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Abstract: The rapid spread of infectious diseases is a major public health problem. Recent developments
in fighting these diseases have heightened the need for a contact tracing process. Contact tracing can
be considered an ideal method for controlling the transmission of infectious diseases. The result of
the contact tracing process is performing diagnostic tests, treating for suspected cases or self-isolation,
and then treating for infected persons; this eventually results in limiting the spread of diseases. This
paper proposes a technique named TraceAll that traces all contacts exposed to the infected patient and
produces a list of these contacts to be considered potentially infected patients. Initially, it considers
the infected patient as the querying user and starts to fetch the contacts exposed to him. Secondly,
it obtains all the trajectories that belong to the objects moved nearby the querying user. Next, it
investigates these trajectories by considering the social distance and exposure period to identify if
these objects have become infected or not. The experimental evaluation of the proposed technique
with real data sets illustrates the effectiveness of this solution. Comparative analysis experiments
confirm that TraceAll outperforms baseline methods by 40% regarding the efficiency of answering
contact tracing queries.

Keywords: COVID19; contact tracing; query processing; spatial computing; spatial analysis; decision
support systems; spatio-temporal databases

1. Introduction

Recently, infectious diseases, such as Ebola, COVID-19, and SARS, have been increasingly
recognized as a serious, worldwide public health concern. Contact tracing activities are
considered the most potent anti-infection agents. More specifically, the contact tracing
process can be a fast and crucial implementation for reducing the spread of infectious
diseases. Additionally, the contact tracing process allows the decision-makers of medical
sectors to control the transmission of the disease and apply the quarantine on time.

Indeed, numerous studies have attempted to describe the contact tracing process.
In [1], the authors describe the contact tracing process as a set of strategies that emphasize
the controlling and monitoring of infectious diseases. From another perspective, in [2,3],
the authors describe the contact tracing process as examining cases to prove their infection
to all other individuals that were in physical contact with the patients in the recent past,
which will lead to establishing the course of the infectious disease.

This paper proposes a technique TraceAll, which traces all the contacts exposed to an
infected patient and generates a list of the potentially infected persons. The novelty of
TraceAll lies in performing real-time tracing of suspected contacts.

First, the three fundamental parameters that must be defined before the tracing process
starts are: (1) tracing period, which represents the incubation period of the virus or disease;
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(2) exposure time, which represents the exposure period between the infected patient and
other individuals, implying that after this period these individuals may become infected;
(3) social distance, which represents the average distance between the infected patient and
other individuals, meaning that within this distance these individuals may become infected.
Then, the infected patient (query user) marks himself as infected, and this represents a
query to the technique. Next, the technique starts to inspect all objects that have been
nearby the querying user and obtains their trajectories during the configured tracing period.
Then, each trajectory obtained represents a suspected case, and the technique investigates it
from two perspectives; exposure time and social distance. Next, the technique inspects each
trajectory; it starts by identifying the meeting points between the querying user trajectory
and other trajectories. Meeting points are points that the two trajectories are meeting each
other at the same time at different points or the same point. Then, the technique computes if
these trajectories remain with each other for a period equivalent to the configured exposure
time within the configured social distance. If these two conditions match, the technique
considers the object that owns this trajectory as a potentially infected patient and adds it to
the infected patient list.

Indeed, the proposed technique employs two qualitative modes of tracing; (1) Direct
and (2) InDirect. The Direct tracing mode means discovering the first level of contacts
that are exposed to an infected patient; on the other hand, the InDirect tracing mode
means iterative tracing for contacts of contacts that are exposed to an infected patient.
This work distinguishes itself from other studies by utilizing the trajectories of the suspected
individuals that have moved around the infected patient to address the infection transmission
and identifies low-risk contacts and high risk-contacts. The proposed technique TraceAll
experimentally proves that it is efficient in tracing the suspected contacts by building
a novel 3D R-Tree [4–6] index structure that answers contact-tracing queries on time.
Furthermore, TraceAll exploits DEucl as a tunable parameter to filter out trajectories that are
not around an infected patient, and this parameter proved experimentally to be an effective
factor in saving processing time and enhancing the overall performance.

In this paper, the following contributions are made:

1. We develop a novel technique TraceAll for efficiently answering the contact tracing queries.
2. We reduce the total processing time to answer the queries by not scanning all the

suspected trajectories but scanning only suspected parts.
3. We adapt the three-dimensional R-Tree for fast retrieval purposes concerning the

trajectories of suspected cases that may hold the infection.
4. We evaluate our technique on real data based on multiple metrics and present that

they achieve our objectives.

The rest of this paper is organized as follows. Section 2 describes the previous studies
in the area of contact tracing. Section 3 formally defines the problem and explores all
the preliminary concepts. The proposed solution is described in Section 4. Section 5
experimentally evaluates our proposed solution. Finally, Section 6 concludes the paper.

2. Related Work

This section systematically reviews the previous studies related to the contact tracing
process. More specifically, this work covers two major directions, namely, contact tracing
methods and contact tracing applications.

