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Abstract: Fire early warning is an important way to deal with the faster burning rate of modern
home fires and ensure the safety of the residents’ lives and property. To improve real-time fire
alarm performance, this paper proposes an indoor fire early warning algorithm based on a back
propagation neural network. The early warning algorithm fuses the data of temperature, smoke
concentration and carbon monoxide, which are collected by sensors, and outputs the probability of
fire occurrence. In this study, non-uniform sampling and trend extraction were used to enhance the
ability to distinguish fire signals and environmental interference. Data from six sets of standard test
fire scenarios and six sets of no-fire scenarios were used to test the algorithm proposed in this paper.
The test results show that the proposed algorithm can correctly alarm six standard test fires from
these 12 scenarios, and the fire detection time is shortened by 32%.

Keywords: multi-sensor data fusion; back propagation neural network; trend extraction;
fire detection time

1. Introduction

Fire warning involves the judgement of situations that are full of randomness and
uncertainty and are difficult to characterize due to statistical inference. The growth rate
of fires in residential settings has increased significantly in the past four decades [1].
According to the research of Underwriters Laboratories (UL, Brooke, IL, USA), the available
safe escape time for residential fires has dropped from 17 min in 1978 to three or four
minutes today [2]. The reason is that more and more modern furniture made of synthetic
fibers is used in modern homes. This material burns at a higher temperature and much
faster than natural materials do. Although improving the sensitivity of smoke alarms
currently in widespread use is one of the potential ways to deal with this problem, it would
increase the false alarm rate. Statistics from the National Fire Protection Association (NFPA)
show that about 2700 people die in residential fires in the United States each year, and
many smoke alarms in their homes are turned off due to frequent false alarms. In the
UK, false alarms caused by fire alarm systems cost businesses and fire and rescue services
(FRSs) over £1 billion each year [3]. This is a result of smoke detectors being unable to
discriminate between smoke particles from fires and particles from other events [4].

In addition to smoke, the combustion of fire also emits heat, flame, gas and so on. The
characteristic parameters of fires include temperature, smoke concentration and carbon
monoxide. Chemical sensors sometimes respond faster than smoke alarms [4,5], so a
fire alarm system that combines multiple sensors would be faster and more accurate.
Multi-sensor fusion with a wireless sensor network (WSN) [6] and an Internet of Things
(IoT)-based approach is suitable for fire detection [7]. Multi-sensor data fusion [8] is used
to combine data from multiple sensors and achieve higher accuracy than using a single
sensor [9].
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The past studies on fire warning using the multi-sensor data fusion method can be
divided into two types of approaches. One type is based on conditional probability [10],
statistics and inference. Chen et al. [11] built a fire alarm system based on a Bayesian
network. The Kalman filter can fuse a variety of fire data and effectively remove noise [12].
Rachman et al. used fuzzy logic to cover complex fire scenes and reduce the complexity
of computing [4,13,14]. The other type is the artificial intelligence method. A multilayer
perceptron (MLP) as the decision layer of a fire detection system can improve warning
accuracy [15]. A multi-sensor information fusion system for fire warning is proposed in
Reference [16], which uses a back propagation (BP) neural network to fuse the data from
temperature, smoke density and CO sensors. Results show that the system has better
real-time performance while ensuring the accuracy of fire detection. In Reference [17], an
additional infrared sensor was added to a similar system to that described above. Although
the algorithms in the literature have different advantages for fire warning, there are two
issues of these works. Firstly, when algorithms are used for data fusion, they handle the
data of the entire process of the fire equally, ignoring that the data of the early stage of
fires is key to fire detection. Secondly, they assess the accuracy of fire warning algorithms
according to the results at each time instance rather than fire scenarios, which hardly
reflects the true fire warning rate.

This study focused on the data characteristics of temperature, smoke and CO in the
early stage of the fire, and a multi-sensor data fusion algorithm based on a BP neural
network is proposed for fire early warning. Non-uniform sampling and improved trend
extraction methods were used to enhance the ability of the warning algorithm to distinguish
between fire signals and environmental interference. Test results show that the performance
of the warning algorithm proposed in this paper is better than the traditional algorithms.
The algorithm can correctly alarm six test fires according to the EN54 standards and reduce
the fire detection time by 32%.

