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Abstract: As the classic feature selection algorithm, the Relief algorithm has the advantages of
simple computation and high efficiency, but the algorithm itself is limited to only dealing with
binary classification problems, and the comprehensive distinguishing ability of the feature subsets
composed of the former K features selected by the Relief algorithm is often redundant, as the
algorithm cannot select the ideal feature subset. When calculating the correlation and redundancy
between characteristics by mutual information, the computation speed is slow because of the high
computational complexity and the method’s need to calculate the probability density function of
the corresponding features. Aiming to solve the above problems, we first improve the weight of
the Relief algorithm, so that it can be used to evaluate a set of candidate feature sets. Then we use
the improved joint mutual information evaluation function to replace the basic mutual information
computation and solve the problem of computation speed and correlation, and redundancy between
features. Finally, a compound correlation feature selection algorithm based on Relief and joint mutual
information is proposed using the evaluation function and the heuristic sequential forward search
strategy. This algorithm can effectively select feature subsets with small redundancy and strong
classification characteristics, and has the excellent characteristics of faster calculation speed.

Keywords: feature selection; Relief; mutual information; mRMR

1. Introduction

Currently, for high-dimensionality features of social data, effective feature selection
algorithms are being actively researched to reduce the dimensionality of data. Scholars
have put forward multiple excellent algorithms that use different ideas and evaluation
criteria with different properties.

In the field of machine learning, feature selection is a preprocessing technique used
to remove irrelevant attributes and redundant attributes to improve learning accuracy.
There are many classifications of feature selection algorithms, the most common of which
is to divide them into Filter class, Wrappers class, [1] Embedded class [2], and Hybrid
class [3]. Among these feature selection algorithms, the most classic is the Relief algorithm
proposed by Kira et al. in 1992 [4]. This algorithm has a high operating efficiency on two
classification problems. Under the guidance of its excellent ideas, many researchers and
scholars have optimized it for different scenarios based on this idea [5,6]. The most widely
used improved algorithm is the ReliefF algorithm proposed by Kononenko in 1994 [7],
which can handle the multi-classification problem of continuous regression data. Zafra
et al. [8] combined the ReliefF-MI algorithm proposed by the MIL algorithm, which not
only improves the computational efficiency, but also enables the algorithm to be applied to
discrete data. In addition to these modified algorithms based on Relief, there are many more
feature selection methods. For example, the mRMR+ feature selection algorithm proposed
by Hussain et al. [9] uses the idea of mRMR (Max-Relevance and Min-Redundancy).
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The feature subset selected by the proposed algorithm has the characteristics of large
feature correlation but low mutual redundancy, so that the selected feature subset has high
representativeness.

Feature selection has been studied extensively. The existing feature selection algo-
rithms have different advantages in terms of calculation speed and accuracy. However,
selecting appropriate feature selection algorithms for specific scenarios and using them as
preprocessing methods for clustering, data mining, and machine learning can effectively
improve the accuracy and efficiency of later calculations. Therefore, the feature selection
algorithm has practical research significance and great theoretical value.

This paper aims to solve the problem that the Relief algorithm can only handle two
classifications [10–12] and the low computational efficiency of the algorithm using mutual
information as the evaluation standard [13]. In the second section, the weight improvement
method based on the Relief feature selection algorithm is studied. In Section 3, an evaluation
function using quadratic Renyi entropy to calculate mutual information is proposed, and
combined with the research results of the two sections, and a feature selection algorithm
based on Relief and mutual information is proposed. This algorithm can effectively select
feature subsets with small redundancy and strong classification characteristics, and has
excellent characteristics of faster calculation speed.