2.1. Contact Tracing Methods

Surveys such as that conducted by [2,7–15] have been argued as contact tracing methods.
In [2,10], the authors argue for explanatory definitions for each type of contact tracing

process, and these definitions were exploratory and interpretive. The authors classify these
definitions into four types: (1) first-order, (2) single-step, (3) iterative, and (4) retrospective.
The first-order contact tracing identifies all individuals that came into immediate physical
direct contact with the infected patient and asking them to self-isolate and seek medical
care. The first-order contact tracing does not care about tracing contacts of contacts. The
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single-step contact tracing identifies all individuals that came into immediate physical
direct contact with the infected patient. Their contacts are traced, and the loop continues
until all contacts are identified. The iterative contact tracing applies diagnostic tests to all
individuals iteratively through symptom screening before they become infected. The main
goal is no further infected patients exist. The retrospective contact tracing is the same as
single-step or iterative but working in the reverse order to know who infected the patient.

In [7–9,11–13], the authors design a model that aims to assess the perfect timing of the
contact tracing process. Moreover, the authors investigate three types of delays that need
to be eliminated during the contact tracing process: (1) initiation delay of the process, (2)
identification delays of the contacts, and (3) hospitalization delays. The model is employed
to control the transmission of the Ebola virus, and findings indicate that quick contact
tracing can lead to controlling the spread of the epidemic.

In [10], the authors point out the significance of examining the network of contacts for
infected or suspicious cases and identifying all disease-transmission pathways. As a result,
the authors propose two methods for contact tracing; pairwise-approximation and fully
random simulation methods. Interestingly, the authors revealed that a positive correlation
was found between the accuracy of contact tracing modeling and the prediction of the
reproductive ratio of the disease, and they report that this correlation will help the medical
sectors to notify infected and suspicious cases for immediate treatment and self-isolation at
an early stage.

In [14–16], the authors design contact tracing models by utilizing IOT technologies.
In [14], the authors present a contact tracing system model using IoT and blockchain, and
moving objects can be tracked using an RFID transceiver and by storing the information
on the blockchain to preserve the owner’s privacy until required. This proposed model
succeeded in identifying super-spreading persons, animals, events, places, or objects.
Furthermore, it can aid the development and implementation of public policies to control
the spread of COVID-19 and prepare for any future epidemic or pandemic. In [15,16], the
authors design a framework for assisting future designs and the evaluation of IoT-based
contact tracing solutions and to enable data-driven collective efforts for combating current
and future infectious diseases.

In [17], the authors propose methods that generate the related routes consisting of the
sequence of steps necessary to reach precise cultural goals depending on the context. These
methods consider the contact tracing process in their work.

In [18–20], authors propose deep learning models that can be used in real applications,
such as medical diagnosis tasks, automatic driving systems, and object tracing. Nowadays,
deep learning methods have shown great advantages in detecting and classifying moving
objects for remote sensing image processing and analysis that can be used further for
contact tracing activities. In general, deep learning methods face more challenges, such
as being difficult to improve in a targeted manner. Furthermore, these models need to
consider both optimization and generalization. Moreover, big data-driven deep learning
models still have the overfitting problem; the neural network can perform well on the
training set but cannot be effectively generalized on the unseen test data.

2.2. Contact Tracing Applications

Several studies investigating contact tracing applications have been carried out
in [21–31].

In May 2020, the Australian Government launched an application named COVIDSafe
to fight the spread of coronavirus (COVID-19). The COVIDSafe application is a mobile
application that utilizes Bluetooth technology to identify and find all persons that have
been exposed closely to COVID-19 infected patients. First, the user installs the application,
and after the application is successfully installed, a unique reference code is generated
for this device. Then, COVIDSafe searches for other devices that have the app installed
and are in close-proximity, and the application records a note for this contact by signing a
digital handshake between these devices. Moreover, COVIDSafe records all information
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about the user, such as date and time, the proximity of the contact, and mobile phone
device information (manufacture number, model number, serial number, operating system).
Furthermore, COVIDSafe does not record the locations of the identified users due to privacy
concerns. Next, if a user’s diagnostic test is a positive test of COVID-19, this infected user
uploads his digital handshake information into the National COVIDSafe Data Store. Then,
the official health sectors will call the close contacts of this infected person to instruct them
to undertake diagnostic tests. It is critical to note that the COVIDSafe creates two time
windows; the first window is 14 days, which is the incubation period of COVID-19, and
the second window is 21 days, which includes the incubation period in addition to the
time consumed to confirm the diagnosis for positive tests. The second window is created
to allow COVIDSafe to carefully monitor and count continuous contacts during the first
window. After 21 days, COVIDSafe deletes the contacts [21–23].

In May 2020, the Singaporean Government released an application named TraceTogether
to trace close contacts of an infected patient. The TraceTogether mainly depends on using
Bluetooth technology in the contact tracing process. First, after the application is installed,
a unique user ID is created. Then, when two users of the application are connected, the
proximity, duration, and device information are logged for 21 days. Once a user becomes
an infected patient, the Ministry of Health (MOH) fetches all the contacts connected to the
infected patient over the last 14 days [24].

Collectively, these studies [25–27] outline a critical role for using Bluetooth technology
in the contact tracing process. They argue that this technology is the most suitable for the
contact tracing process and proves its efficiency in proximity detection. In addition, they
point out that the signal strength can be utilized to detect other devices within 2 m as a
measurement of social distancing.

