
 information

Article

Malware Detection Based on Code Visualization and
Two-Level Classification

Vassilios Moussas 1,† and Antonios Andreatos 2,*,†

����������
�������

Citation: Moussas, V.; Andreatos, A.

Malware Detection Based on Code

Visualization and Two-Level

Classification. Information 2021, 12,

118. https://doi.org/10.3390/

info12030118

Academic Editor: Avinash Srinivasan

and Arkaitz Zubiaga

Received: 31 December 2020

Accepted: 4 March 2021

Published: 11 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Engineering, University of West Attica, Aigaleo, Attica 12210, Greece; vmouss@uniwa.gr
2 Division of Computer Engineering and Information Science, Hellenic Air Force Academy, Dekeleia,

Attica 13671, Greece
* Correspondence: antonios.andreatos@hafa.haf.gr
† These authors contributed equally to this work.

Abstract: Malware creators generate new malicious software samples by making minor changes
in previously generated code, in order to reuse malicious code, as well as to go unnoticed from
signature-based antivirus software. As a result, various families of variations of the same initial code
exist today. Visualization of compiled executables for malware analysis has been proposed several
years ago. Visualization can greatly assist malware classification and requires neither disassembly
nor code execution. Moreover, new variations of known malware families are instantly detected,
in contrast to traditional signature-based antivirus software. This paper addresses the problem of
identifying variations of existing malware visualized as images. A new malware detection system
based on a two-level Artificial Neural Network (ANN) is proposed. The classification is based on
file and image features. The proposed system is tested on the ‘Malimg’ dataset consisting of the
visual representation of well-known malware families. From this set some important image features
are extracted. Based on these features, the ANN is trained. Then, this ANN is used to detect and
classify other samples of the dataset. Malware families creating a confusion are classified by a second
level of ANNs. The proposed two-level ANN method excels in simplicity, accuracy, and speed; it is
easy to implement and fast to run, thus it can be applied to antivirus software, smart firewalls, web
applications, etc.

Keywords: malware classification; malware visualization; malimg dataset; artificial neural network;
image features; ensemble; confusion matrix; Matlab

1. Introduction

Malicious software or Malware has become a global industry worth millions of euros
and is growing every year with increasing dynamics. Depending on its functionality,
malware is divided into several categories, namely Viruses, Worms, Trojans, Backdoors, etc.
Due to the rapid proliferation and production of malware, there is an exponential increase
in the number of new signatures released every year [1].

McAfee Labs Threats Reports reveal that 100,000,000 new malware samples were
discovered during Q1 + Q2 of 2020, whereas Total Malware for the same period exceeded
1,200,000,000 samples [2].

Thus, it is essential to detect and prevent malware attempting to damage information
systems, as well as, single users’ computers. Malware classification is a common task which
can be accomplished by machine learning models quite efficiently [3].

Reverse engineering compiled malware executables is a task with a steep learning
curve, meaning that it is difficult to learn and that expending a lot of effort does not
increase proficiency by much. Typical approaches of malware analysis and classification
include static and dynamic code analysis [1]. These techniques require either disassembly
or execution of malware code.

Information 2021, 12, 118. https://doi.org/10.3390/info12030118 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-3614-0294
https://orcid.org/0000-0002-2271-8764
https://doi.org/10.3390/info12030118
https://doi.org/10.3390/info12030118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12030118
https://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/12/3/118?type=check_update&version=1

Information 2021, 12, 118 2 of 14

Like any executable binary file, a malware executable is represented as a string of
zeros and ones. A string is also a vector of hexadecimal values and as such, it can be
reshaped into a matrix and viewed as an image. Once the malware is converted into
grayscale images, malware detection can be reduced to an image recognition problem.
Malware samples belonging to the same family present significant visual similarities when
converted to images. This is due to code re-use when creating new variants [1].

Visualization of compiled malware executables does not require code analysis but
still shows significant performance. Furthermore, it is resilient to popular obfuscation
techniques such as section encryption, packing and polymorphism. When malware samples
belonging to the same family are packed with the same packer, it is possible that the images
of packed malware look similar [1]. Donahue et al. proposed a method for packed malware
visualisation [4].

Malware detection and classification through visualization is significantly faster,
as well as more accurate than traditional code analysis methods [1,5].

