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Abstract: Land cover semantic segmentation in high-spatial resolution satellite images plays a
vital role in efficient management of land resources, smart agriculture, yield estimation and urban
planning. With the recent advancement in remote sensing technologies, such as satellites, drones,
UAVs, and airborne vehicles, a large number of high-resolution satellite images are readily available.
However, these high-resolution satellite images are complex due to increased spatial resolution
and data disruption caused by different factors involved in the acquisition process. Due to these
challenges, an efficient land-cover semantic segmentation model is difficult to design and develop.
In this paper, we develop a hybrid deep learning model that combines the benefits of two deep
models, i.e., DenseNet and U-Net. This is carried out to obtain a pixel-wise classification of land
cover. The contraction path of U-Net is replaced with DenseNet to extract features of multiple scales,
while long-range connections of U-Net concatenate encoder and decoder paths are used to preserve
low-level features. We evaluate the proposed hybrid network on a challenging, publicly available
benchmark dataset. From the experimental results, we demonstrate that the proposed hybrid network
exhibits a state-of-the-art performance and beats other existing models by a considerable margin.

Keywords: land cover classification; remote sensing; semantic segmentation; deep learning

1. Introduction

With the recent advancement in remote sensing technologies, such as satellites,
drones, and airborne vehicles, etc., high-resolution satellite images are easy to acquire [1].
This opens up new paradigms and research directions for the remote sensing commu-
nity that offer different applications in diverse fields, for example, land cover segmen-
tation [2–4], smart agriculture [5,6], traffic monitoring [7,8], disaster management [9],
geo-localization [10], and urban planning [11,12]. Among these applications, land cover
classification and segmentation is an important application that extracts useful information
about the type of land covered by agriculture, water, forest, urban, etc., which is crucial for
land resource managers.

Currently, large field surveys are conducted to obtain information about land
cover [13,14]. A manual analysis of large fields is a laborious and time-consuming job and
often misses valuable information about the land cover [15,16]. With recent advances in
computer vision and the success of deep neural networks with regard to optical natural
images, several automated models [3,17] have been proposed in the literature that auto-
matically perform semantic labeling (assign class) of land cover in high-resolution remote
sensing images.

The main goal of semantic segmentation is dense prediction, which involves classify-
ing each pixel of an image into different categories. Generally, semantic segmentation is a
two step process: (1) feature extraction and (2) classification. The first step extracts various

Information 2021, 12, 230. https://doi.org/10.3390/info12060230 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-7406-8441
https://orcid.org/0000-0001-7746-3618
https://orcid.org/0000-0002-2276-8307
https://www.mdpi.com/article/10.3390/info12060230?type=check_update&version=1
https://doi.org/10.3390/info12060230
https://doi.org/10.3390/info12060230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12060230
https://www.mdpi.com/journal/information


Information 2021, 12, 230 2 of 16

features, e.g., texture and appearance, from the image and transforms spatial or temporal
information into a discriminative feature set. The second task involves training a classifier
that classifies each feature set into a correct class.

Currently, most state-of-the-art deep learning models for semantic segmentation
follow the basic architecture of Fully Convolutional Networks [18]. FCN consists of two
convolutional neural networks, (1) encoder and (2) decoder networks. The encoder network
takes an input image of arbitrary type and pass the image through series of convolutional
and pooling layers that extract hierarchical features. In other words, the encoder down
samples the feature map to capture more semantic and contextual information. Typical
examples of encoder networks are VGG-16 [19], Alexnet [20], ResNet [21], Xception [22].
The decoder network consists of deconvolution layers that upsample the feature map to
capture spatial information.

Although FCN exhibited a good performance in various segmentation tasks, it suffers
from the following limitations that make it unsuitable for land cover segmentation tasks.

1. Single scale problem: Current state-of-the-art FCN networks [23–28] are single scale
and cannot exploit multi-scale information that results in the loss of valuable infor-
mation. Generally, high-resolution satellite images contain a wide variety of objects
having aspect ratios and scales. Furthermore, satellite images of land covers often
consist of irregular regions, such as agriculture areas, forests, water, etc. To acquire
a precise and rich semantic map of land cover remote sensing images, multi-scale
contextual information is required. This will discriminate the targets with similar
appearances but distinct semantic classes.

2. Large number of parameters: FCN-based semantic segmentation models require a
large number of parameters for training, which leads to computation and memory
constraints.

