-trained Inception-
V3 model. Our method recovered the lost high-frequency information by edge-connecting
based on adversarial learning, outperforming other existing methods in all the evaluation
metrics; thus, the inpainted frames from our method demonstrated higher realism and
more information.

Table 2. Evaluation metrics of the traditional method and our method.

Evaluation Metrics

Method PSNR SSIM NRMSE FID

FMM 28.804 0.945 0.110 0.280
GLCIC 29.241 0.960 0.099 0.142

EdgeConnect 34.129 0.975 0.059 0.035

4.5. Post-Process

The outputs of the joint deep networks were fed to a pipeline for post-processing.
As shown in Figure 8, the Chinese/English subtitle text sequences from the CRNN were
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synthesized into Chinese and English subtitle files, while the inpainted frames from the
EdgeConnect were assembled into a video, during the post-process. The post-process
finally realized the reconstruction of the burned-in subtitle video to the independent
Chinese/English subtitle file and subtitle-free video, achieving the completeness of the
entire reconstruction pipeline and facilitating users’ re-editing.

Figure 7. Zoomed-in comparison of the local texture details between the original frames and the
inpainting results of other existing methods as well as our method.
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Figure 8. The inpainted frames and Chinese/English subtitle text sequences to Chinese/English
subtitle file and subtitle-free video via post-processing.

5. Conclusions and Future Work

In this paper, we performed a deep-learning-based intelligent reconstruction system
for burned-in subtitle videos. The novel system realized the seamless integration of CTPN,
CRNN, and EdgeConnect through a well-designed intermediate-process. High-accuracy
text extraction and high-quality frame restoration were achieved through joint deep neural
networks. Finally, the system completed the inverse conversion from the burned-in subtitle
video to the independent subtitle file and subtitle-free video by post-processing.

We evaluated the performance of the system, and found that the deep learning ap-
proach achieved high accuracy detection and recognition of subtitles and significantly
enhanced the video inpainting compared to existing methods. This result is expected to be
widely used in the field of reconstruction and re-editing of digital videos with subtitles,
advertisements, logos, and other occlusions.

Future work can be continued in two aspects. The first is to improve the sub-net
of the joint deep networks, especially for the text recognition network. According to the
experimental results, both the text detection network (CTPN) and the frame inpainting
network (EdgeConnect) achieved excellent performance; however, the accuracy of the text
recognition network (CRNN) was still hindered by the complex video image background.
We plan to combine audio recognition or a grammar checking network to enhance the
subtitle recognition accuracy.

The second aspect is to polish the intermediate-processing steps for the coupling of
deep networks, in particular for contour extraction. We plan to use a more accurate method
for contour extraction to achieve the perfect removal of burned-in subtitles with minimal
information loss.
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Appendix A

Table A1. Network configuration summary of CTPN. ‘k’, ‘s’, and ‘p’ stand for the kernel size, stride
size, and padding size, respectively.

Type Configuration

Input input raw image
Convolution #maps:64, k:3 × 3, s:1, p:1
Convolution #maps:64, k:3 × 3, s:1, p:1
MaxPooling Window:2 × 2, s:2
Convolution #maps:128, k:3 × 3, s:1, p:1
Convolution #maps:128, k:3 × 3, s:1, p:1
MaxPooling Window:2 × 2, s:2
Convolution #maps:256, k:3 × 3, s:1, p:1
Convolution #maps:256, k:3 × 3, s:1, p:1
Convolution #maps:256, k:3 × 3, s:1, p:1
MaxPooling Window:2 × 2, s:2
Convolution #maps:512, k:3 × 3, s:1, p:1
Convolution #maps:512, k:3 × 3, s:1, p:1
Convolution #maps:512, k:3 × 3, s:1, p:1
MaxPooling Window:2 × 2, s:2
Convolution #maps:512, k:3 × 3, s:1, p:1
Convolution #maps:512, k:3 × 3, s:1, p:1
Convolution #maps:512, k:3 × 3, s:1, p:1

Map-to-Sequence #maps:512, k:3 × 3, s:1, p:1
Bidirectional-LSTM #hidden units:128
Bidirectional-LSTM #hidden units:128

FullConnection #dimension:512
Output 1 vertical coordinates
Output 2 side-refinement
Output 3 text/non-text scores

Table A2. Network configuration summary of CRNN. ‘k’, ‘s’, and ‘p’ stand for the kernel size, stride
size, and padding size, respectively.

Type Configuration

Input input gray-scale image
Convolution #maps:64, k:3 × 3, s:1, p:1
MaxPooling Window:2 × 2, s:2
Convolution #maps:128, k:3 × 3, s:1, p:1
MaxPooling Window:2 × 2, s:2
Convolution #maps:256, k:3 × 3, s:1, p:1
Convolution #maps:256, k:3 × 3, s:1, p:1
MaxPooling Window:1 × 2, s:2
Convolution #maps:512, k:3 × 3, s:1, p:1

BatchNormalization -
Convolution #maps:512, k:3 × 3, s:1, p:1

BatchNormalization -
MaxPooling Window:1 × 2, s:2
Convolution #maps:512, k:2 × 2, s:1, p:0

Map-to-Sequence -
Bidirectional-LSTM #hidden units:256
Bidirectional-LSTM #hidden units:256

Transcription text sequence
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Table A3. Network configuration summary of EdgeConnect. ‘k’, ‘s’, and ‘p’ stand for the kernel size,
stride size, and padding size, respectively.

EdgeGenerator

Type Configuration

Input mask + edge + gray-scale map
Convolution #in_channels:3, out_channels:64, k:7 × 7, p:0
Convolution #in_channels:64, out_channels:128, k:4 × 4, s:2, p:1
Convolution #in_channels:128, out_channels:256, k:4 × 4, s:2, p:1

ResnetBlock×8 #dimension:256, dilation = 2
Convolution #in_channels:256, out_channels:128, k:4 × 4, s:2, p:1
Convolution #in_channels:128, out_channels:64, k:4 × 4, s:2, p:1
Convolution #in_channels:64, out_channels:1, k:7 × 7, p:0

EdgeDiscriminator

Type Configuration

Convolution #in_channels:1, out_channels:64, k:4 × 4, s:2, p:1
Convolution #in_channels:64, out_channels:128, k:4 × 4, s:2, p:1
Convolution #in_channels:128, out_channels:256, k:4 × 4, s:2, p:1
Convolution #in_channels:256, out_channels:512, k:4 × 4, s:1, p:1
Convolution #in_channels:512, out_channels:1, k:4 × 4, s:1, p:1

InpaintGenerator

Type Configuration

Input edge map + RGB map
Convolution #in_channels:4, out_channels:64, k:7 × 7, p:0
Convolution #in_channels:64, out_channels:128, k:4 × 4, s:2, p:1
Convolution #in_channels:128, out_channels:256, k:4 × 4, s:2, p:1

ResnetBlock×8 #dimension:256, dilation = 2
Convolution #in_channels:256, out_channels:128, k:4 × 4, s:2, p:1
Convolution #in_channels:128, out_channels:64, k:4 × 4, s:2, p:1
Convolution #in_channels:64, out_channels:3, k:7 × 7, p:0

InpaintDiscriminator

Type Configuration

Convolution #in_channels:3, out_channels:64, k:4 × 4, s:2, p:1
Convolution #in_channels:64, out_channels:128, k:4 × 4, s:2, p:1
Convolution #in_channels:128, out_channels:256, k:4 × 4, s:2, p:1
Convolution #in_channels:256, out_channels:512, k:4 × 4, s:1, p:1
Convolution #in_channels:512, out_channels:1, k:4 × 4, s:1, p:1
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