2. Indoor Fire Early Warning Analysis
2.1. Requied Safe Escape Time

Time is a crucial factor in fire detection [18], and available safe escape time (ASET)
is one of the most important indices in fire safety. According to the national standard of
China GB/T 31593.9-2015, required safe escape time (RSET) [19] is defined as the sum of
fire detection time, warning time, pre-travel activity time and travel time. The equation is
as follows:

tRSET = tdet + twarn + tpre + ttrav

The margin of safety for the evacuation design is the difference between tAEST minus
tREST . Therefore, it is essential to reduce tREST given that tAEST has decreased sharply in
the past four decades. Fire detection time tdet and warning time twarn are determined by
fire detection systems, and twarn is equal to zero when there is no stage warning. Pre-travel
activity time tpre and travel time ttrav are related to evacuation behavior and building
features, so improving the fire detection time tdet is particularly important for shortening
tREST from the perspective of system design.

Fire detection time is relevant to the warning algorithm and the fire growth rate. The
process of indoor fire development is divided into three stages: initial stage, developing
stage and extinguished stage, as shown in Figure 1.

The key to fire early warning is to detect changes of fire characteristic parameters (like
temperature, smoke concentration and CO) in the environment at the initial stage of the
fire, then judge whether it is a fire. There are two technical challenges: First, the materials
which caused the fire are so different that the data of fire parameters at the initial stage are
hard to characterize. Second, fire early warning requires a warning within a short time
after the fire, and the earlier the warning, the more beneficial this is for controlling the fire.
However, shorter times mean more subtle changes of fire parameters, which makes it more
difficult to distinguish between fire signals and environmental disturbances.
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2.2. Fire Parameters

In the early stage of fires, the phenomena and products produced by combustion of
different materials are different, but there are also some similarities, like the release of
heat and production of smoke. These common burning products (temperature, humidity,
smoke, CO2, CO [20], etc.) are called fire characteristic parameters [21], also known as fire
parameters. The fire early warning technology based on multi-sensor data fusion relies on
the detection and processing of fire parameters. Thus, selecting suitable fire parameters is
important for fire early warning algorithms. The following are the fire parameters used in
this study:

(1) Temperature

When a fire occurs, heat is released and the temperature of surrounding environment
increases. Temperature is the earliest and most versatile indicator in fire warning technol-
ogy. However, the alarm threshold of temperature is usually greater than 60 ◦C to reduce
the false alarm caused by weather changes. As a result, temperature is rarely used as a lone
indicator. Nevertheless, it is a good balance metric for fire early warning algorithms based
on multi-sensor data fusion model.

(2) Smoke concentration

Smoke is an important feature in the characterization of fire [22]. Smoke concentration
is one of the most obvious indicators of fires. The current market share of smoke detectors
is around 60% [15], though consumers are also affected by the failure or false alarms of
smoke detectors. These problems can be effectively overcome when smoke is used as one
of the indictors in a multi-sensor data fusion model.

(3) Carbon monoxide

Normally, the content of carbon monoxide (CO) in the air is low, and it increases
rapidly in the event of a fire [17]. There are few events that generate enough CO to trigger
a fire detector, unlike carbon dioxide (CO2). Therefore, carbon monoxide is an effective
indicator for fire detection.

Although humidity and carbon dioxide are also common byproducts of combustion,
they are closely related to the environment. Hence, temperature, smoke concentration and
carbon monoxide were selected as indicators of fire detection in this study.

(4) Trend values of fire parameters

Usually, fire parameters fluctuate randomly and irregularly due to disturbance in the
normal environment. When a fire occurs, fire parameters have obvious and continuous positive
or negative trend characteristics [23]. Hence, the trend values of fire parameters also can be
used as effective indicators to distinguish fire signals from environmental interference.
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2.3. Fusion Algorithm

The process of a fire is very complicated and extremely susceptible to interference from
the surrounding environment [17]. The combustion of different materials leads to different
data characteristics of fire parameters. There are different effects on fire parameters in
various environments. The methods of signal threshold judgement (like smoke detectors)
or probability reasoning hardly cover these complex situations. The fusion algorithm for
fire parameters needs to have a great generalization ability. An artificial neural network
(ANN), which has significant generalization ability and self-learning ability, is an effective
way to solve such problems.