In [28], the authors propose and develop a peer-to-peer smartphone application for
contact tracing that preserves user privacy by not considering any personal information
about the end-user, such as location. This application permits the users to set checkpoints
for the contact tracing based on their recent interactions and inspects their risk level.

The spread of Ebola virus disease in Liberia, Guinea, and Sierra Leone from 2014 to
2016 led to over 28,000 infected cases and over 11,000 deaths. Defining a surveillance plan
for fighting the Ebola epidemic in these countries is the main objective. This surveillance
plan includes the following activities and considers an effective response: (1) rapid
diagnostic tests for suspected cases and other contacts who were in contact with infected
individuals, (2) isolation for the infected cases, (3) effective contact tracing, and (4) tracing
the transmission chains of the infection. The contact tracing process is considered as the core
of this surveillance plan to identify all individuals who were in contact with Ebola-infected
patients over the last 21 days (Ebola incubation period). Among the countries mentioned
above, Sierra Leone is most affected by Ebola disease, with 8706 infected Ebola cases and
3956 deaths [29,30]. As a result, the authors in [31] utilize smartphone technology and
develop a system for tracking contacts of Ebola cases in Sierra Leone. This system is linked
with another alert system to notify and report symptomatic contacts to the District Ebola
Response Centre. The results state that the application improves the data completeness of
the suspected and symptomatic contacts.

A broader perspective was adopted by the authors of [32,33] for using social networking
sites (SNS) in the contact tracing process. This is due to the growing popularity and flexible
accessibility of these sites. The authors observed that using SNS will help the public health
officials in tracing the contacts easily, detecting the outbreak early, controlling the disease,
and detecting the high-risk regions early.

3. Problem Setting

This section presents the preliminary concepts that will be used throughout the rest of
the paper. Then, the problem statement is discussed.
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3.1. Preliminaries

Definition 1. Exposure Time, TExposure is a certain time interval for which a normal individual is
exposed to an infected individual.

Definition 2. Social Distance, DEucl , is a certain distance for which a normal individual is nearby
the infected individual.

Definition 3. Contact Tracing Query, (CTQ), is the query that traces the contacts that have been
connected with the infected patient either directly or indirectly within certain TExposure and DEucl .

Definition 4. Meeting Point is the point where a normal individual meets with an infected
individual at the same time, TDi f f (in f ected, normal) = 0; in this work TDi f f is measured
in minutes.

Definition 5. Direct Tracing is the discovery of contacts that have a direct physical connection
with an infected person during a specific tracing period; these discovered contacts are named
high-risk contacts.

Definition 6. In-Direct Tracing is the contacts of contacts discovery in an iterative manner for
persons that have a direct physical connection with an infected person during a specific tracing
period. These discovered contacts are named as low-risk contacts.

3.2. Problem Statement

We are given the tracing period Tracingperiod, exposure time TExposure, social spatial-
distance for exposure DEucl , and trajectories data set for objects moved in the space τOthers.
Each trajectory included in τOthers is a sequence of traveled locations L and timestamps T
paired for each location, and each location is represented by longitude and latitude values;
τ = {(l1, T1), (L2, T2), . . . , (LN , TN)}. Let the query user Quser be the object who becomes an
infected patient, and its trajectory is τQ. The τQ represents the trajectory of the infected
patient at a specific time. This is needed to extract a set of contacts C (C ⊂ τOthers) that
are exposed to the Quser during Tracingperiod, and the exposure time consumed is greater
than or equal TExposure within spatial distance DEucl . Additionally, this query is flagged
by a Boolean flag named TracingMode, and this flag holds two values: (1) direct and (2)
indirect. In the case of direct tracing, only contacts connected to the Quser are returned as a
result. This type of query is called a snapshot query (first level query). In the indirect case,
contacts of contacts connected to the Quser are returned during the tracing period. Initially,
the contacts connected to Quser are retrieved as in the direct tracing, and then recursive calls
occur for the new retrieved list, where each user in this list is considered as a new Quser. The
break condition is the end date of the tracing period, so the recursion depth is represented
by the Tracingperiod (count of days), which is a continuous query (multi-level query).

Cardinality of the query: | C | suspected contacts that may have the infection. These
contacts can be low-risk contacts or high-risk contacts.

Condition of the query: contacts that connect the Quser during Tracingperiod, duration
of contact between Quser and other contacts ≥ TExposure, and social distance between Quser
and other contacts ≤ DEucl & TracingMode = (direct or indirect).

Illustrative Example: The τQ record is represented as follows:
(20-August-2020—(Location1, 02 : 30 : 00), (Location2, 02 : 35 : 00), (Location3, 02 : 40 :
00), . . . , (LocationN , 02 : 55 : 00)), and the tracing mode is direct. The objective is to get all
traces of contacts that connected with Quser starting from 6-August-2020 to 20-August-2020.
In addition, on each day, the spatial distance between τQ and other contacts trajectories
is 2 m, and the common time spent between the Quser and other contacts is greater than
or equal to 10 min. It is critical to mention that if the tracing mode is indirect, the first list
extracted for the Quser needs to be fetched and each user in the list is considered as a new
Quser. The list belonging to each fetched Quser needs to be iterated repeatedly until the end
date of the tracing period is reached.

The input parameters for the contact tracing query are highlighted in Table 1.
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Table 1. CTQ input parameters example.