2. Feature Selection Algorithm Based on Relief

Suppose O = {Xn|1 ≤ n ≤ N} is a complete feature sample data set of N original
features, where the original feature set F = F1F2 · · · FN , and the set of selected feature
subset S =

{
Xnl |nl ∈ {nl , . . . , nNs} ⊆ {1, . . . , N}

}
where NS = |S| denotes the number of

features in the selected feature subset. Therefore, the selected feature subset constructs
NS-dimensional feature subspace S. Suppose M is the number of sample data with labels
in the database, because each feature is a random variable and the data that have label
sample data corresponding dimensions are the feature values of the corresponding features.
x(m)

n is used to represent the specific value of feature random variables Xn in sample data
m(1 ≤ m ≤ M) with labels in the database. Therefore, the sample data m(1 ≤ m ≤ M)

with labels in the database can be written as the vectors x(m) = (x(m)
1 , . . . , x(m)

N )
T

in the

space that is constructed by N original features’ complete feature set. Similarly, x(m)
S =

(x(m)
n1 , . . . , x(m)

nNS
)

T
denotes a specific data sample point of sample data m(1 ≤ m ≤ M) with

labels in the database in the NS-dimensional feature subspace S that is constructed by
selected feature subset. In addition, letter c denotes the category information of the sample,
c(m) denotes the category of sample m.

The improved Relief algorithm proposed in this paper first redefines the distance
formula of two points in NS-dimensional feature subspace S that is constructed by selected
feature subsets, and to make the obtained results more regular, a normalization method
is adopted:

d(x(m1)
s , x(m2)

s ) = dM(x(m1)
s , x(m2)

s )exp

(
−dM(x(m1)

s , x(m2)
s )

distmax

)
(1)

where 1 ≤ m1, m2 ≤ M, and dM denotes the Manhattan distance of two input vectors, the
meaning represented by distmax is shown as Formula (2):

distmax = max
m 6=k,m,k∈{1,...,M}

d(x(m)
s , x(k)s ) (2)

According to Formulas (1) and (2), we define the closest data point that belongs to the
same category as x(m)

s as x(hit)
s , the closest data point that belongs to different category from

x(m)
s as x(mis)

s . Therefore, in the NS-dimensional feature subspace S that is constructed by
selected feature subsets, the difference di f f (x(m)

s , x(mis)
s ) between x(m)

s and x(mis)
s is shown
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as Formula (3), Among them, the letter c represents the category information of the sample,
and ci represents the category to which sample m belongs:

di f f (x(m)
s , x(mis)

s ) =
C

∑
ci=1&c 6=ci

p(ci)

NS(1− p(c))
d(x(m)

s , x(mis)
s ) (3)

The difference di f f (x(m)
s , x(hit)

s ) between x(m)
s and x(hit)

s is shown in Formula (4):

di f f (x(m)
s , x(hit)

s ) =
d(x(m)

s , x(hit)
s )

NS
(4)

Through Formulas (3) and (4), we can obtain the current feature subset S’s feature sub-
set weight that is computed through single sample m in NS-dimensional feature subspace
S that is constructed by selected feature subsets. Formula (5) is shown as follows:

wS(m) =
di f f (x(m)

s , x(mis)
s )− di f f (x(m)

s , x(hit)
s )

M
(5)

Finally, we can obtain the feature weight Formula (6) of the current selected feature
subset S through Formula (5):

w(S) =
M

∑
m=1

wS(m) (6)

The feature selection algorithm based on improved Relief weight improved the feature
evaluation weight of classic Relief, thus it has the ability of evaluating the feature subset.
For the evaluation of feature subset using Feature selection based Improved Relief Weight
(FSIRW), we randomly select M sample data with labels from the sample data set in the
database, and search for the closest sample data point x(hit)

s of the same category for each
sample x(m)

s in this set of feature subspace. At the same time, we look for the closest
sample data point x(mis)

s of the different category for the sample data x(m)
s in the subspace;

then we calculate the differences di f f (x(m)
s , x(mis)

s ) and di f f (x(m)
s , x(hit)

s ) between sample
data x(m)

s and x(mis)
s and between x(m)

s and x(hit)
s respectively through formulas (3) and (4)

respectively, then we continue to plug di f f (x(m)
s , x(mis)

s ) and di f f (x(m)
s , x(hit)

s ) into Formula
(5) to obtain one of the current samples wS(m), last we calculate all the sampled samples
wS(m), and plug them into Formula (6) to carry out accumulation to obtain the feature
weight value w(S) of this set of feature subsets under this set of feature subspace.