3. Long training time: Large number of redundant convolutional layers cause gradient
vanishing problems and take a long time to train [29].

To address the above mentioned limitations of existing deep learning networks,
we proposed a hybrid network that consists of two deep neural network architectures,
DenseNet [30] and U-Net [23]. DenseNet is widely adopted network and exhibits a good
performance in different multi-class object detection and segmentation tasks. DenseNet
consists of densely connected blocks with different output resolutions connected in a
feed-forward fashion. The network exploits residual connections and extracts contextual
features at multiple scales. The network reuses the features from downsampling layers and
concatenates feature maps from different layers to provide a variety of inputs for subse-
quent layers. It should be noted that downsampling layers extract local features; however,
the resolution of the feature map is reduced by half after passing through downsampling
dense blocks, which results in loss of important information. To avoid the information
loss, U-Net replaced the max-pooling layers by upsampling layers, which increase the
spatial resolution of the feature maps. The upsampling layers also contain a large number
of channels that allows the network to capture contextual information and pass it to the
higher layers. One of the limitations of U-Net is that the network is of limited depth and
therefore cannot extract multi-scale features. To utilize the advantages of both networks,
we combined both the networks in an efficient manner.

Generally, the framework consists of two path, i.e., dense contraction path and dense
expansion path. Both paths are symmetrical and skip connections are used to combine
both paths. The contraction path captures the context while the expanding path helps in
prediction of a precise segmentation mask. We first trained the DenseNet on ImageNet [31]
and then used the pre-trained model as a convolutional encoder in the contracting branch
of U-Net. This transfer learning allowed us to learn complex segmentation tasks, since the
model was pre-trained on 14 million images and had already learnt the complex features
of the images. To reduce the computation time during training and testing, we adopted a
cascaded approach that has been widely used in other object recognition tasks [32–34].

We summarize the contribution of this work as follows:



Information 2021, 12, 230 3 of 16

• We design an efficient hybrid network for land cover classification in high-resolution
satellite images by carefully integrating two networks.

• The proposed network learns low-level features and high-level contexts in an efficient
manner for improved land cover segmentation in satellite images.

• The network is trained in an end-to-end manner and improves the flow of information
and parameters and avoids the problem of a long training time.

• We evaluated the performance of the proposed framework on a publicly available
benchmark dataset. From experiment results, we demonstrate that the proposed frame-
work exhibits a superior performance compared to other state-of-the-art methods.

2. Related Work

In this section, we first review generic semantic segmentation models and then provide
a concise review of different models for land cover segmentation.