Various classification approaches for classifying malware programs after visualizing
them as images using only compiled files have appeared [6].

Objective

The objective of this work is to propose a new method for classifying malware based
on the visualization of executables. For this, a new set of image and file features is
proposed. The visual representation of malware is used to feed and train an Artificial
Neural Network (ANN). Once trained, the ANN can easily and successfully identify
new variations of known malware families. The low complexity of the proposed method
achieves fast response and limited computational power compared to other methods
proposed in the bibliography.

2. Related Work

Visualization of compiled malware executables is not a new approach. The first efforts
of visualizing binary files for computer security purposes were reported back in 2008 [7].

In 2009 Quist and Liebrock presented a method using dynamic analysis of program
execution to visually represent the overall flow of a program [8].

Conti et al. [9] introduced several interesting visualization tools into an environment
resembling a hex editor. The three visualizations work simultaneously to improve the
workflow of the analysts. The ‘Byteview’ visualization provides an at-a-glance view of
an entire file, where each byte is represented as a pixel. This is feasible because both code
bytes and image pixels range from 00 to FF in hexadecimal. The intensity of each pixel
dependents on the hex value of the corresponding byte. Hence, similar code sequences
produce similar images.

The ‘Byte Presence’ display works side-by-side with the ‘Byteview’ display. Each row
of pixels in the ‘Byte Presence’ display summarizes the existence of bytes in the ‘Byteview’
display. ‘Dot Plot’ visualization is borrowed from biology, where a dot plot is used to
align genome sequences. In this instance, the dot plot is used to compare two files. Such a
visualization shows the presence of similar byte sequences between files. However, this
visualization can only be used on a subset of each file due to memory and display issues.

In the past 12 years, various classification approaches for classifying malware pro-
grams after visualizing them as images using the compiled files have appeared [5,6].

In 2011 a milestone paper was published by Nataraj et al. [1]. The authors proposed a
method for visualizing and classifying malware using image processing techniques.

Malware binaries were visualized as gray-scale images. Images of different malware
families appear visually similar and distinct from those of different families. Based on
this observation, a classification method using image texture analysis was proposed. GIST
features were extracted from malware images to be used for classification via the K-Nearest
Neighbor technique (k-NN). A ‘gist’ is an abstract representation of an image which

Information 2021, 12, 118 3 of 14

spontaneously activates its memory representation and category, and is obtained using a
wavelet decomposition [10].

Neither disassembly nor code execution is required for classification based on visu-
alization. Experimental results on a malware database of 9339 samples organized in 25
families achieved 98% classification accuracy (under specific conditions).

If the families which create confusion are combined together as one, the recomputed
accuracy increases to 0.992. A result of the work of Nataraj et al. was the ‘Malimg’ dataset,
which was later made available to the public.

In the years to come, various approaches for classifying gray scale images of malware
executables based on texture similarity appeared, using Support Vector Machines (SVM), k-
Nearest Neighbors (k-NN), Artificial Neural Networks (ANNs), autoencoders, etc. [5,11,12].

Makandar and Patrot extracted image features using Gabor wavelet transform and
GIST. They used an ANN for the classification of 3131 binary samples comprising 24 unique
malware families of the Mahenhur dataset, achieving an accuracy of 96.35% [13].

Vasan et al. discerned three major tools in malware identification based on visualiza-
tion: (a) statistical similarity measurements; (b) machine learning and (c) deep learning [5].

Mallet in a nice tutorial presented an interesting approach to Malware Classification
using Convolutional Neural Networks and Keras and reached a final accuracy of 95% [3].
This performance can be improved by creating a larger dataset using a preprocessing step
described in the article. What is of utmost importance for our research is the remark that,
“although most of the Malwares were well classified, Autorun.K is always mistaken for
Yuner.A. This is probably because we have very few samples of Autorun.K in our dataset
and that both are part of a close Worm type. Moreover, Swizzor.gen!E is often mistaken
with Swizzor.gen!l, which can be explained by the fact that they come from really close
kinds of families and types and thus could have similarities in their code” [3].

Several researchers, in order to increase malware detection accuracy even more, have
used Machine Learning approaches, often in combination with traditional malware analysis
methods, tree-maps, thread graphs, etc. [5].