Parameter Name Value

Tracingperiod 14 days
TExposure 10 min

DEucl 2 m
TracingMode Direct

4. Proposed Solution

This section describes the proposed technique for retrieving a list of individuals who
are exposed to the infected patient and need diagnostic tests.

4.1. Main Idea

The idea of the proposed solution is to retrieve a list of individuals who were exposed
to the infected patient within a specific distance and for a certain period. First, the technique
extracts all trajectories that moved between the start-time of the infected person trajectory
and the end-time of the infected person trajectory. After that, the technique identifies all
meeting points between the infected patient (query user) and other extracted trajectories.
Meeting points mean that infected and normal persons meet at the same time at different
points or the same point. Next, the technique iterates over the trajectories for each iterated
trajectory, starting from these meeting points. The technique removes sub-trajectories
from the query trajectory and the iterated trajectory. These sub-trajectories start from the
meeting point time, and the meeting point time is incremented by the exposure time. After
that, the technique computes the average distance between the created sub-trajectories. If
the average distance is less than or equal to the identified social distance, the technique
returns that the user of this trajectory is infected; otherwise, the technique jumps to the
next meeting point and makes the same computations again.

The proposed solution has four major steps that are briefly discussed as follows:
Step 1: Bounds for the Query User’s Trajectory. The objective behind this step is to

set bounds for the space-time of the query user’s trajectory. It identifies the start time and
end time of the query object’s trajectory. Then, it creates a space region that covers the
query user’s trajectory. This region is computed based on the minimum point (minimum
longitude, minimum latitude) and maximum point (maximum longitude, maximum
latitude) included in the query user’s trajectory. The inner rectangle in Figure 1 presents
this step.

Step 2: Identify the Overlapped Region. The objective of this step is to create a region
that catches all the trajectories of the nearest neighbors objects that moved around the
query object’s trajectory, and these objects can be suspected and infected cases. This region
is created by adding the DEucl to all sides of the region created in step 1. More specifically,
this created region contains the region bounds of the query object’s trajectory. The outer
rectangle in Figure 1 presents this step.

Step 3: Extracts Overlapped Trajectories. The objective behind this step is to extract all
trajectories that have traveled through the overlapped region created in step 2 between the
start and the end time of the query object’s trajectory. The objects that own these trajectories
are considered as suspected objects that need to be investigated.

Step 4: Extract Infected Trajectories. The objective behind this step is to extract all
trajectories of the users in which their infection is confirmed based on disease infection
conditions. These trajectories must match two major conditions: (1) distance between the
trajectory and the query trajectory is less than or equal to the identified social distance for
infection, and (2) the exposure time between the trajectory and the query trajectory is equal
to the identified exposure time for infection.
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4.2. Solution Overview

This section presents the two main algorithms that describe the full functionality of
the proposed technique.

Algorithm 1 illustrates the pseudo-code of the proposed solution for the contact
tracing. The algorithm has three input parameters: (a) tracing period Tracingperiod, which
represents the incubation period for the disease, (b) time exposure threshold TExposure, and
(c) social distance DEucl (if the measured distance is less than this distance, this confirms
the infection may transmit from an infected individual to a normal one). The algorithm
returns the potentially infected list of users based on their trajectories. First, when the
infected patient (query user) raises the flag that he has become infected, the algorithm
considers this date of the query as the start date of the tracing and subtracts the tracing
period from the start date to generate the tracing end date (lines 13 to 14). In line 15, the
algorithm iterates from the tracing start date to the tracing end date, and for each iteration,
the algorithm obtains all the trajectories that belong to the infected patient on this day (line
17). In line 18, the algorithm iterates over the query user’s trajectories each day. Then, the
algorithm sets boundaries for the iterated query object’s trajectory, and these boundaries
concern space and time (line 22).

In line 24, the algorithm creates a region named the overlapped region to catch the
trajectories of the nearest neighbors’ objects that moved nearby the query object’s trajectory.
This region was created by adding the identified DEucl to the boundaries created around
the query object’s trajectory from all sides. Next, in line 26, the algorithm employs the
three-dimensional R-Tree index to retrieve all trajectories included from the start time to the
end time of the query object’s trajectory that moved through the overlapped region created
in line 24. The algorithm considers these trajectories as suspected, and they need to be
investigated from space and time perspectives to confirm the infection based on the disease
transmission conditions. The algorithm iterates over these overlapped trajectories, and
for each iteration, the algorithm checks the infection exposure criteria between the query
object’s trajectory and iterated trajectory. If the iterated trajectory matches the identified
criteria, the algorithm includes this trajectory in the infected list; otherwise, it iterates the
exposure checks performed by Algorithm 2 (lines 27–32) again. It is critical to note that
the algorithm configures the tracing modes before running occurs. If the tracing mode
is “InDirect”, the algorithm makes recursive calls to retrieve the contacts of contacts by
utilizing the direct tracing in each iteration (lines 35–40). Finally, the algorithm returns the
infected list of users and their trajectories.

It is critical to note that for all points discovered with a time difference of zero and
spatial distance less than or equal to the identified social distance, the proposed technique
considers them as hotspots, which means places with significant risk or danger.