With the success of deep learning models in multi-object detection and classification
tasks, deep models are also considered as favorite and viable solutions in semantic seg-
mentation tasks. For semantic segmentation tasks, the first deep learning network was
proposed in [18], which consists of fully convolutional layers and is trained in an end-to-
end manner. The network takes an input image of arbitrary size and classifies each pixel of
the input image into corresponding class labels. This network lost its popularity due to the
presence of pooling layers that reduce the resolution of the feature map and cause signifi-
cant loss of spatial information. To address this problem, U-Net is proposed in [23], which
consists of encoder and decoder paths. The decoder path recovers spatial information by
combining skip connections with deconvolution layers that upsample the feature maps.
Due to its unique architecture, U-Net exhibited a good performance and has drawn much
attention from the research community of medical image analysis [25,35]. Most recently, Li
et al. [36] proposed the hybrid densely connected U-Net (H-DenseUNet) to exploit spatial
information along the third dimension to the maximum extent. H-DenseUNet consists of
2D-DenseUNet and 3D-DenseUNet, which work in a cooperative manner. Similarly, [37]
proposed a stacked U-Nets to solve the image segmentation problem. A multi-path refine-
ment network, namely, RefineNet, is proposed in [38] to further exploit spatial information
along the contraction path and uses long-range residual connections for high-resolution fea-
ture map prediction. A ResNet-like network is proposed in [39], which extracts high-level
semantic information without losing spatial details, further enhancing the performance.
The network consists of two streams—(1) the pooling stream and (2) residual stream. The
pooling streams result in a low-resolution feature map, but extract high-level semantic
information. The residual stream outputs high-resolution feature maps that maintain
spatial information by using the features learned from the pooling stream. A high-fused
convolutional neural network is proposed in [40] for an image semantic segmentation
task. The network generates feature maps by fusing and reusing the features from lower
layers. Similarly, a Discriminative Feature Network (DFN) is proposed in [41] that consists
of two small networks: (1) smooth network and (2) border network. Smooth networks
learn discriminative features by using global average pooling and Channel Attention Block
(CAB), while the border network distinguishes the boundaries of multiple semantic re-
gions by using semantic boundary supervision. To handle the scale problem in semantic
segmentation tasks, DeepLabv3 is proposed in [42], which uses atrous convolutions in a se-
rial/parallel manner to capture multiple scales of objects. The performance of DeepLabv3 is
further improved in DeepLabv3+ [28] by incorporating a decoder network that refines and
smooths the segmentation results along multiple semantic boundaries. Densely connected
Atrous Spatial Pyramid Pooling (DenseASPP) [43] generates multiple multi-scale feature
maps by connecting different atrous convolutional layers [44] that significantly increase
the semantic segmentation accuracy. SegNet [26] is another encoder–decoder network
for semantic segmentation, where the decoder part of the network recovers the spatial
information by using the indices of the pooling step and upsamples the feature map in a
non-linear manner.
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In addition to the above mentioned general methods for semantic segmentation,
researchers have proposed specialized methods for land cover segmentation in high-
resolution satellite images. Kuo et al. [3] proposed a deep aggregation network for land
cover segmentation. The network extracts and fuses feature maps from multiple layers for
semantic segmentation. A graph-based fine tuning method is introduced to further enhance
segmentation accuracy. The Dense dilated convolution’s merging network (DDCM-Net) is
introduced in [45] for land cover segmentation in satellite images. The network uses dilated
convolutions and combines feature maps with different dilation rates, which enhances the
receptive field of the network, helping to extract local and global contextual information.
A hallucination network is proposed in [46] for land cover classification. The network
avoids all modalities required during the feature fusion. The Feature pyramid network
(FPN) is adopted in [2] to address the land cover segmentation problem. A classical neural
network is proposed in [17] that optimizes the Jaccard index for the land cover classification
problem. An Uncertainty Gated Network [47] is proposed that models the multi-scale
contexts by leveraging the heteroscedastic measure of uncertainty for the classification
of all pixels of a satellite image. The Dense Fusion Classmate Network (DFCNet) [48]
incorporates mid-level information by using an auxiliary road dataset in addition to the
deepglobe dataset [49] for land cover classification. An approach based on U-Net is
used in [4] that uses Lovasz-Softmax loss to compensate for incomplete and incorrect
labeling of data and data imbalance, problems that are commonly observed in land cover
classification problems.

3. Methodology

The architecture of the proposed network for land segmentation is shown in Table 1.
We adopted DenseNet-201 [30] as a feature extractor in our framework, which consists of
201 layers that are densely connected in the form of dense blocks. The output feature maps
of each dense block has a different resolution and captures different contextual features
of multiple scales. The network consists of four dense blocks and, within each dense
block, convolutional layers are directly connected to other subsequent layers. The network
takes an input of arbitrary size and applies a convolutional layer of kernel size 7 × 7,
stride 2, followed by a max-pooling layer of kernel size 3 × 3 and stride of 2. The resul-
tant feature maps are then passed through four densely connected convolutional blocks,
namely, denseblock1, denseblock2, denseblock3 and denseblock4. Each dense block consists
of set of two convolutional layers, where the kernel size of the first convolutional layer
is 1 × 1 and size of the second convolutional layer is 3 × 3. Each denseblocki is repeated
d times. In our architecture, the first dense block, denseblock1 is repeated 6 times,and
thus consists of 6 × 2 = 12 convolutional layers. The second dense block denseblock2 is
repeated 12 times and contains 24 convolutional layers. In the same way, denseblock3 and
denseblock4 contain 96 layers and 64 convolutional layers, respectively. Each dense block is
followed by a transition layer that consists of a set of one convolutional layer of size 1 × 1
followed by a pooling layer with kernel size of 2 × 2 and stride of 2. Such a dense connec-
tion among the layers within block improves the flow of information among the layers and
avoids gradient vanishing, which is a common problem in shallow network architectures.