It is not enough to only have the evaluation function in the feature selection method; fea-
ture search strategy is also needed to construct the integrated feature selection method [14].
FSIRW method that is improved based on classic Relief filtering feature selection algo-
rithm also needs a corresponding feature search strategy to make the algorithm integrated.
However, in the high-dimensional feature space, it is a NP− Hard problem to search for
the minimum and optimal feature subset through method of exhaustion, and the original
feature space with N complete feature space sets have 2N − 1 non-space feature subsets.
Therefore, the method of exhaustion cannot be used to carry out a feature search for FSIRW
method, and it is correct and necessary to use a local search strategy. To select the optimal
feature subset which meets our needs with strong ability of distinguishing category in
low-dimensional feature subspace, the FSIRW algorithm adopts sequential forward search
strategy to carry out feature search.

The Algorithm 1 evaluates the selected feature subset through the calculation of
renewed feature subset weight w(S). Combining with corresponding research strategy, we
can obtain the complete FSIRW algorithm. Algorithm 2 is as follows:
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Algorithm 1: Evaluate FS(O, S, M)—FSIRW feature subset evaluation algorithm.

Input: Sample instance data O and the parameter M of sampling recursion times of the w(S) for
the renewal.
Output: Feature subset’s weight w(S).
Flows:

1 Randomly select sample x(m) from sample data set O;

2 Look for sample x(m)’s x(hit)
s and x(mis)

s respectively;

3 Calculate the values of di f f (x(m)
s , x(hit)

s ) and di f f (x(m)
s , x(mis)

s );
4 Renew wS(m)’s value according to Formula (3)–(7);
5 Renew w(S)’s value according to Formula (3)–(8);
6 Return to Step 1 if the times of sampling is less than M.

Algorithm 2: FSIRW feature selection algorithm
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From the calculation process of Algorithm 2, we can know that the initialization makes
the optimal feature subset null at the beginning of the calculation. Through the sequential
forward search method and combining FSIRW feature subset evaluation algorithm, we
constantly look for the features which make the current feature subset weight maximum
in the rest of features and add them to the optimal feature subset, and we will not stop
the algorithm until we find the feature subset that corresponds to the maximum Ws and
output the Ws’s corresponding feature subset bestS to obtain the results we want.

3. Feature Evaluation Function Based on Mutual Information

Within the scope that is based on Shannon information entropy, the calculation of the
mutual information between features must calculate the probability distribution p(x) and
joint probability distribution P12(xi, yi) of the corresponding features in advance, and even
needs to calculate the probability density function of the sample feature. However, the
calculation of probability density function and joint probability density is a complex calcu-
lation process with heavy computation load and low computation efficiency. Therefore, the
mutual information calculation using the method within the scope of Shannon information
entropy is complex and low-efficient. However, the resolution of feature selection method
into the mutual information based on another famous information entropy theory—Renyi
entropy—can solve the problem that appears in mutual information calculation based on



Information 2021, 12, 228 5 of 12

Shannon entropy, especially the problem of high degree of computation complexity. The
calculation Formula (7) of Renyi entropy-based mutual information is as follows:

Î(X; Y) = HR2(X) + HR2(Y)− HR2(X, Y) (7)

where Î(X; Y) in Formula (7) denotes the Renyi entropy-based mutual information, HR2(X)
denotes quadratic Renyi entropy’s information entropy, HR2(X, Y) denotes quadratic Renyi
entropy-based joint information entropy.

As a wider definition through expansion, when Renyi entropy’s quotient q→ 1 ’s
limit, the Renyi entropy is equivalent to the Shannon information entropy that is used
widely and known by more scholars. Because the definition of Renyi entropy is wider than
information entropy, aiming at different conditions, through the valuing of different Renyi
entropy quotients, we can obtain Renyi entropy that is more suitable to corresponding
conditions. The quadratic mutual information based on Renyi entropy mutual information
has corresponding effective application. The calculation Formula (8) of Renyi entropy is as
follows. Through the formula, we can know that Renyi entropy can be achieved through
expansion by adding an extra parameter q through Shannon information entropy.