Algorithm 2 describes how the exposure is computed between the infected patient
and a normal individual. The result indicates if the infection was transmitted to the normal
individual from the infected patient or not. The algorithm receives four parameters: (a) τ1,
which represents the trajectory of the infected patient; (b) τ2, which represents the trajectory
of the suspected user; (c) TExposure, which represents the identified exposure time period
with the same value configured in Algorithm 1; (d) DEucl , which represents the identified
distance with the same value configured in Algorithm 1. The algorithm returns a boolean
flag that indicates if this normal individual becomes infected or not. First, the algorithm
iterates over both trajectories’ points to ensure if the objects’ of these trajectories meet each
other at a specific point. In line 7, the algorithm checks if the time difference between the
iterated points is 0 or not. If the time difference is 0, this means that these trajectories are at
the same point or different points at the same time. The algorithm makes another check
before starting the tracing by checking the distance between the meeting points Pointi
from τ1 and Pointj from τ2. If the distance is greater than the DEucl , the algorithm does
not complete the tracing and continues its iterations for other meeting points; otherwise,
the algorithm completes the tracing. Subsequently, in line 9, the algorithm captures the
time of Pointi and sets the value in a parameter named StartTime. After that, in line 10,
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the algorithm defines a new parameter named EndTime to store another specific time of
a point.

Algorithm 1 TraceAll: Contact Tracer Technique

1: procedure CONTACT_TRACER
2: INPUT: Tracing Period Tracingperiod, Time Threshold TExposure, Social Distance DEucl .
3: /* Overlapped Traces list */
4: Let OverlappedTracesList OL← φ
5: /* Infected list */
6: Let SuspectedList IL← φ
7: /* Overlapped Region */
8: Let OverlappedRegion RegionOverlapped ← φ
9: /* Region Bounding Query Trajectory */

10: Let RegionBoundingτQ ← φ
11: /* Query Trajectories List */
12: Let QLτ ← φ
13: TracingStartDate = CurrentDate
14: TracingEndDate = CurrentDate− Tracingperiod
15: for TracingStartDate to TracingEndDate do
16: /* τQ Query object’s trajectories */
17: Get QLτ in iterated day
18: for each τQ ∈ QLτ do
19: /* τOthers Other object’s trajectories */
20: Get τOthers in iterated day
21: /*Region created from max&min points τQ*/
22: RegionτQ = Bound τQ
23: /*Add social distance to overlapped region*/
24: RegionOverlapped = DEucl + RegionτQ
25: /*Get traces in overlapped region by R-Tree*/
26: OL← R-Tree (RegionOverlapped,τOthers)
27: for each o ∈ OL do
28: isExposed=IsExposed(τQ,o)
29: if isExposed = True then
30: add o to IL
31: end if
32: end for
33: end for
34: end for
35: if TracinMode = InDirect then
36: for 0 to Tracingperiod do
37: /*Increment IL by fetched contacts*/
38: Call Mobility_Tracer
39: end for
40: end if
41: end procedure
42: OUTPUT: Return objects belongs to IL

The algorithm computes the EndTime by adding TExposure to the StartTime defined
at line 9. Next, the algorithm obtains the sub-trajectory from τ1 (starting from a point
located at the StartTime and extending to the point that exists at the EndTime) and stores
the result as a new variable named Subτ1 (line 12). Similarly, the algorithm obtains the
sub-trajectory from τ2 (starting from a point located at the StartTime and extending to
the point that exists at the EndTime) and stores the result as a new variable named Subτ2
(line 14). In line 16, the algorithm computes the average distance between the created
sub-trajectories. If the average distance is less than or equal Dsocial, the algorithm returns
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that the τ2 belongs to an infected individual and breaks the loops; otherwise, the algorithm
continues the iterations.

Algorithm 2 Is Exposed

1: procedure ISEXPOSED
2: INPUT: Trajectory 1 τ1, Trajectory 2 τ2,Time Threshold TExposure, Social Distance DEucl .
3: let isExposed← f alse
4: for each Pointi ∈ τ1 do
5: for each Pointj ∈ τ1 do
6: /* Checks if τ1andτ2 meets */
7: if TDi f f (Pointi, Pointj) = 0
8: &dist(Pointi, Pointj) ≤ DEucl then
9: StartTime = TimeStamp of Pointi

10: EndTime = startTime + TExposure
11: /*Points from startTime to EndTime τ1*/
12: Subτ1 = Sub-Trajectory from τ1
13: /*Points from startTime to EndTime τ2*/
14: Subτ2 = Sub-Trajectory from τ2
15: /* Computes the average distance */
16: if dist(Subτ1, Subτ2) ≤ DEucl then
17: isExposed = true
18: Break loops; Return the result
19: end if
20: end if
21: end for
22: end for
23: end procedure
24: OUTPUT: Return isExposed

It is important to bear in mind that the distance between Subτ1 and Subτ2 when meeting
points are discovered is measured based on the Hausdorff distance technique [34–36]. The
Hausdorff distance technique is described in detail in Section 4.3. Indeed, the technique
iterates over points Subτ1, and in each iteration, computes the distance between Subτ1
points and Subτ2 points, obtains the minimum distance for each point comparison, and
finally, produces the maximum of minimum distances generated in each iteration. Likewise,
the technique iterates over points Subτ2, and in each iteration, computes the distance
between Subτ2 points and Subτ1 points, obtains the minimum distance for each point
comparison, and finally, produces the maximum of minimum distances generated in each
iteration. In the end, the technique produces the maximum for scores obtained from Subτ1
and Subτ2, and this distance is considered the total distance between Subτ1 and Subτ2.