DenseNet-201 achieved significant performance gain in a multi-class classification
task. The network takes an input image of fixed size and incorporates fully connected
layers to the output classification score, while our problem is similar to a segmentation
problem, where pixel-wise classification is required. To employ DenseNet-201 for the
segmentation task, we replace fully connected layers with convolutional layers. Such
a configuration allows the network to accept an input of arbitrary size and outputs a
feature map instead of a classification score. However, the size of the output feature map
is small and loses a significant amount of information of low-level features after passing
through a series of max-pooling layers. To address this problem, in the decoder part,
several upsampling operations are applied to produce dense feature map equal to size of
input image. For example, one of the popular segmentation networks is U-Net, which was
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originally proposed for segmentation of cell images. U-Net adopts a U-shape structure
that consists of two paths, a contraction path and expansion path. The contraction path of
U-Net consists of four layers to extract features. However, we observed that such a limited
depth of U-Net can not extract feature of multiple scales.

Table 1. Architecture of the proposed network. The network consists of two parts, i.e., encoder and
decoder. The encoder part consists of denseblocks and transition layers. The decoder part consists
of upsampling layers. Denseblocki × d represents denseblock i, where d represents the repetition
of denseblock.

Layer Operation Kernel
Size

# of
Channels Stride Feature Size

Input - - - - 256 × 256

Encoder Part

Convolution Conv 7 × 7 96 2 128 × 128

Pooling Max pooling 3 × 3 - 2 64 × 64

Denseblock1 × 6
Conv 1 × 1 192 1 64 × 64

Conv 3 × 3 48 1 64 × 64

Transition Layer1
Conv 1 × 1 48 1 64 × 64

Avg Pooling 2 × 2 - 2 32 × 32

Denseblock2 × 12
Conv 1 × 1 192 1 32 × 32

Conv 3 × 3 48 1 32 × 32

Transition Layer2
Conv 1 × 1 48 1 32 × 32

Avg Pooling 2 × 2 - 2 16 × 16

Denseblock3 × 48
Conv 1 × 1 192 1 16 × 16

Conv 3 × 3 48 1 16 × 16

Decoder Part

Transition layer3 Conv 1 × 1 48 1 16 × 16

Avg Pooling 2 × 2 - 2 8 × 8

Denseblock4 × 32
Conv 1 × 1 192 1 8 × 8

Conv 3 × 3 48 1 8 × 8

Up sampling layer 1
D-conv 2 × 2 - - 16 × 16

Conv 3 × 3 768 1 16 × 16

Up sampling layer 2
D-conv 2 × 2 - - 32 × 32

Conv 3 × 3 384 1 32 × 32

Up sampling layer 3
D-conv 2 × 2 - - 64 × 64

Conv 3 × 3 384 1 64 × 64

Up sampling layer 3
D-conv 2 × 2 - - 128 × 128

Conv 3 × 3 96 1 128 × 128

Up sampling layer 3
D-conv 2 × 2 - - 256 × 256

Conv 3 × 3 96 1 256 × 256

Convolution Conv 1 × 1 17 1 256 × 256

Considering the above mentioned limitations, we developed a hybrid network that
combines the advantages of both DenseNet and U-Net. We replaced the contraction
path of U-Net with DenseNet-201 to extract features of multiple scales, while using the
long-range connection of the U-Net concatenate encoding and decoding path to conserve
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low-level features. The contraction path (encoder part) consists of four dense blocks,
where each dense block is followed by a transition layer. A contraction mechanism was
also implemented inside the transition layer to control the expansion of the feature maps.
The expansion pa0 .3th involves upsampling and merging operati.0 o0ns followed by a
convolutional operation that expands the resolution of the current feature map. To predict
the segmentation mask, the expansion path utilizes skip connections [23] to merge the
upsampled feature map with its corresponding feature map from the contraction path. The
Softmax layer then assigns class probability to each pixel and outputs a 2-dimensional
segmentation mask.

3.1. Loss Function, Training and Testing Strategies

In this section, we now discuss details of loss function, training and testing strategies.

3.1.1. Loss Function

Generally, deep learning networks use cross-entropy loss to optimize the cost function.
Cross-entropy loss performs well in different object classification, detection and segmenta-
tion tasks. However, cross-entropy loss can not handle class imbalance problems, which
are commonly observed in multi-class semantic segmentation problems. In these problems,
the training data are always limited and expensive to acquire. Each sample of the training
dataset affects the loss function regardless of the training scheme; therefore, the number of
samples per class can change the shape of the loss function. For example, a dominant class
that contains more samples compared to other classes will affect the loss function more
and bias the overall training process.

To address the above problem, we used multi-class hybrid loss (Lmchl), which is the
linear combination of cross-entropy loss (also termed as local loss) defined in Equation (1)
and dice loss (also termed as global loss) defined in Equation (2).