HRq(X) =
1

1− q
log

m

∑
i=1

p1(xi)
q (8)

This paper uses the quadratic Renyi information entropy method to calculate the
mutual information between features. The quadratic Renyi information entropy is the
parameter in Renyi entropy Formula (8). At this time, the Renyi information entropy for-
mula is equivalent to Shannon entropy. At the same time, when calculating the probability
density, the method of sampling can be used directly from the original data set to replace
the process of calculating the density function, so the time consumption is reduced, i.e.,
information potential function can be obtained through the calculation by Formula (9),
where function G(x, h) in Formula (9) denotes Gaussian kernel function.

V(x) =
1
n2

n

∑
k=1

n

∑
j=1

G(xk − xj,
√

2h) (9)

Therefore, using data samples and the replacement of complex probability density
function to calculate numerical integration value, the quadratic entropy value that uses
Renyi entropy can be written as the form of Formula (10), and the Formula is shown
as follows:

HR2(X) = −logV(x) (10)

Similarly, the joint information entropy that uses Renyi entropy can be written as the
form of Formula (11):

HR2(X, Y) = −log
1
n2

n

∑
k=1

n

∑
j=1

G(xk − yj,
√

2h) (11)

Hence, through the further derivation of Formula (11), we can obtain the form of
Formula (12). Through the formula, we can know that in the process of calculation of
mutual information using Renyi entropy, we do not need to first solve for the probability
density or probability distribution function of each feature, rather we can directly obtain the
value of mutual information between two sample features through estimation based on the
summation of sample data, and therefore we overcome the problem of heavy computation
load and low computation speed brought by the calculation of feature’s probability density.

Î(X; Y) = −log
1
n2

n

∑
k=1

n

∑
j=1

G(xk − xj,
√

2h)− log
1
n2

n

∑
k=1

n

∑
j=1

G(yk − yj,
√

2h) + log
1
n2

n

∑
k=1

n

∑
j=1

G(xk − yj,
√

2h) (12)
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Through derivation and analysis, we can know that the use of data sample summation
can replace the process of using complex probability density function to calculate numerical
integration values when calculating Renyi information entropy’s quadratic mutual infor-
mation, which decreases the calculation quantity and calculation difficulty, and overcomes
the disadvantage of the necessity of calculating feature’s probability density function based
on Shannon information entropy. Therefore, this paper adopts Renyi quadratic mutual
information method to calculate mutual information between features when calculating
the mutual information between samples.

The Quadratic Joint Mutual Information (QJMI) feature selection evaluation function
criterion proposed in this paper is based on Renyi entropy-based quadratic mutual informa-
tion. We can directly obtain the value of mutual information between features using Renyi
entropy’s quadratic mutual information according to the data in the data set and avoid
the calculation of corresponding feature’s probability distribution or probability density
function when we calculate mutual information of Shannon information entropy. When
we evaluate the feature redundancy and correlation through mutual information, if the
newly added feature is added to the selected features, making a new feature subset have
larger mutual information value with final output and the currently selected feature subset
when the selected features and newly added features have lower redundancy, then the
features in feature selection are ideal features that should be added to the selected feature
set. Therefore, this paper proposed a QJMI evaluation function based on this idea. The
evaluation function takes all the features of the candidate feature set XC into consideration,
and examines the relationship between each candidate feature and the selected feature
subset. The calculation formula of the algorithm is as follows. The evaluation criterion
puts the candidate feature XC with the largest value in the candidate feature set into the
selected feature subset. QJMI evaluation function formula is shown as Formula (13).

