
  information

Article

Hybrid System Combination Framework for Uyghur–Chinese
Machine Translation

Yajuan Wang 1,2,3,4 , Xiao Li 1,3,*, Yating Yang 1,3,*, Azmat Anwar 1,3 and Rui Dong 1,3

����������
�������

Citation: Wang, Y.; Li, X.; Yang, Y.;

Anwar, A.; Dong, R. Hybrid System

Combination Framework for

Uyghur–Chinese Machine

Translation. Information 2021, 12, 98.

https://doi.org/10.3390/info12030098

Academic Editor: Kostas Stefanidis

Received: 7 February 2021

Accepted: 20 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences,
Urumqi 830011, China; wangyajuan@ms.xjb.ac.cn (Y.W.); azmat@ms.xjb.ac.cn (A.A.);
dongrui@ms.xjb.ac.cn (R.D.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China
4 Department of Information Security Engineering, Xinjiang Police College, Urumqi 830011, China
* Correspondence: xiaoli@ms.xjb.ac.cn (X.L.); yangyt@ms.xjb.ac.cn (Y.Y.); Tel.: +86-136-0993-8871 (X.L.)

Abstract: Both the statistical machine translation (SMT) model and neural machine translation
(NMT) model are the representative models in Uyghur–Chinese machine translation tasks with their
own merits. Thus, it will be a promising direction to combine the advantages of them to further
improve the translation performance. In this paper, we present a hybrid framework of developing a
system combination for a Uyghur–Chinese machine translation task that works in three layers to
achieve better translation results. In the first layer, we construct various machine translation systems
including SMT and NMT. In the second layer, the outputs of multiple systems are combined to
leverage the advantage of SMT and NMT models by using a multi-source-based system combination
approach and the voting-based system combination approaches. Moreover, instead of selecting
an individual system’s combined outputs as the final results, we transmit the outputs of the first
layer and the second layer into the final layer to make a better prediction. Experiment results on the
Uyghur–Chinese translation task show that the proposed framework can significantly outperform
the baseline systems in terms of both the accuracy and fluency, which achieves a better performance
by 1.75 BLEU points compared with the best individual system and by 0.66 BLEU points compared
with the conventional system combination methods, respectively.

Keywords: statistical machine translation (SMT); neural machine translation (NMT); multi-source-
based combination; voting-based combination; hybrid system combination

1. Introduction

Machine translation (MT) is an important task for the natural language processing
(NLP) field. At present, the most popular Uyghur–Chinese machine translation methods
can be divided into two categories: statistical machine translation (SMT) [1,2] and neural
machine translation (NMT) [3–5]. There are other reasons for SMT to be used since SMT
models require large datasets and have the most problems with rare words. However,
in some cases (depending on the domain and corpus size), SMT is still in use, mostly in
a hybrid approach [6]. Its workflow must be ordered to execute by multiple separately
tuned components, such as word alignment, translation rules extractors, and other feature
extractors, which seems to be more complex and will bring error propagation problems in
the training pipeline [7]. Whereas distributed representation of arbitrary language can be
realized through the end-to-end training of the NMT system, the NMT model can prevent
the problems during the SMT training process. NMT can produce more fluent results [8–10]
but which are often not adequate, while SMT models generally obtain lower results for the
criteria of fluency, especially for low-resource languages with relatively free word order [11].
Generally, MT evaluation metrics favor translations that follow a strict word order when
compared to the reference translations, which could be the reason for lower BLEU scores.
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Inevitably, NMT has a problem in addressing the translation adequacy especially for the
rare and unknown words, even using the subword method [12,13]. Therefore, neither the
SMT nor NMT model can achieve the expected results for the Uyghur–Chinese machine
translation task.

Table 1 shows a Uyghur–Chinese translation example. Given an input Uyghur sen-
tence (denoted as src), there are three erroneous but complementary hypotheses (denoted
as hyp1, hyp2, and hyp3) generated by the three different MT systems. Hyp1 can gener-
ate some keywords such as “方便面 (Instant noodles)”, “鸡蛋汤 (Egg soup)”, and “物资
(Supplies)”. Hyp2 can translate the verb word “送来了 (Brought)” correctly. Additionally,
hyp3 can capture the relationship between “交警 (Traffic police)” and “司机 (Driver)”,
but it mistranslates the noun words “方便面 (Instant noodles)” and “鸡蛋汤 (Egg soup)”.
These hypotheses have different strengths and weaknesses, so we suppose that if we can
utilize the advantages of the three hypotheses, we can obtain a better translation result.
The limited languages such as the Uyghur are far less resourced in available MT services,
or even language technologies in general [14]. The system combination method can com-
bine the various machine translation outputs to achieve a better accuracy and fluency.
Thus, the system combination can play an important role in the low-resource language
translation scenery.

Table 1. Examples of multiple hypotheses. Tsrc, THyp1, THyp2, THyp3 are English translation of the
src, hyp1, hyp2, hyp3, respectively.
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Tsrc The traffic police brought the driver instant noodles, steamed buns, egg soup and other food.
hyp1 交警方便面,司机、鸡蛋汤 ú

	
GP éÊ¿éÒJK
等物资.