Lc(y, ŷ) = − 1
Nc

Nc

∑
n

y ln(ŷ) + (1− y) ln(1− ŷ) (1)

where Lc is the local loss and it measures the sum of cross-entropy loss for each pixel, Nc is
the number of classes, y is the ground truth label of pixel and ŷ is the predicted label.

Dice loss Ld is the global loss and measures the segmentation score by comparing the
similarity between two images and defined as follows:

Ld =
2|G ∩ P|
|G|+ |P| (2)

where G is the ground truth image and P is the predicted image. We then computed the
multi-class hybrid loss (Lmchl) as defined in Equation (3).

Lmchl = Lc + Ld (3)

3.1.2. Training Scheme

For training the network, we used images and corresponding ground truth seg-
mentation masks and optimized the objective function by stochastic gradient descent
implemented in Pytorch. We used the images and their corresponding ground truth seg-
mentation masks for training the network. Instead of using batch size 1, as adopted in [23],
we kept the batch size as 8 to converge the network to global optima. We started with a
learning rate of 0.001 and used a cyclical schedule learning rate strategy as in [50], where
learning rate linearly decreased in each cycle. We trained the network for 100 epochs.

3.1.3. Testing Scheme

During the testing phase, we provided an image of size 256 × 256 as an input to the
network. However, before the input step, we performed normalization in order to boost the
testing speed. We normalized the input image by subtracting the mean (calculated from the
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training set) from each pixel of the input image and then divided the result by the standard
deviation. Furthermore, we converted the RGB image into a single channel gray scale using
the weighted sum of the R, G, and B channels. The network then predicted the segmentation
mask, fm, where each pixel is assigned class probability. We then performed morphological
operations on the mask fm. In the following are the reasons for performing morphological
operations: (1) to remove imperfections caused by camera motion and other random noises;
(2) to group the adjacent objects belonging to the same class as a single one; (3) to separate
the foreground and background pixels. For applying morphological operations, we first
converted the mask fm into a binary mask fb by labeling all the foreground pixels as 1 and
background pixels as 0. We first applied morphological closing by using the structuring
element of size 3 × 3 to a binary image to fill the small holes. Then, we performed erosion
with structuring element of size 3 × 3, followed by dilation with structuring element of the
size 5 × 5. We then obtained a refined segmented mask fr by employing a fusion operation,
as denoted by fm

⊙
fb, where

⊙
denotes the element wise product. We then computed

the area ratio α, which is the ratio of the area of the blob i to the maximum area of for all
the blobs formulated as Ai

arg max(∑K
i=1 Ai)

. We then defined a threshold ω and removed blobs

with areas less than the threshold. In all our experiments, we fixed the value of ω to 0.05.

4. Experiment Results

In this section, we evaluate and compare the the performance of proposed framework
in qualitative and quantitative ways. We first introduce the publicly available dataset
used to evaluate the proposed framework and then compare performance with other
state-of-the-art methods.

For performance evaluation, we used the Dense labeling remote sensing dataset
(DLRSD). The DLRSD dataset is densely labeled by Shao et al. [51] using the images from
the UC Merced archive [52], where the spatial resolution of the image is 30 cm (or 1 foot).
Specifically, each image in UC Merced archive [52] was manually labeled into 17 distinct
classes by using eCognition 9.0 software (http://www.ecognition.com). These classes
were assigned labels in the following order: 1: airplane, 2: bare soil, 3: building, 4: car,
5: chaparral, 6: court, 7: dock, 8: field, 9:grass, 10: mobile home, 11: pavement, 12: sand,
13: sea, 14: ship, 15: tank, 16: tree, 17: water. Since each image is labeled pixel-wise,
this dataset can be used for evaluating semantic segmentation tasks in remote sensing
images. The dataset consists of 2100 images with each image having the resolution of
256 × 256 pixels. Figure 1 shows the distribution of number of images per class. From the
figure, it is obvious that the dataset suffers from a class imbalance problem that may result
in poor generalization of the network. In order to address this problem, we evenly selected
100 samples from each class. Figure 2 shows some sample frames with their corresponding
ground truth segmentation masks.

To evaluate the performance of different models, we use following performance met-
rics: Hamming loss, precision, recall, accuracy, and F-score. For comprehensive comparison,
we divide the state-of-the-art models into two groups: (1) hand-crafted feature models and
(2) deep learning models.

http://www.ecognition.com
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Figure 1. Distribution of number of images per class.