SQJMI(XC) = SQJMI(XC, XS; Y) =

{
ICS(XC; Y) i f M = 0

I(Xc; Y)− 1
|S|Σ[I(Xc; Y)− I(Xc; Y|Xs)] i f M > 0 (13)

When combining feature selection methods to carry out calculation, this function will
evaluate each set of possible candidate feature subsets and choose the feature subset with
the largest quadratic mutual information. However, it is unrealistic to take the selection of
all the feature subsets into consideration when using the evaluation criterion to evaluate
the features because of the time-consuming nature of the operation and heavy load of
computation. Most of the feature selection algorithms add the candidate features into the
selected feature subsets one by one to judge the relationship between candidate feature
and selected feature subsets, and add the most suitable candidate feature into selected
feature subset according to evaluation criteria. On the one hand, one of the advantages is
that the mutual relationship between candidate feature and selected feature subset will
be considered and to avoid redundancy; on the other hand, we can select the features
with important values when jointly used into the selected feature subset, even though
they are far from the selected feature subset, to avoid the omission of them. Therefore, the
application of QJMI evaluation criterion should take the content mentioned above into
consideration to make the algorithm better. Make the algorithm carry out iterative selection
of the features, and we will not stop calculation selection until we reach stop criterion.

In addition, at the beginning stage of the application of the QJMI evaluation function’s
algorithm, we should make the selected feature subset null, then QJMI evaluation criterion
only needs to consider the relationship between the features in the candidate feature set
and output rather than the mutual role between features and selected feature subset. In the
following calculation, QJMI evaluation criteria are composed of two parts. For the first part,
for the correlation between candidate features and output in the premise that the candidate
features are in the selected feature subset, the evaluation function carries out weighting.
For the second part, the evaluation function evaluates the correlation between candidate
features and selected feature subset. The calculation values of the first part minus the
values of the second part to construct the whole evaluation criterion. On the one hand, the
use of QJMI evaluation criterion can ensure that candidate features have high correlation
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with output results and that the combination of these two parts is not the simple summation
of respective information values and more correlation information can be obtained. On
the other hand, the evaluation criterion can avoid the features which have redundancy
features with output features that will be added, and can further guarantee that there is
lower redundancy between the selected features through the evaluation function. At the
same time, because the QJMI evaluation function uses mutual information calculation
Formula (12) based on quadratic Renyi entropy to calculate the mutual information between
samples, the function has the advantage of high computation speed.

In the above steps, this paper believes that when a single evaluation criterion is used
for feature evaluation, it will always be impossible to achieve the most accurate evaluation
of the feature subset because of the unity of the evaluation criterion. Therefore, in the
flows, the improved Relief weight is combined with the QJMI evaluation function based on
the quadratic Renyi entropy to calculate the mutual information. The algorithm uses the
sequence forward search strategy to search for candidate features, and adds the features
that have the largest composite correlation value and have a gain effect on the overall
weight value after being added to the selected features. Until the remaining features no
longer have gain information added to the selected features, the calculation is stopped.

Through the calculation process of the Algorithm 3, we can know that feature selec-
tion algorithm based on improved Relief weight has the progressive and combining use
relationship with evaluation function based on mutual information. Therefore, through
the combination of improved Relief weight and QJMI evaluation criterion proposed in
this paper, we can obtain the feature selection algorithm based on Relief and mutual
information. The algorithm evaluates each feature in the candidate feature set through
two evaluation criteria—distance and improved joint mutual information function—and
adds the features with gain to overall feature subset weight into selected feature subset,
until reaching the stop condition. In this algorithm, using complex evaluation criterion
to comprehensively consider the features in the feature set, the feature subset will have a
stronger ability of evaluation.

Algorithm 3: FSIRQ (Feature selection algorithm based on Improved Relief and Joint mutual
information) feature selection algorithm

Input: Sample instance data set O and sampling times M.
Output: Final feature subset bestS.
Initialization:

1 Optimal feature subset bestS := NULL;
2 Optimal feature subset weight WbestS = MIN (the minimum value of integer);
3 ith feature weight value WFi := 0 1 ≤ i ≤ N.