The most commonly used Machine Learning approaches are Convolutional Neural
Networks (CNN) and deep learning, because they greatly facilitate feature extraction [14–19].

Narayanan and Davuluru [6] used an ensemble approach with Support Vector Ma-
chine for the BIG 2015 dataset. This dataset contains an assembly file and a compiled file
for each malware program. Compiled files are visualized as images and are classified using
Convolutional Neural Networks (CNNs). Assembly files consist of machine language
opcodes that are distinguished among classes using Long Short-Term Memory (LSTM)
networks after converting them into sequences. In addition, features are extracted from
these architectures (CNNs and LSTM) and are classified using a support vector machine or
logistic regression, achieving an accuracy of 99.8%.

Vasan et al. [5] proposed a hybrid deep learning model (called ‘IMCFN’) based on
visualization, which uses a fine-tuned CNN architecture for malware detection and classifi-
cation. Data augmentation, as well as conversion of malware binaries into color images
are used to optimize the performance of the IMCFN algorithm and to cope with imbal-
anced datasets. Their method achieved the best results in terms of accuracy (98.82%).
Vasan et al. [5] also presented an up-to-date comparative summary of Multi-class Malware
Family Classification Techniques, all using the ‘Malimg’ Dataset, in their Table 8. All these
approaches resolve code obfuscation issues; the main challenge that they face however,
is the relatively high computational power for complex texture feature extraction using
methods such as GIST, DSIFT, SURF, LBP or GLCM [16]. Another drawback is that these
feature extraction techniques are less efficient when applied to large datasets [5].

3. Methodology

In this work we focus on malware classification using only the visualised images of
compiled malware executables. The Malimg Dataset, a real-life malware database for the
Windows operating system, most popular among researchers, will be used [1,5]. Hence the

Information 2021, 12, 118 4 of 14

problem of malware classification has been reduced to an image recognition problem using
specific criteria. Therefore in this work, in contrast to other approaches presented in the
bibliography, Artificial Neural Networks (ANNs) are used, in order to reduce processing
time. Matlab was used for processing the visualized malware images and simulating the
classification methods.

3.1. About the Malimg Dataset

The Malimg Dataset contains 9339 malware images, organized in 25 families [3].
Figure 1 shows representative images from six malware families: Adialer.C, Agent.FYI,
Rbot!gen, Lolyda.AA1, Fakerean and Swizzor.gen!E. Information regarding the families of
the dataset is given in Table 1. Our objective is to devise an ANN classifying visualized
malware.

The Malimg Dataset is quite unbalanced (Figure 2). More than 30% of the images
belong to class 2: Allaple.A and 17% to class 3: Allaple.L! [1,3]. This is an important
issue which affects the design and optimization of the ANN. In order to cope with this
issue, either a restricted number of samples from these two families should could be used,
or, a ‘padding’ of the other families with artificially created data. In this work we kept
unaltered the original malimg samples, for compatibility and comparison with other works.

Figure 1. Representative visualized malware images.

Information 2021, 12, 118 5 of 14

Table 1. Information about the Malimg Dataset Families.

No. Family Name Malware Type

1 Adialer.C Dialer
2 Agent.FYI Backdoor
3 Allaple.A Worm
4 Allaple.L Worm
5 Alueron.gen!J Worm
6 Autorun.K Worm:AutoIT
7 C2LOP.P Trojan
8 C2LOP.gen!g Trojan
9 Dialplatform.B Dialer

10 Dontovo.A Trojan Downloader
11 Fakerean Rogue
12 Instantaccess Dialer
13 Lolyda.AA1 PWS
14 Lolyda.AA2 PWS
15 Lolyda.AA3 PWS
16 Lolyda.AT PWS
17 Malex.gen!J Trojan
18 Obfuscator.AD Trojan Downloader
19 Rbot!gen Backdoor
20 Skintrim.N Trojan
21 Swizzor.gen!E Trojan Downloader
22 Swizzor.gen!I Trojan Downloader
23 VB.AT Worm
24 Wintrim.BX Trojan Downloader
25 Yuner.A Worm

Figure 2. Number of samples per family.