Thyp1 Traffic police instant noodles ú
	
GP éÊ¿éÒJK
 and other supplies.

hyp2 交警方便面,、鸡蛋汤等 ú
	
GP éÊ¿éÒJK
送来了.

Thyp2 Traffic police, instant noodles, egg soup and so on ú
	
GP éÊ¿éÒJK
 brought.

hyp3 交警给司机 送了方便货,洗菜、鸡蛋、鸡蛋等食品.
Thyp3 Traffic police to the driver to send convenient goods, wash vegetables, eggs, eggs and other food.

tgt 交警为 司机 送来了方便面、包子、鸡蛋汤等食物.

System combination is a method for combining the outputs of multiple machine
translation engines to use the strengths of each of the individual systems. The neural-based
system combination has become the dominant paradigm for system combination [15–17].
In the multi-source-based system combination method, the outputs of the multiple MT
systems can be regarded as multiple inputs using different encoders to train the NMT
system [16]. The voting mechanism is re-introduced into modern system combination
methods to improve the performance of neural system combination [17]. The task of
combining the various MT systems is not very easy. System combination using either
the multi-source-based system combination or voting-based approach cannot provide
useful solutions to deal with all the problems. For example, the multi-source-based system
combination model (MUSC) can quantify the word in a hypothesis as its attention weight,
without using explicit hypothesis alignment. This model can not only generate new words
that are not within any hypothesis but also prove to be effective on multiple machine
translation tasks. Due to the attention weight between one hypothesis and the output being
calculated independently, connections between hypotheses are not taken into consideration
in this approach [17]. On the other hand, although the voting-based system combination
model (VOSC) can enable connections between hypotheses by finding the consensus
among them, the major problem is that the result of the voting is heavily dependent on
the performance of the single systems; that is, the closer the vote, the result is better.
Since each of them have their strengths and shortcomings, we attempt to build a hybrid
framework, which can take advantage of different system combination models to make
a better prediction. In this work, we first built different translation systems, including
the SMT system and the NMT system as the first layers, and then implemented the multi-
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source-based approach and voting-based approach on the outputs of N single systems,
respectively. Finally, the proposed framework is used to combine the translation hypotheses
of the N systems and the outputs of the previous two models.

In the rest of this article, Section 2 presents some related works about system combi-
nation. Section 3 describes the details of our hybrid system combination framework for
Uyghur–Chinese machine translation. The experiment details and results are shown in
Section 4. Finally, the conclusions are presented in Section 5.

2. Related Work

Nowadays, the NMT model has become the mainstream method for Uyghur–Chinese
MT and has obtained more fluent translation results compared to SMT [14]. The neural
machine translation (NMT) models still struggle in the translation task on Uyghur–Chinese
with complex morphology and limited resources [18]. To tackle this problem, Zhang
et al. [19] proposed a novel memory structure to alleviate the rare word problem caused by
the agglutinative nature of Uyghur. Pan et al. [20] proposed a multi-source neural model
that employs two separate encoders to encode the Uyghur source word sequence and the
Uyghur linguistic feature sequences. Zhang et al. [21] used the integrated strategy and
reordering strategy to solve the problem that the single NMT model is easy to fall into a
locally optimal solution when fitting and training on a low-resource corpus, such as Uyghur
to Chinese. Wang et al. [22] used the extracted semantic similarity as a new feature to
generate multiple new systems from a single SMT system and to combine multiple systems.
Although previous work has improved the performance of Uyghur–Chinese machine
translation to some extent, system combination remains huge potential in Uyghur–Chinese
machine translation.

The system combination method is an important research branch for machine transla-
tion, which was originally derived in 1994 [23]. The statistical-based system combination
methods, including the word level, the phrase level, and the sentence level methods, have
become the de facto paradigm in the past two decades [24–28]. Among them, the confusion
network-based word-level combination method is more successful and several open-source
tools such as Jane, MANY, and MEMT have been developed for scientific research [29–31].
This kind of method realizes the system combination via separate modules, such as choos-
ing a backbone, aligning the word between hypotheses, building a confusion network,
and generating the translation results [32–37]. Since the method is completed by several
relatively independent steps, the statistical-based system combination model also suffers
from the error propagation problem [17], which means the errors in the previous step will
be passed to the next step to affect the combination result.

In recent years, researchers introduced neural network models into system combina-
tion [15–17]. Inspired by the multi-source neural translation, the outputs of the multiple
systems are considered as multiple sources, each of which corresponds to an encoder
and executes the end-to-end training process with multiple sequence-to-sequence mod-
els [38]. The recurrent neural network (RNN)-based system combination model employs
the recurrent neural network to encode the translation hypotheses with multiple context
vector representations. The weighted sum of these context vectors is used to calculate
the probability of the next target word and the final output is generated one by one from
the decoder. In the transformer-based system combination model, the multiple encoders
are identical to that of the dominant transformer model, which is modeled using the self-
attention network [16]. The advantage of this method is that while preserving the original
self-attention network, four new combination strategies are introduced by adding a new
sub-layer to make full use of the advantages of multiple MT translation hypotheses.

