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Abstract: Heart sounds play an important role in the initial screening of heart diseases. However, the
accurate diagnosis with heart sound signals requires doctors to have many years of clinical experience
and relevant professional knowledge. In this study, we proposed an end-to-end lightweight neural
network model that does not require heart sound segmentation and has very few parameters. We
segmented the original heart sound signal and performed a short-time Fourier transform (STFT) to
obtain the frequency domain features. These features were sent to the improved two-dimensional
convolutional neural network (CNN) model for features learning and classification. Considering the
imbalance of positive and negative samples, we introduced FocalLoss as the loss function, verified
our network model with multiple random verifications, and, hence, obtained a better classification
result. Our main purpose is to design a lightweight network structure that is easy for hardware
implementation. Compared with the results of the latest literature, our model only uses 4.29 K
parameters, which is 1/10 of the size of the state-of-the-art work.

Keywords: heart sound; convolutional network; FocalLoss; lightweight

1. Introduction

According to statistics from the World Health Organization, cardiovascular disease has
become one of the leading causes of death in the world [1]. Effective monitoring and testing
methods can increase the number of groups screened and therefore reduce mortality. The
first step in evaluating cardiovascular disease in clinical practice is a physical examination.
Auscultation of heart sounds is an important part of the physical examination. During
the cardiac cycle, the heart undergoes electrical stimulation, and the formation of atrial
and ventricular contractions leads to mechanical activity. This mechanical activity, as well
as the sudden starting or stopping of blood flow in the heart, will cause the entire heart
structure to vibrate. These vibrations can be heard on the chest wall, and specific heart
sounds can give an indication of heart health [2]. As an important initial screening method,
heart sound diagnosis can uncover many pathological heart diseases, such as heart rate
failure, valvular disease, heart failure, and so on [2,3]. However, traditional heart sound
auscultation methods are highly dependent on the experience of the doctor. Only doctors
with many years of experience can accurately diagnose whether a patient may have heart
disease with this method. Hence, auscultation is not suitable for situations where there are
limited medical resources and a large patient population, such as occurs in general practice.
Therefore, it is necessary to investigate a method for automatically classifying heart sounds
that can be applied to develop a portable low-power automatic monitoring device.

The method of heart sound classification usually involves three main steps: feature
extraction, feature selection, and feature classification. The accuracy of heart sound classifi-
cation is greatly affected by the three steps. Many scholars have conducted related research
on automatic classification technology for heart sounds. The first group of researchers, who
studied the threshold method for automatic heart sound classification [4], proposed using
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a computer to process the phonocardiogram (PCG). A method of using multi-threshold fea-
tures and support vector machines (SVMs) to classify normal and abnormal heart sounds
has also been proposed [5]. This classifier achieves a good overall accuracy (86.8%), but
the process of feature extraction is much too complicated. In recent years, the neural
network model has shown excellent performance in data prediction and solving various
classification problems. It can be applied to the automatic diagnosis of heart sounds to
classify diseases well. Another study has reported combining SVM with a discrete wavelet
transform (DWT) and Mel-frequency cepstral coefficients (MFCCs) features, the K-nearest
neighbor (KNN) algorithm based on centroid displacement, and classification algorithms
based on deep neural networks (DNNs) to classify heart sounds [6]. The classification
accuracy of this algorithm is high (97%), but the model is very complicated and requires ex-
tensive calculations. Other researchers focused on various strategies for feature extraction
based on the convolutional neural network (CNN) method and showed that the CNN-
based method has a higher classification accuracy [7–11] (91%, 89.22%, 96.33%, 98%, 81.5%
respectively). These methods show that complicated manual feature extraction combined
with CNN network model can obtain good classification accuracy, but it is difficult to
achieve low power consumption in mobile devices. In another approach, a method of heart
sound diagnosis without segmentation was introduced [12]. This method uses fast Fourier
transform and wavelet analysis to extract corresponding frequency features, and decision
trees as feature classifiers. It was proved that, in the case of poor signal quality, an accuracy
rate (80%) equivalent to other methods could be obtained without segmentation of the
heart sounds.