3.2. Preprocessing

To increase matching accuracy, two types of features have been considered: image
features (such as geometry, height, width, entropy, contrast, correlation, energy, homo-
geneity, mean image intensity, histogram, etc.) and file features (such as size, type, etc).
A Matlab script was written to extract specific features from each image. After removing
some redundant characteristics regarding image geometry which were correlated with the
file size, the following features were finally selected.

Information 2021, 12, 118 6 of 14

1. File size: File size is characterizing each family, since all members have similar sizes.
2. Entropy: Entropy is a statistical measure of randomness used to characterise the

texture of the input image.
3. Contrast: Contrast is the difference in luminance that makes an object in an image

distinguishable.
4. Correlation: The correlation coefficient between an image and the same image pro-

cessed with a median filter.
5. Energy: Grayscale images have gray levels, and gray levels are units of energy.
6. Homogeneity: The distribution of gray values within an image.
7. Mean Image Intensity: Every pixel of a grayscale image has an intensity (value) in the

range [0, 255]. Mean Image Intensity is the mean of the intensity of all pixels.

Figure 3 shows the correlation matrix of the final selected features after removing the
more correlated ones.

Figure 3. Correlation matrix of the final selected features (variables 1 to 7 as shown in the list above).

Information 2021, 12, 118 7 of 14

3.3. Training the ANN

Once the features for each sample were extracted, a function to randomly split the
Dataset in training data and test data, following the popular 70%–30% ratio was used
(e.g., [5]). The 9339 samples of the Malimg Dataset were split in two datasets: a Training
set of 6537 samples, and a Testing set of 2802 samples that is also considered as ‘unseen’.

The test dataset was further divided into two subsets, a 15% ‘validation’ subset to
monitor overfitting during the training phase and a 15% pure ‘test’ subset for the final test.

3.4. Defining the ANN Architecture

A Pattern Recognition feed-forward ANN is implemented to process the database and
recognize the virus categories. The ANN architecture comprises at least 3 layers. An input
layer, an output layer and one or more hidden layers. The number of nodes in the Input
layer is equal to the number of features used, the number of nodes in the output layer is
equal to the number of Virus categories studied, and the number of nodes in the hidden
layer is subject to investigation in order to achieve better performance.

Several ANN configurations were tested. The full size version uses 7 nodes to input
the 7 selected features and 25 outputs for the corresponding dataset categories. One to
three hidden layers were tested and the hidden layer size ranged from 2 to 256 nodes.
The best results were obtained for the single hidden layer using 64 nodes for the double
hidden layer ANN again with 64 nodes per layer and for the 3 hidden layers ANN using
128 nodes per layer (Figure 4).

The negligible improvement in accuracy offered by the 2- and 3-hidden layer ANNs
comes at an extra cost of complexity and a possible loss of generalization; therefore,
the simplest configuration is finally selected for the ANN with one hidden layer of 64 nodes
(Figure 5).

Figure 4. ANN node number selection.

Information 2021, 12, 118 8 of 14

Figure 5. Single ANN architecture.

Figure 6 shows the confusion matrix produced by a single ANN, with one hidden
layer of 64 nodes; the accuracy is 96%.

Preliminary classification results indicate that some malware families with similar char-
acteristics confuse the classification process and limit precision and accuracy. The greatest con-
fusion is created from the similarity between Autorun.K and Yuner.A (families no. 6 and 25),
as well as Allaple.A and Malex.gen!J (families no. 3 and 17). In particular, all Autorun.K
images were classified as members of Yuner.A, whereas most of family 17 images were
classified as family 3 members. These pairs of families are marked with light blue (families
no. 6 and 25) and yellow (families no. 3 and 17) in Figure 6. A smaller confusion between
families 7, 8, 21, and 22 is also observed: more than half of family 7 images were classified
in other categories (8, 21, 22).

This problem was initially faced by Nataraj et al. [1] where a separation of the dataset
in 22 families was suggested. Other works using the malimg dataset have also encountered
the same problem [3,5,18].

To cope with this issue, during preprocessing families Autorun.K and Yuner.A were
merged into a new family called group 1 (G1); similarly, families Allaple.A and Malex.gen!J
formed group 2 (G2). Hence, a variation of the original dataset, containing the same
number of samples grouped in 23 families was created. We call this ‘improved dataset’ or
‘23-families dataset’.