The voting mechanism is proposed to select the best word through voting from
multiple translation hypotheses, and then it combines the words selected by voting to
form a new hypothesis [39,40]. Huang et al. (2020) transferred the voting mechanism from
the statistical framework to the neural network framework, and the experimental results
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proved that the voting method based on the neural network is the best system combination
method at present [17].

Recently, various studies of hybrid system combination methods are available in the
literature [41–43]. Some researchers proposed a three-stack architecture for both utilizing
the neural-based system combination model and the statistical-based neural system combi-
nation model to improve the translation quality [41]. Other researchers proposed a simple
reranking system using a smorgasbord of the informative features [42]. Some novel meth-
ods are proposed in the literature [43], such as structuring source-side language sentences
into the linguistically motivated fragments and combining them using a character-level
neural language model, and combining neural machine translation output by employing
the source-side translation attention alignments. The main goal is to assemble a set of meth-
ods that would be able to improve the quality of the Uyghur–Chinese machine translation,
which has rich morphology and limited corpora resources. These characteristics currently
make them rather difficult to translate with the tools that are currently available. Therefore,
the two best system combination models (the MUSC model and the VOSC model) have
been organized together to build a hybrid system combination framework.

3. Methods

Studies have proved that if the individual systems that participated in the combination
are more uncorrelated, the more favorable it is for system combination [44]. NMT and SMT
are two heterogeneous models. The hybrid system combination framework can combine
the merits of these two kinds of translation models. The proposed framework for system
combination works in three layers.

• First Layer: A set of translation hypotheses from N systems that are collected for the
combination in the consequent layers.

• Second Layer: The outputs from the first layer are combined with the help of the
multi-source-based approach and the voting-based approach in the second layer. Here,
we combine the N system’s translated outputs through the multi-source-based system
combination method, which described in Section 3.1. Moreover, we combine the N
system’s translated outputs through the voting-based system combination, which is
described in Section 3.2.

• Third Layer: A hybrid system combination framework will combine the outputs of
the previous two combination models to improve the translation quality. For system
combination, the proposed hybrid framework chooses the words among the best
sentences, which are generated by the various system combination models.

3.1. Multi-Source-Based System Combination Model

Figure 1 illustrates the framework of the multi-source-based system combination
model. Sequentially, the outputs of the various MT systems are given to the multiple
transformer decoders to capture the semantics of the different translation hypotheses.
Four different combination strategies are used in the transformer decoder to combine the
multiple context vector representations from the previous encoders. Finally, the combined
outputs are generated word by word using the modified attention weights.

Each encoder in this method has the same structure as the original transformer decoder
that has a stack of N identical layers. Each layer has two sub-layers. The first uses a multi-
head self-attention mechanism, and the second uses a feed-forward network. The output
of each sub-layer is as follows:

z̃l
k = LayerNorm

(
zl−1

k + MHAtt
(

zl−1
k , zl−1

k , zl−1
k

))
(1)

zl
k = LayerNorm

(
z̃l

k + FFN
(

z̃l
k

))
(2)
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where the l is the layer depth, zl
k is the hidden states of the l-th layer from the k-th MT

system hypotheses. FFN denotes the feed-forward networks, and MHAtt denotes the
multi-head attention mechanism.
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Figure 1. The architecture of the multi-source-based system combination model. The combination
module is the core of the model.

The decoder in this method is also composed of a stack of N identical layers. However,
each layer is added to a new sub-layer which performs the multi-head attention over
the output of the encoder stack. Because multiple encoder outputs will be passed to the
decoder, how to combine them is a crucial question. Four different input combination
strategies for encoder–decoder attention have been proposed to solve this problem [45,46],
which are illustrated in Figure 2. The serial strategy, as shown in Figure 2a, calculates the
cross-attention one by one for each input encoder. The query set of each cross-attention is
the set of the context vectors computed by the preceding sub-layer. All of these sub-layers
are interconnected with the residual connections. In the parallel strategy, as shown in
Figure 2b, the model attends to each encoder independently and then sums up the context
vectors. The flat strategy, as shown in Figure 2c, uses all the states of all input encoders
as a single set of keys and values. Thus, the attention models a joint distribution over
a flattened set of all encoder states. The encoder–decoder attention in the hierarchical
strategy computes the attention independently over each input. The resulting contexts
are then treated as states of another input and the attention is computed once again over
these states.