The back propagation neural network (BPNN) is currently the most widely used feed-
forward neural network with multiple inputs and outputs [24]. It refreshes the network’s
weights and biases through the back propagation algorithm such that it produces outputs
with minimal error [25]. The BPNN is suitable for a data fusion model of distributed sensors
due to its powerful nonlinear mapping and parallel processing capabilities. Therefore, a BP
neural network was chosen for this study to fuse the values and trends of fire parameters
and determine whether there is a fire.

3. Indoor Fire Early Warning Model
3.1. The Architecture of Fire Detection

An architecture was created for fire early warning as shown in Figure 2. It determines
whether there is a fire through fusing the data of temperature, smoke concentration, CO
and their trend values. Firstly, the data collected by sensors is inevitably affected by
environmental noise, so data preprocessing is necessary, such as filtering and sampling.
Then, the improved kendall− τ algorithm is used to extract the trend values of preprocessed
data. Finally, the data of temperature, smoke concentration, CO after filtering and the trend
values are fed to the inputs of the BP neural network. The outputs of the BP neural network
are the probability of flaming, smoldering and no fire in the current environment.
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3.2. Fire Dataset

The weights and biases of BPNN nodes are obtained by training in terms of the
training set, and the performance of the BPNN is influenced by the quality of training
set. Unfortunately, to date there is no standard fire dataset for multi-sensor fusion model.
The home smoke alarm test data of the National Institute of Standards and Technology
(NIST) [26] were used in this study. The experiment recorded in detail the entire process
data of various materials burning in the room from the initial, developing and extinguished
stage, which provided rich and reliable data for fire research.

In this study, we chose the tests of SDC01, SDC02, SDC05, SDC12, SDC14 and SDC28,
which include the data of different materials, different types of fire and the interference
signal. The following two subsections outline the data processing of the training set.
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3.2.1. Non-Uniform Sampling

The time interval from the ignition (zero) to the preset fire point is defined as the
window period in this study. Referring to UL217, which is the standard for safety for smoke
alarms, and considering the characteristics of the NIST home smoke alarm test data, the
window period is defined as the smaller time interval from zero to when the photoelectric
smoke concentration is 6.6%/m or carbon monoxide is 100 ppm.

The window period is a crucial period of transition from no fire to fire. The data
of the window period has a greater impact on the performance of the fire early warning
algorithm. In order to improve the performance of algorithms, the data of the window is
densely sampled to make the output of the BPNN more closely fit these samples from the
window period, as shown at 0 to 100 s in Figure 3. Sparse sampling was used to expand the
range of the training set in other periods, including −100 to 0 and 100 to 180 s. In addition,
the trend values of data were used as inputs of the BPNN, so the training set only involved
the data of the rising phase of fire combustion to ensure the monotonicity of the data. The
color segment in Figure 3 is the rising phase of the fire.
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3.2.2. Trend Extraction

The trend of fire parameters is an effective indicator for fire detection. The trend of the
data contains the amount of change and the direction of change. The burning of different
materials leads to the different change in fire parameters, but the direction of change is
similar in the initial stage of the fire. Trending algorithms were used to extract the change
direction of fire parameters as the trend values in this study.

The data of fire parameters were obtained by sampling the continuous time signals.
The kendall− τ trending algorithm was used to extract the trend values of fire parameters in
this study. The kendall − τ trending algorithm is the most common and easy to implement
of the trending algorithms [23]. Adding 0 or 1 is the only computation required, while the
amount of calculation can be reduced by recursive algorithms. This makes it suitable for
terminal devices with limited resources. It is worth noting that the correlation between
changes of different fire parameters was not considered in this study. The trend values of
temperature, smoke concentration and CO were separately extracted by the kendall − τ
trending algorithm.