Figure 2. Sample images from the dataset and their corresponding ground truth segmented masks
encoded in different colors. The first and third rows show the samples frames. Second and fourth
rows show the corresponding segmentation masks.

4.1. Hand-Crafted Feature Models

Hand-crafted feature models include, (1) local binary pattern (LBP) [53], (2) Gabor
filter [54], (3) GIST features [55], (4) Bag-of-Visual-Words (BoVW) [56], (5) color histogram.

In the first method, we first divided the image into small non-overlapping regions. We
then computed the LBP feature of each region and concatenated them into a single feature
vector and trained a multi-class classifier using a Support vector machine (SVM). In the
second method, a spectral approach, as adopted in [57], was used to texture satellite images.
The texture images were then converted into feature images by employing Gabor filters.
A unique set of feature vectors were generated from feature images, where each feature
vector points to one dimension of feature space. An unsupervised fuzzy c-means clustering
method was then adopted to classify each pixel of an image into a specific category based
on the associated feature vector. In the third method, we extracted global feature GIST [55]
features from satellite images. These features were obtained by convoluting a kernel
(filter) with an image at different orientations and scales to obtain high- and low-repetitive
structures of an image. The feature space was then reduced by ranking through principal
component analysis (PCA) to select discriminating features. In the fourth method, we
uniformly sampled points from an input image. Then, with each point as the center, we
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extracted a patch of size 28 × 28. We then extracted SIFT features from each patch and
generated a visual dictionary. Next, K-means clustering was employed to generate visual
dictionary vocabulary. Similarly, in the last method, we divided an input image into non-
overlap patches and then extracted a color histogram after quantizing the RGB channel of
each patch into 32 bins. Three histograms for each channel were then concatenated and
trained via the SVM classifier.

4.2. Deep Learning Models

To compare the performance of proposed framework with other state-of-the-art deep
learning models, we selected popular segmentation models that include U-Net [23], U-
Net++ [25], SegNet [26], Multi-scale fully convolutional network (MSFCN) [58], Tiramisu [59],
FGC [60], CE-Net [61], DenseNet [30], and U-NetPPL [62].

U-Net [23] was initially proposed for biomedical image segmentation tasks and won
ISBI cell tracking challenge in 2015. The network consists of contracting path that extracts
contextual feature and expanding path allows precise localization of objects. U-Net++ [25]
is the extension of U-Net that addresses the problems of U-Net and was originally proposed
for medical image segmentation problems. U-NetPPL [62] extended and improved U-Net
by incorporating pyramid pooling layers (PPL) for multi-object segmentation task. U-Net++
is a deep encoder–decoder network, where the skip pathways of the original U-Net are
re-designed to minimize the semantic gap between the feature maps of two paths. Similarly,
SegNet [26] is also an encoder–decoder network, where the decoder part is followed by
a classification layer that classifies pixels into specific categories. The architecture of the
encoder part of the network is similar to VGG16 [19], while the decoder part is modified in
a manner that upsamples the feature maps by using the pooling indices of the max-pooling
layer of the encoder. Dense feature maps are then obtained by convolving the upsampled
maps with pre-trained filters. Multi-scale fully convolutional network (MSFCN) [58] uses
3D-CNN to incorporate both spatial and temporal features. Similarly, FGC [60] consists
of a 3D fully convolutional network to extract both spatial and temporal features for
crop classification from temporal remote sensing images. The network uses a 3D channel
attention module to enable channel consistency between the feature maps of the encoder
and decoder parts and the 3D global pooling method is used for selecting discriminating
features. Tiramisu [59] extended DenseNet [30] for semantic segmentation problem and
achieved promising results. CE-Net [61] is proposed for 2D medical image segmentation
tasks. The network consists of three major modules, encoder, context extraction module and
decoder module. The network covers the limitations of conventional U-Net by capturing
more high-level information and retains spatial information that enables precise localization
of a target.

We randomly selected and utilized 80% for training and 30% for testing. We utilized
the pre-trained models of the above mentioned deep learning methods and used transfer
learning to train the models on the DLRSD dataset. During training, we used a learning
rate of 0.0001 with a batch size of 10. We used NVIDIA TITAN Xp GPU with RAM of 12 GB
for experiments.