Here, we take a combination module as the second sub-layer of the decoder which
can make the decoder receive the context vectors of the multiple encoders. Moreover, the
output of the combination module and the context vectors of the source encoder embedded
for the source language are transmitted to the encoder–decoder cross-attention sub-layer.
These sub-layers work as follows:

sl
1 = LayerNorm

(
sl−1 + MHAtt

(
sl−1, sl−1, sl−1

))
(3)

sl
2 = LayerNorm

(
sl

1 + ComMod
(

sl
1, zN

))
(4)

sl
3 = LayerNorm

(
sl

2 + MHAtt
(

sl
2, hN , hN

))
(5)

sl = LayerNorm
(

sl
3 + FFN

(
sl

3

))
(6)
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Finally, a linear transformation and a SoftMax activation are used to compute the
probability of the next words based on sN :

p
(
yj|y < j, x, θ

)
= so f tmax

(
sNW

)
(7)

where θ is the model parameters and W is the weight matrix.
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3.2. Voting-Based System Combination Model

Figure 3 illustrates the architecture of the multi-source combination model based on
the voting mechanism, which uses the source sentence and the outputs of multiple MT
systems. Formally, given the source input sentence x, the output sequences ỹ1:N = ỹ1 · · · ỹN
of the N MT system hypotheses for the same source sentence and previously generated
target sequence y = y1 · · · yK, the system combination model is defined by:

P(y|x, ỹ1:N ; θ) =
K

∏
k=1

P(yk|x, ỹ1:N , y < k; θ) (8)

where yk is the k-th target word, and θ is a set of model parameters.
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Figure 3. The architecture of the multi-source combination model based on the voting mechanism. The similarities between
hypotheses are the core of the model.

In this model, the source encoder is identical to the conventional transformer encoder
that consists of two sub-layers:

zl
s = LayerNorm

(
zl−1

s + MHAtt
(

zl−1
s , zl−1

s , zl−1
s

))
(9)

zl
s = LayerNorm

(
zl

s + FFN
(

zl
s

))
(10)

where the l denotes layer depth, zl
s indicates the hidden state of l-th layer of the source

input. FFN and MHAtt are the same as previously mentioned.
The hypothesis encoder is composed of a stack of N identical layers. Each of which

has three sub-layers:

=
z

l
h = LayerNorm

(
zl−1

h + MHAtt
(

zl−1
h , zl−1

h , zl−1
h

))
(11)

zl
h = LayerNorm

(
=
z

l
h + MHAtt

(
=
z

l
h, zl

s, zl
s

))
(12)

zl
h = LayerNorm

(
zl

h + FFN
(

zl
h

))
(13)

where zl
h denotes the hidden state of l-th layer of the h-th MT system hypothesis. An

additional src-hyp attention sub-layer is used to capture the relationship between the
source and the hypothesis by influencing the energy of words in the hypothesis.
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For each layer in the decoder, the lowest sub-layer is the masked multi-head self-
attention network:

sl
1 = LayerNorm

(
sl−1 + MHAtt

(
sl−1, sl−1, sl−1

))
(14)

The second sub-layer is the source encoder–decoder cross attention that bridges the
gap between the source and target language by seeking the source language semantic:

sl
2 = LayerNorm

(
sl

1 + MHAtt
(

sl
1, zl

s, zl
s

))
(15)

The third sub-layer is the voting module that considers dependencies between hy-
potheses by introducing the voting mechanism into the neural network-based system
combination model:

sl
3 = LayerNorm

(
sl

2, VotMod
(

sl
2, zN

))
(16)

where zN =
(
zN

1 , zN
2 , · · · , zN

k
)
. Here we use a new attention weight αn,j to replace the

original attention weight. The new attention weight αn,j is the attention weight between
the hypotheses and output that is calculated by the voting method. The result of the voting
is composed of two parts. The first part is called influence, which is used to measure the
influence of the voters (the voter can be any of the words in the hypotheses to decide
whether the candidate should be included in the output by voting). It can quantify as a
real-valued number, which is actually the energy used in calculating attention weight:

en,j = f
(
x, y<k, ỹn,j, θ

)
(17)

where f (•) is a function that calculates the energy, ỹn,j is the j-th word of the n-th hypothesis,
and en,j is its corresponding energy that reflects how likely it will be the next word.

The second part, preference, is utilized to estimate a voter’s preference for a candidate
(the candidate usually is the next word to be predicted in the output). It can also be
measured as a real-valued number, which is actually the similarity between the voter and
the candidate:

sim
(
ỹm,i, ỹn,j

)
=

exp
(

hm,ihT
n,j

)
∑
|ỹm |
i′=1 exp

(
hm,i′hT

n,j

) (18)

where ỹm,i is a voter and hm,i is its representation retrieved from Hhyp
m . Likewise, ỹn,j is a

candidate and hn,j is its representation. In order to avoid the length bias, the similarities
between the voters and a candidate are normalized at the hypothesis level. All the votes
can be collected by calculating a weighted sum of the energy of the voters:

ẽn,j = en,j +
N

∑
m=1̂m 6=n

|ỹm |

∑
i=1

sim
(
ỹm,i, ỹn,j

)
× em,i (19)

As a result, the new attention weight αn,j depends on both the influence and the
preference and is computed by:

αn,j =
exp
(
ẽn,j
)

∑N
n′ ∑

|ỹn′ |
j′=1 exp

(
ẽn′ ,j′

) (20)

The last sub-layer of the decoder is the feed-forward network:

sl = LayerNorm
(

sl
3 + FFN

(
sl

3

))
(21)
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Finally, the same operation with the model described in Section 3.1 is conducted to
compute the probability of the next tokens based on sN :

P(yk|x, ỹ1:N , y < k; θ) = so f tmax
(

sNW
)

(22)

where θ is the model parameters and W is the weight matrix.
The difference of the voting-based system combination model lies in that the benefits

of end-to-end training on the state-of-the-art model are preserved, and the newly added
voting modules are able to take the relations between hypotheses into account to find the
consensus outputs.