In this work, we adapt the Hausdorff technique to cope with the proposed cases. The
adaption is made by considering if the distance between any two points exceeds the DEucl ,
the Hausdorff technique stops scanning other points and returns to Algorithm 2 that the
calculated distance between the compared sub-trajectories is greater than DEucl , which
saves more processing time.

Figure 1 illustrates how the proposed technique bounds the query object’s trajectory
and creates the overlapped region. First, it searches for the minimum point and maximum
point in the query object’s trajectory. The maximum point means maximum longitude and
latitude through the query object’s trajectory, and the minimum point means minimum
longitude and latitude through the query object’s trajectory. Next, it calculates the height
and width of the rectangle region that surrounds the query object’s trajectory. According to
the rectangle boundaries created around the query object’s trajectory, the technique starts
to create the overlapped region by adding the identified “social distance” DEucl to all sides
of the created rectangle and generates a larger rectangle to be the overlapped region.
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Figure 1. Overlapped region.

Figure 2 provides an overview of how the proposed technique catches the nearest
neighbor’s trajectories that move around the query object’s trajectory and considers them
as suspected cases. First of all, the system exploits the overlapped region that resulted
from Figure 1 and employs a three-dimensional R-Tree to perform a range query to obtain
all trajectories located in the overlapped region that are also between the start and the
end time of the query object’s trajectory. In particular, the three dimensions here mean
two dimensions of space and one dimension for time. More specifically, R-Tree is a tree
index structure used to handle spatial data objects efficiently. The main idea of the R-Tree
structure is to group nearby spatial objects and store them in a minimum bound rectangle
(MBR) in the next level of the tree (the R character in the word R-Tree stands for the
rectangle). This work chooses R-Tree because it is much faster in nearest-neighbor queries
and window queries, such as “inside”, “covers”, and “contains”.

Figure 2. Overlapped trajectories.

Figure 3 provides a detailed overview of the breakdown of the tracing process,
according to three fundamental properties; meeting points, social distance, and exposure
time. Furthermore, Figure 3 presents the intercorrelations among these properties. After
getting the overlapped trajectories from Figure 2, the proposed technique starts to inspect
each overlapped trajectory. Figure 3 describes three cases for inspection to detect if this
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trajectory belongs to an infected patient or not. In the first case, in point P1, the proposed
technique detects that the time difference between P1 and the corresponding point P1Q in
the query object’s trajectory is zero, but the distance between these two points is greater
than the identified social distance DEucl , so the technique continues scanning other parts of
the trajectories. In the second case, the technique detects that the time difference between
point P2 and the corresponding point P2Q in the query object’s trajectory is zero, and after
that, the technique checks the distance between these points and finds that the distance
is less than the identified social distance. As a result, the technique starts to capture
the sub-trajectories from both trajectories (query object’s trajectory and trajectory 5) to
compare them. These sub-trajectories were created by selecting a part from each trajectory,
starting from points with time difference zero until the point at a time after adding the
identified “exposure time”. Then, the technique computes the average distance between
these sub-trajectories; in this case, the technique finds that the average distance is greater
than the identified social distance, so the technique continues scanning other parts of the
trajectories. In case 3, it is the same as case 2, except that the average distance between
the created sub-trajectories is less than the identified social distance, and the technique
identifies that this trajectory belongs to an infected user.

Figure 3. Computing exposure.

The robustness of our proposed solution lies in answering contact tracing queries
efficiently and in a responsive time manner. Furthermore, the flexibility in retrieving the
contacts and flexibility to configure the incubation period of the disease allows the end-user
to easily control the contact tracing process in real-time.

4.3. Hausdorff Distance Calculation.

The Hausdorff technique measures how far two subsets of points are from each other
with respect to metric space. The Hausdorff working is as follows: Given two point sets
A and B, as per Equation (1), the Hausdorff distance between A and B scans each point
of A, finds the closest neighbor point from B, and the most mismatched point of A (the
point that is farthest from any point of B) identifies the result of h(A, B) as per Equation (2).
Moreover, if h(A, B) = d, then each point of A must be within distance d of some point of
B, and there is also some point of A (the most mismatched point) that is exactly distance d
from the nearest point of B. The key equations of the Hausdorff technique are described
as follows:

H(A, B) = max(h(A, B), h(B, A)) (1)
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where,
h(A, B) = max min ‖ a− b ‖, a ∈ A, b ∈ B (2)

Figure 4 represents an illustrative example of how the Hausdorff metric works. It
computes the distances between two point sets A and B. First, the Hausdorff metric iterates
over the points in set B and computes the distance between each point in B and each point
in A. For each iteration, the Hausdorff metric takes the minimum and, at the final step,
takes the maximum score of the minimum distances, as shown in Figure 4a,b. The result
of this step is 1.9. Secondly, the Hausdorff metric iterates over the points in set A and
computes the distance between each point in A and each point in B. For each iteration,
the Hausdorff metric takes the minimum, and at the final step, the Hausdorff takes the
maximum score of the minimum distances, as shown in Figure 4c–e. The result of this step
is 2.3. Finally, the Hausdorff metric produces a maximum value of (1.9, 2.3), which is 2.3,
so the final result of Hausdor f f (A, B) = 2.3.