The comparison results of different hand-crafted feature methods and deep learning
models are reported in Tables 2 and 3, respectively. From both tables, it is obvious that
deep learning models outperform hand-crafted feature methods. This is due to the fact that
hand-crafted feature models rely on the computation of complex features that are affected
by natural factors, such as changes in illumination, scale, and object size. Local binary
patterns compute the local structures that lead to performance gain in texture analysis.
However, we observed that this method suffers from the following limitations.

LBP generates a long histogram by computing texture values from a small neigh-
bourhood (3 × 3 pixels). This small neighbourhood extracts a limited amount of texture
information from the local patch of an image and loses significant amount of information,
which decreases the segmentation accuracy. Furthermore, the method directly computes
the difference of neighbouring pixels and, therefore, is highly sensitive to illumination and



Information 2021, 12, 230 10 of 16

noise. A small change in illumination may bring a significant change in the texture of the
image, which may be a challenge for LBP to discriminate actual texture from that of noise.
The Gabor filter computes a high-dimension matrix that contains many redundant features.
This redundancy of features decreases the performance of semantic segmentation process.
Bag-of-Visual-Words could also not produce comparable results. This is due to fact that
BoVW cannot capture rich contextual information, which is required for segmentation of
high-resolution satellite images. Moreover, BoVW avoids the spatial relationship among
different patches of an image and generates a high-dimension feature vector that avoids
utilization of co-occurrence statistics among the words of the visual vocabulary. GIST uses
low-level features to capture high-level semantic information of the scene; however, the
method avoids local objects and their relationships with the scene. Similarly, the color
histogram method is significantly affected by illumination and its appearance changes and
does not exploit spatial information, which results in a reduced performance.

Table 2. Performance comparison of hand-crafted feature methods.

Accuracy Precision Recall F1-Score

Local Binary Pattern 49.04 44.71 42.83 43.75

Gabor Filter 51.29 49.75 43.29 46.30

GIST Features 39.26 37.19 39.62 38.37

Bag-of-Visual-Words 54.54 45.23 51.34 48.09

Color Histogram 48.95 40.33 42.39 41.33

Proposed 77.67 75.20 70.54 72.80

Table 3. Performance comparison of different deep learning models.

Accuracy Precision Recall F1-Score

U-Net 65.73 64.27 57.24 60.55

U-Net++ 70.29 61.75 70.25 65.73

SegNet 63.24 65.46 57.27 61.09

MS-FCN 71.52 68.95 65.29 67.07

CE-Net 69.79 59.29 64.95 61.99

U-NetPPL 68.55 55.67 66.38 60.56

FGC 63.29 52.37 65.43 58.18

Tiramisu 69.42 60.89 62.28 61.58

DenseNet 57.12 49.65 55.24 52.30

Proposed 77.67 75.20 70.54 72.80

In contrast to all hand-crafted feature methods, deep learning models extract hierarchi-
cal features directly from the raw images and capture context-rich and semantic information
by directly learning the discriminating features automatically during the training process.
To summarize the discussion, we report the following findings from the experiment results
reported in Tables 2 and 3. Deep hierarchical features achieve superior and relatively
consistent results compared to hand-craft features for semantic segmentation tasks. Deep
features, in contrast to hand-crafted features, are more robust and are not affected by
appearance and illumination changes.

The performances of different deep learning models are reported in Table 3. The perfor-
mance of DenseNet is lower compare to other state-of-the-art methods in the segmentation
problems. This is due to fact that DenseNet suffers from downsampling problems, where
the resolution of feature maps is reduced after passing through each dense block, which
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results in loss of important information on the small objects. However, DenseNet extracts
rich contextual information, which is why we used it as an encoder in our framework. To
avoid the information loss, we replaced max-pooling layers by upsampling layers in the
decoder part of the proposed framework, which not only increased the spatial resolution
of the feature maps but also retained spatial information of all objects. This is due to
reason that proposed method outperforms other state-of-the-art deep learning models by a
considerable margin. The proposed method achieves near 8% and 9.5% gains in accuracy
compared to MS-FCN and U-Net++ models, respectively. These state-of-the-art models
achieve comparable performances in terms of accuracy, precision, recall and F-score on
DLRSD dataset. These state-of-the-art models are the variants of U-Net and Fully convo-
lutional network (FCN) that suffer from the following limitations: (1) The depth of these
networks is limited due to which they capture contextual features in limited scales. For
example, for the input image of size 256 × 256, only four convolutional layers are applied
to capture semantic information. (2) The skip connection of U-Net enables a fusion scheme
that allows the aggregation of feature maps at the same scale, which adversely affects the
segmentation process. The proposed framework overcomes these limitations and exhibited
a state-of-the-art performance by replacing the stack of convolutional and pooling layers
with deep stack of dense blocks and transition layers. The skip connection of the proposed
framework enables a flexible and effective fusion scheme that aggregates a feature map of
a multiple semantic scale. The framework effectively re-uses the feature map by linking
each dense block to the previous blocks in feed-forward mode.