3.3. Hybrid System Combination Framework

Preference of the outputs from the individual system combination models feed as
the input into the hybrid system combination framework. The schematic diagram of
the proposed framework is shown in Figure 4. We used a replica of the voting-based
system combination model (mentioned in Section 3.2) for the hybrid system combination
design. In the first layer, we chose N systems as our candidate systems including the
SMT systems and the NMT systems. Diversified candidate systems can generate richer
translation hypotheses and provide more choices during system combination. The second
layer utilizes two popular system combination models, the MUSC and the VOSC. In the
MUSC model, by modeling the semantics of source language and translation hypotheses
in the multi-source neural network, better combination results can be obtained. While
retaining the advantages of the multi-source encoder–decoder model, the relationship
between translation hypotheses can be captured when generating the combination results
by the VOSC model. Due to the limitation of the methods, neither of the above two models
can get the ideal result of the combination, and so we put forward the third layer to take
advantage of candidate systems and these two system combination models. The inputs
of the third layer are the outputs of the second (i.e., MUSC and VOSC) and the first layer
systems (single MT systems). Inputs of MUSC and VOSC are the translated outputs of
various MT systems (T1, T2, · · · , TN). Finally, outputs of the multiple MT systems along
with M1 and M2 (outputs of the second layer) as an individual system’s preference are
entered into the hybrid system combination framework to produce the better output.
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Figure 4. The architecture of the hybrid system combination framework.

4. Experiments

We evaluated the hybrid system combination method on the Uyghur–Chinese machine
translation tasks. The evaluation metric was the case-insensitive BLEU [47] and it was
measured on the character level. We used the paired bootstrap resampling for statistical
significance tests [48].
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4.1. Data Preparation

For this experiment, we used two datasets from the CWMT2017 (http://nlp.nju.edu.
cn/cwmt2017 (accessed on 23 February 2021)) (the 13th China Workshop on Machine
Translation) and CWMT2019 (http://ccmt2019.jxnu.edu.cn (accessed on 23 February 2021))
(the 15th China Conference on Machine Translation) containing about 0.5 M bilingual
sentence pairs. Due to the neural-based system combination method based on end-to-
end training, the model should be trained on the outputs of multiple translation systems
and the gold target translations. In order to keep the consistency in the training and test
processes, we also used the training data simulation strategy [12]. We prepared the datasets
as follows:

• Merge the training set of the CWMT2017 and CWMT2019, and remove the duplicate
sentences;

• Pre-process the raw data, such as Uyghur words tokenization, Chinese words segmen-
tation, and remove the sentences longer than 80 words;

• Divide the pre-processed training data into two parts, then reciprocally train the MT
system on one half and translate the source sentences of the other half into target
translations. The translated sentences as well as the gold target reference are utilized
to train the MUSC and VOSC.

• When training all neural network models including the single systems or system
combination models, we used byte pair encoding (BPE) [12] with 30K merges to
segment words into subword units both for the Uyghur and Chinese sentences.

We employed the CWMT2019 development set as the validation data and used the
CWMT2019 test set as the test set. Detailed statistics for the dataset are shown in Table 2.

Table 2. Dataset descriptions. Train and Dev represent training and development set, respectively.

System Type Set #Sentences
#Tokens

Uyghur Chinese

Single MT
Systems

Train 239,711 4,497,220 4,174,631
Dev 1000 25,217 25,262

MUSC
Train 239,763 4,498,108 4,171,378
Dev 1000 25,217 25,262

VOSC
Train 239,763 4,498,108 4,171,378
Dev 1000 25,217 25,262

Test Set 1000 23,202 21,559

4.2. Experiment Setup

Previous research had proved that the system combined needs to be almost uncorre-
lated to be beneficial for system combination [44]. In order to verify whether the conclusion
is effective on Uyghur–Chinese machine translation system combination and further verify
whether the uncorrelation refers to the model or the performance, we set up three groups
of experiments for comparison:

• Firstly, three heterogeneous systems with different performance were selected to
observe the effect of system combination;

• Secondly, three heterogeneous systems with similar performance were selected to
observe the effect of system combination;

• Finally, three systems with similar performance derived from one model were selected
to observe the effect of system combination.

The individual systems used in these three groups of experiments were introduced
as follows:

1. PBMT: It is the indispensable phrase-based SMT system still remaining used in
Uyghur–Chinese machine translation. We trained the system with a 4-gram language

http://nlp.nju.edu.cn/cwmt2017
http://nlp.nju.edu.cn/cwmt2017
http://ccmt2019.jxnu.edu.cn
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model using modified Kneser–Ney smoothing using SRILM on the target portion
of the bilingual training data [49]. The model learns the word alignments with
grow-diag-final and heuristics from the parallel training corpus using GIZA++ [50];

2. HPMT: It is a hierarchical phrase-based SMT system, which uses the same default
setting and the language model as PBMT. The training and decoding of PBMT and
HPMT are both based on the open-sourced Moses toolkit [51]. Due to HPMT using
hierarchical phrases which consist of both words and sub-phrases, it has a stronger
ability of reordering while preserving the strength of PBMT;

3. RNN-based NMT: It is a recurrent neural network based on encoder–decoder archi-
tectures [3]. Here, we used the RNN with an attention mechanism. The weight of the
sum is referred to as attention scores and allows the network to focus on different
parts of the input sequences as it generates the output sequences;

4. Transformer-based NMT: TNMT has obtained state-of-the-art performance on Uyghur–
Chinese machine translation, which predicts target sentences from left-to-right using
a self-attention mechanism [5];

5. Transformer-based NMT (1–3): we trained three Transformer-based NMT with three
random seeds, which are three inputs for system combination in our experiment.