The formula of kendall − τ trending algorithm:

y(n) =
N−1

∑
i=0

N−1

∑
j=i

u(x(n− i)− x(n− j))
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where n is the discrete time variable, N is the window length of observation data and u(x)
is the unit step function. N is an important parameter that directly affects the results of the
trend calculation. Trend values are very sensitive to the change of signals if it is too small.
However, this leads to the trend values becoming too smooth when the change is too large.
The sampling interval in this study was 5 s, which is justified for the fire detection time
when N is equal to 4. In addition, it was assumed in this study that x(n) is zero when n < 0.

In order to better detect the rising and falling trends of fire signals, the kendall − τ
algorithm was modified in this study using the signum function sgn(x) to replace the unit
step function u(x) and omitting the term of u(x(n)− x(n)). The term omitted is zero all
the time, discarding it reduces the amount of calculation. The improved algorithm:

y(n) =
N−1

∑
i=0

N−1

∑
j=i+1

sgn(x(n− i)− x(n− j))

where the window length is N, and y(x) is the sum of sgn(x), which contains the
N(N − 1)/2 terms. This can be normalized to [−1, 1]:

τ(n) =
y(n)

N(N − 1)/2

The recursive formula after modification is,

y(n) = y(n− 1) +
N−1

∑
i=0

sgn(x(n)− x(n− i))−
N−1

∑
i=0

sgn(x(n− 1− i)− x(n−N))

The data obtained through non-uniform sampling and the trend value extracted by
modified kendall − τ algorithm composed the fire dataset in this study. Temperature,
smoke concentration, CO, trend T, trend S, trend C were considered the sample of data
for training, and T, S, C are abbreviations for temperature, smoke concentration and CO,
respectively. The fire dataset contained 3540 samples, the data of which came from six
different experiments.

3.3. Parameters of the BPNN

According to the theorem of Kolmogorov, a three-layer BP neural network can approx-
imate almost any nonlinear function [27]. A BP neural network with smaller errors after
training is more easily achieved by adjusting the number of hidden layer nodes rather than
the number of hidden layers. Therefore, a fire early warning model with a three-layer BP
neural network was built in this study, and the number of hidden layer nodes was adjusted
to achieve the best performance of fire detection.

One of the difficulties in using a BP neural network is that there is no theoretical
formula for determining the number of hidden layer nodes. Usually, researchers derive an
interval for the number of nodes in the hidden layer based on some empirical formulas
and then select the appropriate nodes within the interval. Here are several commonly used
empirical formulas.

1. According to the theorem of Kolrnogorov, the number of hidden layer nodes is
equivalently related to the number of nodes in the input layer:

Nhid = 2Nin + 1 (1)

2. Daqi Gao [28] proposed a simplified formula based on least squares method,

Nhid =
√

Nin(Nout + 2) + 1 (2)
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3. According to the nodes of the input layer and output layer [29], the number of nodes
in the hidden layer is as follows:

Nhid =
√

Nin + Nout + α, 1 ≤ α ≤ 10 (3)

In this study, the number of input layer nodes was six, and the number of output
layer nodes was three. According to the above three formulas, the interval of the number
of hidden layer nodes was determined as [4,13]. Then the fire training dataset was used
to train these models established by each node in the interval, and the results are shown
as below:

From Table 1, it can be seen that BP neural network has the lowest mean squared error
when the number of hidden layer nodes is six. Thus, the number of neurons in each layer
of the BP neural network is six, six and three respectively.

Table 1. The results of the hidden layer node model training.

Number of Nodes Number of Iterations Mean Square Error

4 29 0.0074
5 30 0.0045
6 56 0.0022 1

7 87 0.0040
8 51 0.0074
9 59 0.0165
10 68 0.0072
11 59 0.0036
12 50 0.0057
13 82 0.0028

1 Lowest mean squared error.

The transfer function between the input layer and hidden layer is tansig, and the
function between the hidden layer and output layer is purelin.

The model of the BP neural network is shown in Figure 4; the inputs are values and
trends of temperature, smoke concentration and CO, and the outputs are the probability
of flaming, smoldering and no fire. The first three fire parameter data at the input of the
BPNN are the values at the current moment, and the last three trend values are related to
the values at the previous moment. The time window for trend extraction is 20 s, so BP
neural network estimates the output based on the fire parameters within 20 s of the input.
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The weights and biases between the layers of the BP neural network were obtained by
training in terms of the training set. The 3540 samples of the fire dataset were randomly
divided into three subsets: training, validation and test sets. The training set was used to
train the model. The validation set was used for cross-validation and detection of overfitting
during the training stage. The test set was used to evaluate the final performance of the
model. The ratios of the training, validation and testing sets were 0.7, 0.15 and 0.15. The
detailed parameters for BPNN training are given in Table 2.