In Table 4, we report the performance of the proposed framework in terms of class
wise accuracy, precision, recall and F1-score. From the table, it is obvious that the proposed
framework exhibits a higher performance when segmenting small, medium and large
object remote sensing images. From the experiments, we observed that the proposed
method achieved good results for all classes. It is important to note that the proposed
method obtained the best results for classes of large and medium objects, such as, “Airplane
(89.56%)”, “Building (83.43%)”, “Dock (82.67%)”, “Grass (88.47%)”, and “Ship (87.54%)”.
We noticed that the method produced a considerable number of true positives compared
to false positive and negatives; therefore, the framework obtained a reasonable balance
between precision an recall for most of the classes as well as achieved a good F1-score
(greater than 70%) for more than half of the classes. Furthermore, the performance of the
proposed method is also illustrated in Figure 3, where we compared the ground truth and
predicted masks. From the figure, it is obvious that the proposed method predicts high-
quality segmentation masks by precisely classifying different categories and accurately
differentiating complicated class boundaries in various satellite images.

Another advantage of the proposed network is that it effectively accelerates the
learning by effectively handling the gradient vanishing problem. Stacking multiple convo-
lutional layers causes the gradient vanishing problem, making it difficult for a model to
converge. The proposed network handles the gradient vanishing problem by integrating
U-Net, which uses long-range skip connections between the encoding and decoding parts.
Although there is no theoretical justification, long-range skip connections perform well
in dense prediction tasks [63]. This may be attributed to the fact that long-range skip
connections simplify the network, improve the flow of information through a few layers
and accelerate the learning process. The models that use long-range skip connections can
converge faster and achieve better performances. To demonstrate the effectiveness of the
proposed network, we compared the training losses of the proposed network with/without
long-range skip connections, as reported in Figure 4. We used two variants of the proposed
network—one without using skip-connections and the other with a long-range skip con-
nection. From the figure, it is obvious that the proposed network converges faster and
achieves lower loss values than its counterpart without long-range skip connections.
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Figure 3. Visualization of the land cover semantic segmentation by the proposed method. The first
column shows samples’ frames from the dataset. Second column is the ground truth masks and third
column is the predicted segmentation masks.
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Figure 4. Long-range skip connections vs. no-skip connections. The figure demonstrates the effective-
ness of using long-range skip connections to avoid gradient vanishing and accelerate the convergence.

Table 4. Class-wise performance of the proposed method.

Accuracy Precision Recall F1-Score

Airplane 89.56 86.24 82.76 84.46

Bare soil 78.94 79.14 69.45 73.98

Building 83.43 78.62 81.02 79.80

Car 79.38 70.92 79.79 75.09

Chaparral 65.95 71.69 52.76 60.79

Court 78.16 77.76 69.19 73.23

Dock 82.67 83.48 72.79 77.77

Field 73.25 78.94 55.72 65.33

Grass 88.47 84.64 82.79 83.70

Mobile home 67.73 67.65 58.76 62.89

Pavement 82.19 79.23 75.64 77.39

Sand 76.92 68.47 75.08 71.62

Sea 74.02 73.97 65.48 69.47

Ship 87.54 92.17 75.46 82.98

Tank 73.32 64.39 67.42 65.87

Tree 64.74 56.75 60.37 58.50

Water 74.25 64.38 74.76 69.18

5. Conclusions

In this work, we proposed a hybrid network for land cover semantic segmentation
from high-spatial resolution satellite images. The proposed hybrid network combines the
benefits of two deep learning models and has the following key features: (1) The network
learns low-level features and high-level contexts by replacing the contraction path of U-Net
with a stack of dense blocks. (2) The skip connections of the network enable effective fusion,
which aggregates the features map on multiple scales. This enables the network to create
pixel-wise segments of small, medium and large objects. We evaluated and compared the
proposed network using a publicly available challenging dataset. From the experiment
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results, we demonstrated that the proposed network produces an accurate segmentation
map and beats other state-of-the-art methods by a considerable margin.
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