Flows:

1 bestS′ = bestS ; WbestS′ = WbestS;
2 For ∀{Fi|Fi /∈ bestS&Fi ∈ F}:

Feature set S = bestS′+ Fi;
Feature set weight Ws := evaluateFS(O, S, M) + SQJMI(Fi, S; Y);
i f WbestS′ < WS :

WbestS′ := WS
bestS′ := S
bestS := bestS′

else F = F/Fi;
3 i f WbestS < WbestS′ &&F 6= ∅, return to step 1; else end calculation

4. Experimental Results and Analysis
4.1. Selection of Data Set

To verify the efficiency of the algorithm proposed in this paper, the experimental data
set is from the UCI database—a widely used machine-learning database. As a database
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that exclusively provides a data set for machine-learning research, UCI keeps perfectly
remained data sets with defined category labels. Therefore, the use of data in the UCI
database to evaluate the accuracy rate and the computation time results of the algorithm
proposed in this paper has better reliability. The test set used in this paper is shown in
Table 1.

Table 1. Experimental Verification Data Set.

Number Data Set Number of
Samples

Number of
Features

Number of
Categories

1 Wine 178 14 3
2 Breast Cancer 569 30 2
3 Ionosphere 351 33 2
4 Sonar 208 60 2

4.2. FSIRW Algorithm Verification

In the process of calculation, the feature selection method proposed in this paper
evaluates the features from the perspectives of distance and information entropy to obtain
accurate feature subsets. In terms of distance-based evaluation, the method uses Relief-
based thinking to enable the improved weight to evaluate a set of feature subsets through
the improvement of evaluation weight. It solves the problem that the original algorithm
can only process binary classification when guaranteeing computation efficiency. At the
same time, using the improved Manhattan distance-based calculation formula, the method
further reduces computation load and improves computation efficiency.

As shown in Figure 1, the feature selection algorithm based on improved Relief weight
proposed in this paper effectively finishes the feature dimensionality reduction on different
data sets, and reduces the feature dimensionality by a large margin. In addition, at the
same time, Figure 2 shows that feature selection algorithm based on improved Relief
weight has the same and even higher category computation accuracy rate compared with
the use of feature universal set—in terms of category—which suggests that the algorithm
proposed in this paper effectively removes the redundancy feature and noise feature in data
features. Therefore, using the selected feature subset to carry out category calculation has
better computation efficiency compared with all the features. In terms of comprehensive
evaluation based on mutual information and distance, the feature selection algorithm based
on mutual information and distance proposed in this paper has better calculation results
using the evaluation criterion of complex correlation.
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Figure 2. Accuracy Rate of FSIRW Algorithm.

4.3. FSIRQ Algorithm Verification

To improve the accuracy and calculation speed of the feature selection algorithm, this
paper uses quadratic Renyi entropy to solve the traditional calculation of mutual informa-
tion that needs to rely on the shortcomings of sample data probability density, to improve
the calculation efficiency of the algorithm. By combining the QJMI evaluation function
and the weight evaluation criteria of FSIRQ, the FSIRQ algorithm of composite correlation
evaluation is proposed. To compare the effectiveness of the algorithm, the experiment
verifies the effectiveness of the FSIRQ feature selection algorithm based on the composite
correlation evaluation criterion proposed in this paper compared to ReliefF, mRMR, and
JMI (Joint Mutual Information) algorithms in terms of accuracy and calculation speed.