(a) (b)

(c) (d) (e)

Figure 4. Hausdorff example.

4.4. Summary

This section presents our proposed solution, which follows up the suspected cases
exposed to the infected patient. The solution investigates the trajectories of these suspected
cases from two factors: social distance and exposure time. Based on specific values for
these factors, the proposed technique identifies if these suspected cases are being infected
or not. It starts by scanning the trajectory that belongs to every suspected case. After that,
the technique identifies the meeting points between the suspected case and an infected
patient. Next, for each meeting point, the technique obtains the distance between the
meeting point projected on the suspected case trajectory and infected patient trajectory. If
the distance is less than or equal to the identified social distance, the technique continues
to cut off sub-trajectories from the suspected case trajectory and infected patient trajectory.
These sub-trajectories started from the meeting point time until the exposure period was
added.Next, the average distance between created sub-trajectories is computed. If the
average distance is less than or equal to the identified social distance, the technique
considers this suspected case as infected. Finally, the system generates a list of infected
patients and produces it.

5. Experiments

This section evaluates experimentally our proposed solution and reports the results.



Information 2021, 12, 202 13 of 19

5.1. Experimental Setup
5.1.1. Data Set

All experiments conducted in this study utilized the real data set UJIIndoorLoc [37],
which describes the indoor movements inside the University of Jaume. This data set
represents buildings of the University. Each building contains 4 or more floors, and the
total area that the data set covers is around 110, 000 m2. This data set was collected by
WLAN fingerprint positioning technologies and was created in 2013, with almost 19,937
total training reference records. The Wi-Fi fingerprint can be captured by wireless access
points (WAPS) as well as the corresponding received signal strengths (RSSI). The data set
consists of 529 attributes, with 520 of them representing the Wi-Fi fingerprint readings, in
addition to the following attributes: (1) Longitude; (2) Latitude; (3) Floor, which describes
the altitude inside the building; (4) Building_Id, to identify the building; (5) Space_Id, to
identify the space (office, corridor, classroom); (6) Relative position concerning space, which
holds two values inside and outside (in front of the door); (7) User_Id, which represents
a unique user identifier; (8) Phone_Id, which represents the android device identifier; (9)
Timestamp, which represents when the capture is taken.

These parameters (User_Id, Longitude, Latitude) were extracted from the UJIIndoorLoc
data set to represent the trace for each person in the building for processing by TraceAll.

5.1.2. Environment Settings

The proposed solution was implemented using Java programming language with JDK
version 11. All experiments were executed on a PC with an Intel(R) Core(TM) i7 processor
and 16GB RAM and run on Windows 10.

5.2. Performance Metrics

This work selected the memory overhead and CPU processing time as performance
metrics to evaluate the robustness and performance of the proposed technique TraceAll.
These selected metrics were chosen based on similar techniques that utilize the trajectory
on the contact tracing process, and these metrics aim to evaluate the efficiency of the contact
tracing query processing [38–40]. Indeed, the memory overhead metric here represents the
memory resources consumed in order to complete the contact tracing process. On the other
hand, the CPU processing time metric here represents the total amount of time for which a
central processing unit (CPU) was used for processing the contact tracing query.

5.3. Experimental Evaluation

Next, we report our findings.
Exp 1: Effect of Choosing Hausdorff. In this experiment, Figure 5 compares the

Hausdorff technique against the Frechet technique [41] in measuring the distance used in
our proposed solution. The x-axis describes the varying number of points in the query
object’s trajectory. The y-axis represents the average CPU time used in milliseconds. The
comparison was made against a trajectory with a length of 60 points. The results show that
the Hausdorff metric consumed less time than the Frechet technique. Additionally, the
Hausdorff metric confirms its sensitivity to the position. In conclusion, the results of the
tests proved that the Hausdorff technique is a good choice for comparing distances.

Exp 2: Effect of 3D R-Tree. This experiment inspects the impact on processing time
when using the three-dimensional R-Tree for selecting overlapped trajectories (three-
dimensional here means space (x,y) and time). This experiment compares the 3D R-Tree
against the 2D R-Tree with an added function to retrieve overlapped trajectories that fall in
the time range between the start and the end time of the query object’s trajectory. Figure 6
describes this comparison. The x-axis describes the number of overlapped trajectories
discovered relative to the total number of caught trajectories, and the y-axis represents the
average time consumed in milliseconds. The results present that the 3D R-Tree took less
time than running the 2D R-Tree while only including trajectories between the start and
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end time of the query object’s trajectory. The 3D R-Tree also proves a fast retrieval for the
overlapped trajectories.

Figure 5. Comparison of results using Hausdorff vs. Frechet.

Figure 6. Effect of 3D R-Tree.

5.3.1. Baseline Comparisons

This sub-section considers the QR-tree index proposed in [38] as a baseline for
comparisons. This index was selected because it is used to answer contact tracing queries
with respect to social distance and exposure time factors, which are utilized to confirm the
infection transmissions.