Table 2. Parameters for back propagation neural network (BPNN) model training.

Training Parameters Value

Sample
The number of samples for training: 2478
The number of samples for validation: 531

The number of samples for testing: 531

3540

Nodes of input 6
Hidden neurons 6
Output neurons 3
TransferFcnA 1 tansig
TransferFcnB 2 purelin
Train function trainlm

Performance function mse
Goal 1 × 10−4

Learning rate 0.01
1 Transfer function between input and hidden layer. 2 Transfer function between hidden and output layer.

4. Results and Discussion
4.1. Training Results

In terms of training parameters in Table 2, the model of the BP neural network was
built and trained in MATLAB 2020a, and the performance of the BP neural network model
after training is shown as Figure 5.
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From Figure 5, we can see that the mean square error of training, validation and testing
is less than 1%. The best validation performance was at the 50th iteration. All samples of
the fire dataset were fed to the input of the trained BP neural network for testing, and the
output results match the labels with 99.67% accuracy. This shows that the training for BP
neural network was successful.
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4.2. Performance Improvement

In order to verify the effectiveness of the fire early warning algorithm proposed in this
paper, we tested the performance of the algorithm before and after adding the trend factor
to assess whether there was a performance improvement.

To evaluate the performance of the proposed algorithm, some algorithm performance
metrics were used in this study. Algorithm performance metrics include accuracy, precision
and so on [30]. Mean square error (MSE) and mean absolute error (MAE) are were used
to determine accuracy based on the metrics described in this paper. Standard deviation
and mean absolute deviation (MAD) were chosen for precision based on metrics. Table 3
shows the performance metrics of the BP neural network and the Trend_BPNN with the
addition of trend factors using the NIST dataset. As can be seen from Table 3, the mean
square error was reduced from 0.433% to 0.216% after adding trend factors, while the
number of iterations was reduced from 155 to 56. The standard deviation of the error of
two algorithms is similar, which means that the degree of dispersion of errors is close.

Table 3. Performance comparison before and after adding the trend factor.

Algorithm BPNN Trend_BPNN

Numbers of iterations 155 56
Mean square error (MSE) 0.433% 0.216%

Mean absolute error (MAE) 0.0263 0.0092
Standard deviation of the error 0.1002 0.1016

Mean absolute deviation (MAD) 0.0129 0.0088

The reason for the reduction of the mean square error is that the addition of trend
factors enhances the ability of the BPNN to distinguish between fire signals and environ-
mental disturbances. The reduction of mean square error is beneficial to the improvement
of the performance of fire detection. Figure 6a,b shows the training results of SDC05 based
on the algorithms of the BPNN and Trend_BPNN, respectively. In Figure 6, the blue dashed
line is the value of outputs, and the solid yellow line is the expected value. By comparing
the two plots, it can be seen that the transition from no fire to fire can be accelerated by
adding trend factors. The fit errors between the values of outputs and expected values are
smaller when the Trend_BPNN is used.
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The key to the fire early warning is to determine if there is a fire when fire parameters
change during the transition from no fire to fire. Therefore, when the values of outputs
are better fitted to the expected values in the transition stage, the fire detection time can be
effectively reduced while ensuring the accuracy of fire warning.
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4.3. Test

Most of the past studies [16,22,31] used the fusion results of multiple sensor data at
discrete time points to determine the accuracy of fire warning algorithms. In this study, it
was considered more reasonable that the accuracy of fire warning algorithms was based on
the test results of different fire experiment scenarios. In order to verify the performance
of the algorithm proposed in this paper, the data from six fire scenarios and six no-fire
scenarios under different experimental conditions were selected as the test dataset. It is
worth noting that this study used the data of the entire fire process as a test unit, and the
test data were entered into the model in chronological order of fire occurrence.