The proposed architecture is a two-level ANN. The first level performs a coarse
classification. The input to the first level is the original dataset but organized in 23 families
as described above. The second level performs a fine classification only for those groups.
When a sample belonging to groups G1 or G2 is encountered, it is forwarded to a second
level of processing, in order to decide the exact original family. Hence, the proposed
architecture has just two ANNs at the second level: one for G1 (which decides between
families Autorun.K and Yuner.A) and another for G2 (which decides between families
Allaple.A and Malex.gen!J).

Information 2021, 12, 118 9 of 14

Figure 6. Confusion matrix produced by a simple ANN.

As one can see in Figure 7, a simple ANN succeeds to successfully classify the 23-
families dataset. The process is over for 23 of the 25 families with a fast, simple and
cost-effective architecture; two additional simple ANNs, one for each group of confused
families, continue the classification if needed. The final accuracy rate is satisfactory while
the complexity and run-time are very low.

Again, several different configurations were tested for the first classification step (1st
level), and the best results were obtained with an ANN using one hidden layer of 64 nodes.
50 × 50 Monte Carlo runs, i.e., 50 random ANN initializations and 50 random data splits
(70–30%) were tested, in order to suppress any circumstantial result.

Much simpler ANNs with only one hidden layer and a few nodes ranging from 2
to 10 –depending on the specific group– were used at the 2nd level performing the fine
classification. Specifically, for the first group (G1) of merged families (6 and 25) an ANN
with 2 nodes was proven sufficient, while for the second group G2 (families 3 and 17) an
ANN with 16 nodes was used.

Information 2021, 12, 118 10 of 14

Figure 7. Confusion Matrix produced by a simple ANN and the improved dataset.

Only two ANNs are needed at the 2nd level; hence the extra complexity is small.
The architecture of the two-level ANN is presented in Figure 8.

Figure 8. Architecture of the two-level ANN.

Information 2021, 12, 118 11 of 14

3.5. Testing Other Classification Tools

Several typical Machine Learning tools for Classification were also tested for compari-
son. We focused on two popular categories of classification tools, the Nearest Neighbor
and the Ensemble methods, as they are commonly used by other researchers [5]. From
the various Ensemble methods (Trees, Subspace, etc.) the Ensemble Bagged Trees method
(EnsembleBT), as well as, from the various Nearest Neighbor methods (various k values,
cosine, cubic, etc.) the k-Nearest Neighbor method with k = 1 (FineKNN), performed
better than the rest in their category, and therefore, they are used for comparison with the
proposed ANN.

The above classifications methods were again tested using the malimg dataset of 9339
samples split in 70% ‘seen’ data for training and 30% ‘unseen’ data for testing. To avoid any
circumstantial values, due to the random separation of the dataset, the procedure (permute
data - split seen/unseen - build classifier from seen—apply to unseen) was repeated several
times and the results were averaged.

4. Results
4.1. Performance of the Two-Level ANN

After training and testing, the 1st of the two-level ANN reached an accuracy of 98.83%.
This concerns the 5339 of the total 9339 images. The rest 4000 images were forwarded for
further classification to the 2nd level, where G1 (900 images) achieved an accuracy of 100%
and G2 (3100 images) achieved an accuracy of 99.41%.

Hence, the average accuracy achieved by the two-level ANN is (5339/9339) ∗ 98.83 +
(900/9339) ∗ 100 + (3100/9339) ∗ 99.41 = 99.135%.

4.2. Performance of Other Classification Methods

The above two-level classification can also be used with other classifiers. In this
research we have tested two other approaches: the k-NN classification method, as well as
the Ensemble Bagged Trees classification method (EnsembleBT).

Both the ANN and Ensemble tools were implemented as standalone functions and
tried over the entire dataset to measure their relative execution speed.

After 500 Monte Carlo runs the average accuracies were: for the EnsembleBT tool
98.39% and for the FineKNN tool 96.74%.

The two methods are tested also with the improved dataset and their performance
was slightly improved. After 500 Monte Carlo runs the average accuracies were: for the
EnsembleBT tool 98.70% and for the FineKNN tool 97.69%.

Two-level classification can be applied to these two methods as well, giving an average
accuracy of 98.938% for the EnsembleBT tool and 98.288% for the FineKNN tool.