The BLEU score of these single systems is listed in Table 3.

Table 3. The BLEU score of single systems. DEV and TEST represent the BLEU score on development
set and test set, respectively.

# System Type DEV TEST

1 PBMT 27.45 34.78
2 HPMT 27.77 34.89
3 RNMT 28.44 35.24
4 TNMT 39.03 46.71
5 TNMT-1 39.00 46.47
6 TNMT-2 39.27 46.43
7 TNMT-3 39.28 46.61

4.3. Training Details

The Transformer-based baseline was trained on the open-source toolkit fairseq [52].
The MUSC model was implemented on the open-source toolkit neural monkey [53]. The
VOSC model was implemented on the open-source toolkit THUMT-TensorFlow [54,55].
We used the same hyperparameter settings of the base Transformer model as [5] for both
baselines and the two system combination models. The number of layers was set to 6 for
both encoders and decoder. The hidden size was set to 512 and the filter size was set to 2048.
The number of individual attention heads was set to 8 for multi-head attention. During
training, we used Adam [56] for optimization and the learning rate decay policy described
by [5]. Each mini-batch contains 10 k tokens for the transformer baseline, 32 sentences for
MUSC, and 3 k tokens for VOSC, respectively. In training the Transformer baseline model,
we used efficient half floating point computation (FP16) to accelerate the training process.
In training the VOSC model, the update cycle was set to 4 to simulate 4GPUs with only
1GPU. The early stopping mechanism was used in training for both single systems and the
system combination model, the early-stop learning option was set to 5. In decoding, the
beam size was set to 4 for both models. We used the same development set to select the
best model.

4.4. Experimental Results
4.4.1. Results of Combination Modules

We first evaluated the four combination strategies including serial, parallel, flat,
and hierarchical strategies for the MUSC. Table 4 lists the experimental results of the
Uyghur–Chinese development set. Due to the excessively long source-side encoding of
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join operations in the flat strategy, the results of the flat strategy are significantly lower
than those of the other three strategies, and not even better than those of the best single
system. In contrast, the hierarchical strategy has shown to be the best strategy, and we will
use hierarchical strategy in subsequent experiments.

Table 4. Result of different combination strategies for the multi-source-based system combina-
tion model.

# Strategies DEV

1 PBMT 27.45
2 HPMT 27.77
3 RNMT 28.44
4 MUSC(Serial) 28.66
5 MUSC(Parallel) 28.51
6 MUSC(Flat) 27.35
7 MUSC(Hierarchical) 28.78

4.4.2. Results on Heterogeneous Systems with Different Performance

Literature has proven that the source language is helpful for the system combina-
tion [15], so we will leverage the source language in the subsequent experiment. In
this experiment, the single systems involved in the combination are three heterogeneous
systems with different performance that are PBMT, HPMT, and TNMT. We named the
multi-source-based combination model and voting-based combination model trained on
them as MUSC-1 and VOSC-1, respectively. The experimental results of Uyghur–Chinese
translation are shown in Table 5. Compared with PBMT and HPMT, TNMT achieves
the best translation quality and significantly outperforms HPMT by +11.82 BLEU points.
Although both approaches have significant improvements over PBMT (42.37 vs. 34.78,
46.03 vs. 34.78) and HPMT (42.37 vs. 34.89, 46.03 vs. 34.89), neither approach is better than
the best single system, TNMT (42.37 vs. 46.71, 46.03 vs. 46.71). Both models have negative
growth rates on the test set. One possible reason is that the poor candidate system is
counterproductive to system combination. From the experimental result, we can conclude
that heterogeneous systems with different system performance are not a wise choice of
system combination.

Table 5. Results on heterogeneous systems with different performance for Uyghur–Chinese translation.

System DEV TEST Increase Rate

PBMT 27.45 34.78 X
HPMT 27.77 34.89 X
TNMT 39.03 46.71 X

MUSC-1 39.00 46.47 −9.29%
VOSC-1 39.27 46.43 −1.46%

4.4.3. Results on Heterogeneous Systems with Similar Performance

In this experiment, we took three heterogeneous systems with similar performance—
PBMT, HPMT, RNMT—as the input of system combination. We named the multi-source-
based combination model and voting-based combination model trained on them as MUSC-
2 and VOSC-2, respectively. As listed in Table 6, the BLEU score of MUSC-2 is 1.23 BLEU
points higher than the best single model RNMT. VOSC-2 outperforms the best single MT
systems by +4.41 points and obtains improvement by +3.18 BLEU points over MUSC-2.
Both models are improving positively on the test set. The experimental results show that
when the candidate systems are different in structure but similar in performance, both
methods are effective in system combination, and the vote-based method is more effective
in this scenery.
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Table 6. Results on heterogeneous systems with similar performance for Uyghur–Chinese translation.