Next, we report our findings.
Exp 3: Effect of Exposure Period on Memory. In this experiment, Figure 7 shows the

impact of increasing the exposure time of the memory overhead. The x-axis presents the
varying of TExposure in minutes, while the y-axis presents the memory usage in megabytes.
Overall, the graph demonstrates that memory usage rose significantly when TExposure
increased. This is because when the exposure time increased, more scans were needed
while confirming the infection. It is observed that the proposed technique consumed
less memory usage than the QR-Tree, and the justification behind this is that when the
TExposure increased, more points needed to be retrieved from different blocks, linking them
to trajectories. Next, a complete scan of trajectories was completed for the entire exposure
period to confirm infection, while in the proposed technique, the scan is only done at
the meeting points as this saves memory from the overhead of accessing different points
and trajectories.
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Figure 7. Effect of exposure period on memory.

Exp 4: Effect of Exposure Period on CPU Time. In this experiment, Figure 8 compares
the proposed technique with the QR-tree when the exposure time increases against CPU
processing time. The figure measures the time consumed to answer CTQ in terms of the
proposed technique and the QR-tree and highlights the results. The x-axis presents the
variation of TExposure in minutes, while the y-axis presents the CPU processing time taken
in milliseconds. The figure illustrates that the QR-tree took more time to answer CTQ than
the proposed technique. The tests were repeated several times to confirm the results. The
justification behind this is that the QR-tree must retrieve and check the same time buckets
for each point and then group points from both trajectories and compare them until the
end of TExposure while the proposed approach utilizes the verification of social distance to
filter out noisy points and save time.

Figure 8. Effect of exposure period on CPU time.

Exp 5: Effect of Social Distance on Memory. In this experiment, Figure 9 provides
information about the impact of increasing social distance on memory usage and overhead.
The x-axis presents the variation of DSocial in meters, while the y-axis presents the memory
usage in megabytes. Generally, Figure 9 compares the QR-tree against TraceAll when the
DEucl is increasing. It is noted that the QR-tree consumed more memory than TraceAll. This
is because, for the QR-tree, when DEucl increased, a huge amount of inputs and outputs
occurred in order to access many blocks containing points belonging to accessed trajectories,
while, in the proposed solution, the overlapped trajectories were only retrieved once.



Information 2021, 12, 202 16 of 19

Figure 9. Effect of social distance on memory.

Exp 6: Effect of Social Distance on Processing Time. Figure 10 shows the CPU consumption
with respect to the change of DEucl . The x-axis presents the variation of DEucl in meters,
while the y-axis presents the CPU processing time taken in milliseconds. This figure
compares the CPU consumption for TraceAll against the QR-tree index to answer CTQ. The
most striking observation to emerge from the comparison was that an increase of DEucl by
2 m would lead to an approximately twofold increase of CPU time for both the QR-tree
and the proposed technique. Additionally, it is observed that the proposed technique
consumed less time than the QR-tree. This is because the number of points scanned among
two compared trajectories will decrease, while in the QR-tree, when the DEucl increases,
the growth of the number of blocks that need to be accessed will gradually increase.

Figure 10. Effect of social distance on CPU time.

5.4. Experiments Summary

The issue of infection transmission has received considerable critical attention, so
investigating the social distance and exposure time is a continuing concern within the contact
tracing process during the infection transmission. In particular, the three-dimensional R-Tree
is becoming an instrument in fast retrieval of nearest overlapped trajectories of suspected
objects within a specific time range and particular distance. Indeed, the Hausdorff metric
proved to be important regarding the distance measurement and sensitivity to locations.
Additionally, the adaptation to the Hausdorff technique led to significant performance
enhancements. Furthermore, several experiments have been performed against the baseline
method to answer contact tracing queries with respect to common parameters used, such
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as social distance and exposure time. This section introduced four experiments that
compared the proposed technique with baseline methods based on performance metrics.
Overall, these experiments present the efficiency and quality of the proposed technique
against the selected baseline methods. Finally, the results confirm the efficiency of our
proposed solution.

6. Conclusions

In this paper, we presented the TraceAll technique to answer contact-tracing queries that
help in fighting infectious diseases. The TraceAll technique was designed to fetch all contacts
that connect either directly or indirectly to the infected patient. The method considers direct
contacts as high-risk individuals and in-direct contacts as low-risk individuals. First, TraceAll
extracts the trajectories of the users that moved nearby the infected patient within the
determined distance. Then, TraceAll iterates over these trajectories. For each trajectory,
TraceAll compares it against the trajectory of the infected patient to identify the meeting
points and determine if the two trajectories were exposed to each other for a time and
distance that allowed the infection to be transmitted. As a result, if the two trajectories were
exposed to each other for the identified time and identified distance, TraceAll considers the
object that owns this trajectory as a potentially infected patient that needs to undergo an
immediate diagnostic test. Indeed, TraceAll ensures an efficient answering of queries by
employing a novel 3D R-Tree index for fast retrieval of the trajectories that satisfy infection
transmission conditions. In addition, this is employed to use a tunable parameter to filter
out trajectories that are unneeded during the tracing process. Empirical studies proved the
scalability, efficiency and accuracy of the proposed solution TraceAll. Finally, TraceAll proves
to be efficient in answering contact tracing queries and handling big query throughput.
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