The test dataset includes the data of six fire scenarios, TF1 to TF6, under the European
Norm 54 standard [32] and the data of six normal environments. The test results are shown
in Table 4.

Table 4. The simulation results of 12 experimental scenarios.

Scenario Burning Material Type
Simulation

Result 1
Fire Detection Time (s)

Reference Trend_BPNN RBF

1 wood Flaming Y 414 270 325
2 cellulosic Smoldering Y 480 375 374
3 cotton Smoldering Y 156 80 79
4 polyurethane Flaming Y 78 40 47
5 n-heptane Flaming Y 26 15 16
6 methylated spirits Flaming Y 39 30 50
7 environment 1 No fire N ~ ~ ~
8 environment 2 No fire N ~ ~ ~
9 environment 3 No fire N ~ ~ ~
10 environment 4 No fire N ~ ~ ~
11 environment 5 No fire N ~ ~ ~
12 environment 6 No fire N ~ ~ ~

Accuracy of fire warning 99.4% 96.2%
1 simulation results: Y indicates that the output of Trend_BPNN is fire; N is no fire.

The test scenarios 1 to 6 are the data of the fire experiments from test fires 1 to 6. The
data contain the values of temperature, smoke concentration and CO collected by sensors
during the rising stage of fire. Scenarios 7 to 12 are the data of six normal environments.

The outputs of the BP neural network are the probabilities of flaming, smoldering and
no fire. The maximum of these three probabilities is used as the final fusion result. When
the fusion results indicate flaming and smoldering, this means that there is a fire, and the
model outputs “Y”; the model outputs “N” when the fusion result is no fire. As can be
seen from the simulation results column in Table 4, the Trend_BPNN algorithm is able
to correctly warn when there is a fire in 12 test scenarios. The data of 12 scenarios were
sequentially delivered to the inputs of Trend_BPNN in the time series. Hence, it is easy to
obtain the point in time when the algorithm detected the fire for the first time. The time
interval from zero to that time point is the fire detection time. The test results are shown in
the Trend_BPNN column in Table 4.

The reference values in Table 4 are the alarm points with the highest sensitivity from
Jackson’s [32] article. The classification criteria for sensitivity in that paper are the same as
the Chinese national standards. Hence, it is reasonable to use these values for comparison
with the results of the algorithm proposed in this paper. In Table 4, the fire detection times
of Trend_BPNN from scenario 1 to scenario 6 are below reference values. The total fire
detection time of the Trend_BPNN algorithm was 32% shorter than the sum of six reference
values. The rightmost column of Table 4 shows the results of radical basis function (RBF)
neural network using the training and test sets of this study. It can be clearly seen that the
fire detection time of TF1, TF4 and TF6 is lower than Trend_BPNN′s. The results of TF2,
TF3 and TF5 are similar. The accuracy of fire warning is the decision result of the algorithm
based on the data of fire parameters at discrete time points after the first detection of fire.
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Results show that the improved BP neural network (Trend_BPNN) is able to achieve 99.4%
warning accuracy, which is better than the 96.2% of RBF neural network.

5. Conclusions

In order to realize the early warning of fire, the characteristics of temperature, smoke
concentration and carbon monoxide sensor data in the initial stage of fire were analyzed
in this study, and a back propagation neural network was chosen to achieve the fusion of
the three kinds of fire data. In addition, this study adopted the methods of non-uniform
sampling and trend extraction to improve the performance of fire warning algorithm in the
early stage of fire. The training results show that the addition of the trend factor can reduce
the mean square error (MSE) after training by half, and the accuracy of training reached
99.67%. The test results show that the algorithm proposed in this paper can correctly alarm
six standard test fires (TF1 to TF6) according to EN54 standards, and the fire detection time
is reduced by 32%.

The fire warning algorithm proposed in this paper is designed for indoor fire scenarios.
To build robust and reliable fire warning systems, multi-sensor systems need to be exposed
to more types of fires and nuisances [4]. Hence, the next step is to expand the fire dataset
for the multi-sensor fusion model so that is able to cover flammable materials commonly
found in home. Moreover, it is also our goal to build a wireless sensor network (WSN) to
test the algorithm in a realistic fire scenario and apply it to the Internet of Things (IoT).
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