The ANN performed the 9339 recognitions in 0.024 sec (averaged after 500 MC-runs),
the Fine k-NN performed the 9339 recognitions in 0.032 sec, and the Ensemble Bagged
trees performed the 9339 recognitions in 0.345 sec, on a common Windows 10 laptop with
8GB RAM and AMD Ryzen 3 3200U processor with 2 CPU cores and 3 GPU cores, normal
clock frequency 2.6 GHz and max clock frequency 3.5GHz. All these results are displayed
in Table 2.

It is clear that any improvement offered by the Ensemble tool comes with a penalty of
10+ times longer execution time, making this approach less attractive for real time systems.

Table 2. Comparative summary of classification algorithms using the Malimg dataset.

Method k-NN EnsembleBT ANN

Average time (s) 0.032 0.345 0.024
Average Accuracy @L1 97.69% 98.70% 98.83%

Average Accuracy @L2,G1 100% 100% 100%
Average Accuracy @L2,G2 98.82% 99.04% 99.09%
Overall Average Accuracy 98.288% 98.938% 99.135%

Information 2021, 12, 118 12 of 14

4.3. Comparison with Other Approaches

Comparison with other approaches is possible in terms of reported criteria such as
precision and accuracy [5]. It is not easy to compare run-times because each researcher uses
different hardware and software. Our approach can perform 9339 recognitions in 0.032
sec, much less than 0.81 sec per sample needed by the approach of [5] (which is one of the
fastest). This is due to its simplicity (shallow NN vs. deep NN), as well as the avoidance of
time-consuming feature extraction methods such as GIST.

The following Table 3 presents a comparative summary of classification algorithms
using the Malimg dataset.

Table 3. Comparative summary of classification algorithms using the Malimg dataset.

Year Researchers Methods Technique Accuracy (%)

2011 Nataraj et al. GIST Machine Learning 98
2017 S. Yue CNN Deep Learning 97.32
2017 Makandar and Patrot Gabor wavelet-kNN Machine Learning 89.11
2018 Yajamanam et al. GIST+kNN+SVM Machine Learning 97
2018 Cui, Xue, et al. GIST+SVM [15] Deep Learning 92.20
2018 Cui, Xue, et al. GIST+kNN Deep Learning 91.90
2018 Cui, Xue, et al. GLCM+SVM Deep Learning 93.20
2018 Cui, Xue, et al. GLCM+kNN Deep Learning 92.50
2018 Cui, Xue, et al. IDA+DRBA Deep Learning 94.50
2019 Cui, Du, et al. CNN, NSGA-II Deep Learning 97.6
2020 Mallet CNN, Keras Deep Learning 95.15
2020 Vasan et al. IMCFN, Color images Deep Learning 98.82
2021 Two-level ANN Image and file features, ANN Two-level ANN 99.13

5. Discussion and Future Work

Based on our experiments, we believe that hierarchical detection of new malware
variants has several advantages:

By applying a hierarchical taxonomy on the malware families we can reduce the vast
search space required to cover all virus instances, and our tools can focus on a smaller
number of classes. We can further reduce the number of features required at each level of
the hierarchy, and consequently, end up with a much simpler and faster tool to implement.

The number of levels in the hierarchy is not an issue. The proposed ANN runs at a
fraction of time required by the decision trees or other more complex deep learning methods.

From our results, it seems that the hierarchical detection is more profitable for the
tools that build generalized models to identify a class (such as Neural Nets, Decision
Trees), than for those which just compare the input with an existing bank of known cases
(e.g., Nearest Neighbor). The latter are also prone to the continuous increase of available
knowledge, as this greatly affects their complexity and execution time.

With the exponentially increasing number of malware today, we believe that future
research should investigate the varying performance of the detection tools, under the
changing load of the continuously increasing number of virus samples and families.

Future Work

• A future task is to test our ANN with additional datasets such as the BIG 2015 dataset.
• The performance of various classification methods depends on the size of the dataset;

for example, k-NN performance decreases with the number of inputs. It would
be interesting to compare the accuracy of the various classification methods with
large datasets.