System DEV TEST Increase Rate

PBMT 27.45 34.78 X
HPMT 27.77 34.89 X
RNMT 28.44 35.24 X

MUSC-2 29.06 36.47 +3.49%
VOSC-2 31.73 39.65 +12.51%

4.4.4. Results on Homogeneous Systems with Similar Performance

In this group of experiments, three transformer candidate systems TNMT-1, TNMT-2,
TNMT-3 with different random seeds were regarded as the input of system combination
(the random seeds are 1111, 2222, 3333, respectively). We named the multisource model and
voting model trained on them as MUSC-3 and VOSC-3, respectively. As shown in Table 7,
the best result of VOSC-3 obtains improvement by +0.58 BLEU points over the best single
system TNMT-3, while MUSC-3 did not exceed the best single system. The experimental
results prove that in system combination, the voting-based method is effective when the
candidate systems have similar structure and similar performance.

Table 7. Results on homogeneous systems with similar performance for Uyghur–Chinese translation.

System DEV TEST Increase Rate

TNMT-1 39.00 46.47 X
TNMT-2 39.27 46.43 X
TNMT-3 39.28 46.61 X
MUSC-3 36.36 43.52 −6.63%
VOSC-3 39.63 47.19 +1.24%

It is worth noting that although three stronger candidate systems with similar perfor-
mance can get the better result, from the proportion of improvement, the VOSC-2 trained
on three weaker candidate systems increased more than the VOSC-3 trained on three
stronger candidate systems (12.51% vs. 1.24%). To test whether the improvement ratio
is an important factor in determining the quality of the voting model, we conducted the
following experiment. Table 8 shows the experimental results of using two trained voting
models to vote each other, from which we can draw the following conclusions: (1) The
system combination for Uyghur–Chinese machine translation prefers candidate systems
with different structures but closer performance, because they not only benefit from mul-
tiple architectures, but also complement each other in performance. (2) The substantial
improvement of BLEU points demonstrates that the greater the improvement ratio, the
better the effect of the voting model.

Table 8. Results for different voting models on test set.

Systems VOSC-2 VOSC-3

PBMT + HPMT + RNMT 39.65 31.66
TNMT-1 + TNMT-2 + TNMT-3 47.29 47.19

4.4.5. Result of Hybrid Framework

Based on previous experiments, we can conclude that due to the limitations of the
method, neither MUSC nor VOSC can obtain the expected results. It is necessary to con-
struct a hybrid framework to obtain the advantages of the two methods. Here, we selected
the voting method as the third layer of the hybrid framework. The MUSC-2 model, which
is the only one with a positive increase rate, and the VOSC-2 model, which has a higher
increase rate, were used for the following experiment. In the third layer of the hybrid
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framework, the outputs of the individual system combination model (the outputs of the
second layer) as well as the hypotheses produced by the single systems (the outputs of the
first layer) were passed in. From the aspect of accuracy, after hybridization, we observed
significant performance improvement over individual MT systems and the individual sys-
tem combination models in terms of BLEU scores. As listed in Table 9, MUSC, VOSC, and
proposed HBSC achieve maximum scores of 44.84, 47.76, 48.46 BLEU points, respectively,
for Uyghur–Chinese translation. Thus, the proposed hybrid framework can get the best
result of a 48.42 BLEU score and achieved an improvement of +1.75 and +0.66 BLEU points
than the best single system (TNMT) and the best individual system combination model
(VOSC-2), respectively. We have done significance tests and observed that the results are
significant with 95% confidence level (with ρ = 0.05 which is <0.05) for the Uyghur–Chinese
translation task. Thus, the proposed method stands to be statistically significant.

Table 9. Translation results (BLEU score) for the hybrid framework.

Systems MUSC VOSC HBSC

PBMT + HPMT + TNMT 42.37 46.03 46.38
PBMT + HPMT + RNMT 36.47 39.65 40.13

TNMT-1 + TNMT-2 + TNMT-3 43.52 47.19 47.25
PBMT + HPMT + RNMT + TNMT 36.79 44.56 44.86

PBMT + HPMT + RNMT + TNMT + TNMT-1 40.14 46.75 47.18
PBMT + HPMT + RNMT + TNMT + TNMT-1 + TNMT-2 44.54 47.33 47.48

PBMT + HPMT + RNMT + TNMT + TNMT-1 + TNMT-2 + TNMT-3 44.84 47.76 48.42

In addition to accuracy, fluency is also an important factor in evaluating the quality
of machine translation and we want to know whether the fluency of the proposed model
has improved. We evaluated by the automatic evaluation metrics RIBES [56], whose score
is a metric based on rank correlation coefficients with word precision. Figure 5 illustrates
the experimental results of RIBES scores, which demonstrates that the proposed model
outperforms the best result of a single MT system and individual system combination
model. The experiment shows that our proposed model can further improve the fluency of
machine translation.
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Figure 5. Translation results (RIBES score) for the hybrid framework.