According to Figure 3, JMI algorithm has higher accuracy rate than the complex corre-
lation algorithm proposed in this paper on the Ionosphere data set. In addition, the FSIRQ
algorithm has better accuracy on the other data sets and in terms of the comparison with
other algorithms because the evaluation criterion of feature selection algorithm proposed
in this paper considers feature distance and information redundancy between features
respectively, thus it conforms to the expectation of the algorithm in terms of accuracy.
However, the JMI algorithm has higher accuracy rate on the Ionosphere data set, which is
because QJMI evaluation criterion takes redundancy punishment as priority, and FSIRQ
chooses smaller feature subset on this data set, causing the effect on the accuracy rate. The
difference on the whole is relatively small and the effect on category accuracy is retained
within reasonable scope, which suggests that the FSIRQ algorithm is satisfying in terms of
accuracy. In Figure 3, the accuracy of ReliefF feature selection algorithm ranks last, which is
because the algorithm only considers the evaluation criterion of distance between features,
and the inherent disadvantage of ReliefF is its inability in identifying redundancy features.
Thus, compared with the feature subset selected by other algorithms, the feature subset by
ReliefF is not satisfying. On these four data sets, ReliefF algorithm has inferior accuracy
rate compared with other algorithms. Therefore, Figure 3 shows that the FSIRQ feature
selection algorithm proposed in this paper has better computation accuracy rate compared
with other feature selection algorithms that only consider a single evaluation criterion.
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Figure 3. Comparison of Algorithm Accuracy Rates.

In terms of execution efficiency of computation, Figure 4 shows the advantage of the
FSIRQ feature selection algorithm proposed in this paper. In addition, Figure 4 suggests
that the ReliefF algorithm has the fastest execution speed on each data set, which is because
the ReliefF algorithm has simple computation as Relief algorithm, and the computation
complexity is only related to the scale of data set and iteration times, thus ReliefF has
better execution efficiency. The FSIRQ algorithm proposed in this paper takes distance as
an evaluation criterion in computation. In addition, it needs to calculate the redundancy
and correlation between features from the perspective of information entropy, thus the
algorithm is inferior to ReliefF in computation execution efficiency. However, compared
with the mRMR algorithm and JMI algorithm, which also need to measure redundancy
and correlation, the algorithm has an advantage. It is because the FSIRQ algorithm uses
quadratic Renyi-based information entropy to calculate the mutual information between
features in the QJMI evaluation function criterion that measures redundancy and cor-
relation, and it directly obtains the mutual information from sample data set through
calculation, avoiding the complex process that the mRMR algorithm and JMI algorithm
need to carry out calculation in advance to achieve feature probability distribution and
probability density. Therefore, the computation load of the FSIRQ algorithm is lighter than
that of the mRMR algorithm and JMI algorithm, which makes the FSIRQ algorithm have
higher computation speed when considering redundancy and correlation between features.

All in all, the comprehensive comparison of Figures 3 and 4 can conclude that the
FSIRQ algorithm proposed in this paper has higher execution efficiency through using
evaluation criterion of complex correlation degree when carrying out feature selection in
the premise of the guaranteeing of higher accuracy rate. Therefore, from the perspectives
of execution speed and accuracy, the FSIRQ algorithm which can give consideration to
accuracy rate and execution speed is better compared with other algorithms, reaching the
expectation of this paper and showing its superiority.
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5. Conclusions

Through the improvement of the Relief algorithm, this paper proposed the FSIRW
algorithm which can evaluate the feature subset with the features of simple computation
and higher computation speed, and the algorithm is suitable to the process of mass data.
Through the improvement of mutual information based on Shannon information entropy,
aiming at the disadvantage of traditional computation of mutual information of needing
complex computation to obtain probability density and probability distribution, the al-
gorithm directly obtains mutual information values from sample data using quadratic
Renyi mutual information, and it proposes QJMI evaluation function based on mRMR and
JMI algorithms. In addition, the evaluation function has satisfying computation efficiency
because of the use of quadratic Renyi mutual information. Meanwhile, because QJMI eval-
uation criterion not only considers the correlation between selected feature and candidate
feature, but also considers the redundancy added by candidate feature, it has a satisfying
effect in evaluation accuracy. Through the combination of QJMI evaluation function and
FSIRW algorithm, this paper proposed FSIRQ feature selection algorithm of complex cor-
relation with higher computation speed and satisfying selection effect when combining
the advantages of these two algorithms. Therefore, for the final computation results, the
algorithm has a higher computation accuracy and can select superior feature subsets.
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