• Finally, it would be interesting to test hybrid schemes with combinations of methods,
that is, one method at the 1st level and a different method at the second level, in an
effort to combine their advantages. For instance, an ANN at the 1st level (which can

Information 2021, 12, 118 13 of 14

cope with big amounts of input data) to perform the coarse classification and a k-NN
at the 2nd level (where the input data will be limited) to perform the fine classification.

6. Conclusions

In this paper, a set of image features for malware classification based visual represen-
tation was first proposed. Then, based on this set, several classification algorithms were
examined: the Ensemble Bagged Trees method (Ensemble BT), the Fine k-Nearest Neighbor
method (k-NN with k = 1) and an Artificial Neural Network (ANN), all with one and two
levels of processing.

All of these algorithms demonstrate superior performance in terms of accuracy and
run-time, while maintaining low complexity.

Image-based malware classification does not demand any domain expert knowl-
edge, such as reverse engineering, binary disassembly, static and dynamic code analysis.
At the same time, our architectures can detect obfuscated malware contained in the mal-
img dataset.

Our approach excels in speed compared to other complex methods presented in the
bibliography. The final accuracy for the malimg dataset consisting of 9339 images is close
to 99%.

Moreover, the ANN runs up to 30 times faster than the Ensemble classification method
and its accuracy will increase with larger and better prepared datasets. Simpler ANNs
still present satisfactory performance and are proposed for implementations with hard-
ware limitations.

Automatic analysis, detection and classification of malware based on its visual repre-
sentation has several advantages over traditional signature-based antivirus software. One
of the advantages of this method is that new variations of known malware families can
be instantly detected. Thus, this method could prove valuable for antivirus companies
and security researchers who receive hundreds of malware everyday. It can be applied to
antivirus software, smart firewalls, web application firewalls, etc.

Author Contributions: Conceptualization, A.A.; Data preprocessing & feature extraction, A.A.;
Investigation and literature review, V.M. and A.A.; Methodology, V.M. and A.A.; Machine learn-
ing design and simulation, V.M. Both authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded by the University of West Attica.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We render our sincere thanks to L. Nataraj, S. Karthikeyan, G. Jacob and B.S.
Manjunath for making the ‘Malimg’ dataset publicly available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. Malware images: Visualization and automatic classification. In Proceedings

of the 8th International Symposium on Visualization for Cyber Security, Pittsburgh, PA, USA, 20 July 2011; pp. 1–7.
2. McAfee Labs Threats Reports. November 2020. Available online: https://www.mcafee.com/enterprise/en-us/threat-center/

mcafee-labs/reports.html (accessed on 23 December 2020).
3. Mallet, H. Malware Classification Using Convolutional Neural Networks—Step by Step Tutorial. A Quick and Easy Tutorial

about an Interesting Approach to Malware Classification. 27 May 2020. Available online: https://towardsdatascience.com/
malware-classification-using-convolutional-neural-networks-step-by-step-tutorial-a3e8d97122f (accessed on 18 July 2020).

4. Donahue, J.; Paturi, A.; Mukkamala, S. Visualization Techniques for Efficient Malware Detection. RiskSense Technical White Paper
Series. Available online: https://www.risksense.com/wp-content/uploads/2018/05/Visualization-Techniques-for-Efficient-
Malware-Detection.pdf (accessed on 28 December 2020).

5. Vasan, D.; Alazab, M.; Wassan, S.; Naeem, H.; Safaei, B.; Zheng, Q. IMCFN: Image-based malware classification using fine-tuned
convolutional neural network architecture. Comput. Netw. 2020, 171, 107138. [CrossRef]

https://www.mcafee.com/enterprise/en-us/threat-center/mcafee-labs/reports.html
https://www.mcafee.com/enterprise/en-us/threat-center/mcafee-labs/reports.html
https://towardsdatascience.com/malware-classification-using-convolutional-neural-networks-step-by-step-tutorial-a3e8d97122f
https://towardsdatascience.com/malware-classification-using-convolutional-neural-networks-step-by-step-tutorial-a3e8d97122f
https://www.risksense.com/wp-content/uploads/2018/05/Visualization-Techniques-for-Efficient-Malware-Detection.pdf
https://www.risksense.com/wp-content/uploads/2018/05/Visualization-Techniques-for-Efficient-Malware-Detection.pdf
http://dx.doi.org/10.1016/j.comnet.2020.107138