4.5. Case Study

According to the translation results as listed in Table 10, it can be seen that firstly, all
the outputs including single systems and the system combination model guarantee the
accuracy of the information transmission from the source to the target sentence and the
faithfulness of the source sentence. Secondly, the translation hypothesis of the SMT model
is slightly less coherent than that of the NMT. Thirdly, the four stronger transformer models
either mistranslated the keyword “规模 (Scale)” to “面积 (Area)” or failed to translate
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(Far more than)”. In short, no single system can obtain
promising translation results. The system combination model based on the multi-source
method (MUSC) can obtain the correct keyword “规模 (Scale)” from multiple translation
hypotheses but cannot capture the relationship between “政策 (Policy)” and “岗位 (Jobs)”.
Meanwhile, not only does the system combination model based on voting mechanism
(VOSC) receive the wrong key word “面积 (Area)” due to the essence of this method (the
voting is misled by most wrong words “面积”) but also cannot handle the relationship
between “政策 (Policy)” and “岗位 (Jobs)”. The output of the proposed hybrid framework
can remedy the errors and obtain high-quality translations in this case.

Table 10. Translation examples of single systems and our proposed hybrid framework. Tsrc, TPBMT,
THPMT, TRNMT, TTNMT, TTNMT-1, TTNMT-2, TTNMT-3 are English translations of the src, PBMT
(phrase-based statistical machine translation (SMT)), HPMT (hierarchical phrase-based SMT), RNMT,
TNMT (Transformer-based neural machine translation (NMT)), TNMT-1, TNMT-2, TNMT-3, respectively.

src
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Ref 今年就业政策的另一个特点是政策与岗位配套出台，就业
岗位的规模数量大大超过了往年.

Tsrc
Another characteristic of this year’s employment policy is that the
policy and job matching are issued, and the number of jobs has
greatly exceeded that of previous years.

PBMT 今年的就业政策的还有一个特点和就业岗位政策协调，在
岗位面积比往年大幅增长.

TPBMT
This year’s employment policy still has a characteristic and
employment post policy is coordinated, in post area is larger than
in previous years.

HPMT 今年的就业政策还有一个特点和政策协调岗位，是去年的
岗位面积比往年大幅增长.

THPMT
This year’s employment policy still has a characteristic and policy
coordination post, it is last year’s post area to increase substantially
than in previous years.

RNMT 今年就业政策的还有一个特点，在岗位上协调协调，岗位
规模也大大提高.

TRNMT The employment policy still has a characteristic this year,
coordinate coordinate on post, post scale is also raised greatly.

TNMT 今年就业政策的另一个特点是协调政策和岗位，岗位规模
比去年大.

TTNMT Another feature of this year’s employment policy is the
coordination of policies and jobs, which are larger than last year’s.

TNMT-1 今年就业政策的另一个特点是政策和岗位的协调，岗位面
积比往年大幅增长.

TTNMT-1
Another feature of this year’s employment policy is the
coordination of policies and posts, and the number of posts has
increased significantly compared with previous years.

TNMT-2 今年就业政策的另一个特点就是政策和岗位协调，岗位面
积比往年大幅增加.
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TTNMT-2
Another feature of this year’s employment policy is the
coordination between policies and posts, and the number of posts
has increased significantly compared with previous years.

TNMT-3 今年就业政策的另一个特点是政策与岗位对接，岗位面积
比往年大幅提升.

TTNMT-3
Another feature of this year’s employment policy is the matching
of policies with posts. The number of posts has increased
significantly compared with previous years.

MUSC 今年就业政策的另一个特点就是政策和岗位上的协调，岗
位规模比往年大幅提升.

TMUSC
Another feature of this year’s employment policy is the
coordination between policies and jobs, with the number of jobs
increased significantly compared with previous years.

VOSC 今年就业政策的另一个特点就是政策协调，岗位面积比往
年大幅增加.

TVOSC
Another feature of this year’s employment policy is policy
coordination. The number of jobs has increased significantly
compared with previous years.

HBSC 今年就业政策的另一个特点就是政策和岗位协调，岗位规模
比往年大幅增加.

THBSC
Another feature of this year’s employment policy is the
coordination between policies and posts, and the number of posts
has increased significantly compared with previous years.

5. Conclusions

In this work, we proposed a hybrid system combination framework for a Uyghur–
Chinese machine translation task. The central idea was to take advantage of various system
combination models. Though the proposed model was a little bit more complex than the
individual system combination model, the improvement was remarkable. Experiments
show that the proposed approaches can obtain significant improvements over the best
individual system and the state-of-the-art system combination method. Finally, we can
conclude that integration of system combination models can not only address the adequacy
of the NMT and the fluency of the SMT, but also can better utilize the advantages of
individual system combination models. In the future, we plan to expand our hybrid
framework to incorporate the statistics-based system combination method and add a post
editing layer on top of the framework to further improve the effect of the combination.
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