Information 2021, 12, 118 14 of 14

6. Narayanan, B.N.; Davuluru, V.S.P. Ensemble Malware Classification System using Deep Neural Networks. Electronics 2020, 9, 721.
[CrossRef]

7. Conti, G.; Dean, E.; Sinda, M.; Sangster, B. Visual reverse engineering of binary and data files. In Lecture Notes in Computer Science,
Proceedings of the 5th International Workshop on Visualization for Computer Security, VizSec ’08, Cambridge, MA, USA, 15 September
2008; Springer: Berlin/Heidelberg,Germany, 2018; pp. 1–17.

8. Quist, D.A.; Liebrock, L.M. Visualizing compiled executables for malware analysis. In Proceedings of the 6th International
Workshop on Visualization for Cyber Security (VizSec), Atlantic City, NJ, USA, 11 October 2009; pp. 27–32.

9. Conti, G.; Bratus, S.; Shubina, A.; Lichtenberg, A.; Ragsdale, R.; Perez-Alemany, R.; Sangster, B.; Supan, M.A. Visual Study of
Binary Fragment Types; Black Hat: San Francisco, CA, USA, 2010.

10. Oliva, A.; Torralba, A. Modeling the shape of a scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 2001,
42, 145–175. [CrossRef]

11. Kancherla, K.S.; Mukkamala, S. Image visualization based malware detection. In Proceedings of the 2013 IEEE Symposium on
Computational Intelligence in Cyber Security (CICS), Singapore, 16–19 April 2013; pp. 40–44.

12. Narayanan, B.N.; Djaneye-Boundjou, O.; Kebede, T.M. Performance analysis of machine learning and pattern recognition
algorithms for malware classification. In Proceedings of the 2016 IEEE National Aerospace and Electronics Conference (NAECON)
and Ohio Innovation Summit (OIS), Dayton, OH, USA, 25–29 July 2016; pp. 338–342.

13. Makandar, A.; Patrot, A. Malware Analysis and Classification using Artificial Neural Network. In Proceedings of the 2015
International Conference on Trends in Automation, Communications and Computing Technology (I-TACT-15), Bangalore, India,
21–22 December 2015.

14. Yue, S. Imbalanced Malware Images Classification: A CNN based Approach. Submitted on 27 August 2017. Available online:
https://arxiv.org/abs/1708.08042 (accessed on 30 December 2020).

15. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.; Chen, J. Detection of Malicious Code Variants Based on Deep Learning. J. IEEE Trans.
Ind. Inform. 2018, 14, 3187–3196. [CrossRef]

16. Cui, Z.; Du, L.; Wang, P.; Cai, X.; Zhang, W. Malicious code detection based on CNNs and multi-objective algorithm. J. Parallel
Distrib. Comput. 2019, 129, 50–58. [CrossRef]

17. Ni, S.; Qian, Q.; Zhanga, R. Malware identification using visualization images and deep learning. Comput. Secur. 2018, 77, 871–885.
[CrossRef]

18. Yajamanam, S.; Selvin, V.R.S.; Di Troia, F.; Stamp, M. Deep Learning versus Gist Descriptors for Image-based Malware Classifica-
tion. In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018), Funchal,
Portugal; 22–24 January 2018, pp. 553–561.

19. Makandar, A.; Patrot, A. Malware class recognition using image processing techniques. In Proceedings of the 2017 International
Conference on Data Management, Analytics and Innovation (ICDMAI), Pune, India, 24–26 February 2017.

http://dx.doi.org/10.3390/electronics9050721
http://dx.doi.org/10.1023/A:1011139631724
https://arxiv.org/abs/1708.08042
http://dx.doi.org/10.1109/TII.2018.2822680
http://dx.doi.org/10.1016/j.jpdc.2019.03.010
http://dx.doi.org/10.1016/j.cose.2018.04.005

	Introduction
	Related Work
	Methodology
	About the Malimg Dataset
	Preprocessing
	Training the ANN
	Defining the ANN Architecture
	Testing Other Classification Tools

	Results
	Performance of the Two-Level ANN
	Performance of Other Classification Methods
	Comparison with Other Approaches

	Discussion and Future Work
	Conclusions
	References