Among the above algorithms for automatic heart sound recognition, many involve
a multi-threshold feature extraction process and a complex calculation process, and then
apply machine learning methods or multilayer neural network models for feature recog-
nition and classification. However, these network models are relatively complex and
they require large amounts of calculations, so they are not suitable for integration into
low-power mobile monitoring equipment. Here, we developed a lightweight heart sound
automatic classification model that does not require heart sound segmentation. The model
only uses frequency-domain feature input, which is sent to an improved two-dimensional
CNN for training and classification. The model was tested on the 2016 PhysioNet dataset
and obtained an average accuracy of 86%, which greatly reduced the calculation param-
eters of the model while maintaining a high accuracy rate. Hence, the proposed system
provides an excellent classification performance. Our focus was to build a stable and
reliable lightweight classification model by improving the classic CNN network struc-
ture, introducing a weighted loss function (FocalLoss [13]) to alleviate the unbalanced
positive/negative portions in our samples, and optimizing all parameters. The main
outstanding contributions of this paper are as follows:

(i) By adjusting the parameters and structure of the short-time Fourier transform
(STFT) and CNN, the complexity of the model was greatly simplified, better model param-
eters were obtained, and relatively high accuracy was achieved.

(ii) The convergence of the data was sped up by adding the batch normalization [14]
module, and the imbalance of the sample was solved by adding the FocalLoss loss function.
At the same time, we designed a very simple CNN network that only has 1/10 of the
parameters of the state-of-the-artwork.

2. Materials and Methods
2.1. Dataset

Before the PhysioNet/CinC Challenge 2016, only three public heart sound databases
were available: (1) Michigan Heart Sounds and Murmur Database (UMHS) [15], (2) Pascal
Database (Bentley et al., 2011) [16], and (3) Heart Auscultation Heart Murmur Database
(EGeneralMedical) [17]. However, the quality of these databases is greatly affected by the
number of records, length and frequency of signals, and the noise in the signals. In this
study, the database and annotations that we used are from the public PhysioNet Cardiology
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Challenge 2016 [2]. This database comes from eight independent databases contributed by
seven research groups and is currently the largest available heart sound database marked
by experts in the field. These databases are divided into two large parts, the training set
and the test set (unpublished). The numbers of labels for positive and negative samples in
the training sets are shown in Figure 1.
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Figure 1. Normal and abnormal samples in each training set.

From Figure 1, the number of records of normal and abnormal signals in these
databases is very unbalanced, and the imbalance in the samples in the training-e set
is the most significant. We therefore used a weighted loss function in feature training to
balance our positive and negative samples, making our results more reliable, which will
be introduced in more detail in the feature classification section. In addition, because this
database was prepared for a competition, the training set data were the only data we had
access to, and the test set data were used as a hidden dataset to compile the official test
score. Hence, this experiment was conducted on the public training dataset.

As shown in Figure 2, the network model that we propose in the following includes
three parts: feature extraction, feature classification, and test verification. We also focused
on the improvement of the network structure, the adjustment of model parameters, and
the treatment of imbalanced data.

2.2. Feature Extraction

Since the signal at the recording level is more susceptible to interference from clutter
than the signal at the slice level, the segmentation method usually has stronger robustness
against noise in the environment during acquisition or transmission. Since the phonocar-
diogram (PCG) classification aims to give the predicted category of each PCG record, we
introduced a fixed-length segmentation using overlapping windows. Firstly, we filtered
the original signal with a 10-Hz high-pass filter. The duration of the heart sound cycle is
usually 0.6–1 s, so we divided the filtered heart sound signal into small segments of 3 s (if
the last segment was less than 3 s, it was omitted), and the step length of each jump was
1.5 s, which ensured that there would be at least one complete heart sound cycle signal in
each segment, as shown in Figure 3.
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Figure 3. Segmentation of the heart sound signal and a time-frequency diagram of a 3 s segment. (a) Asynchronous
segmentation example with a length of 3 s where the hop size was 1.5 s. (b) Time-frequency diagram of the heart sound
signal of 3 s.

We used STFT to extract frequency domain information for each small segmented
signal, and Hamming windows with different window lengths and overlap rates to segment
the signal. The parameters of the model (n_fft = 150, hop_length = 75, win_length = 150)
leading to a better classification effect were selected based on the overall accuracy rate.
Under these parameters, we obtained the size of the two-dimensional feature map of
each 3-s signal to 76 × 79, as shown in Figure 3. We then obtained the two-dimensional
time-frequency graph matrix of each segmented signal, as shown in Figure 3b, and sent it
to the CNN training classifier that we designed for training and classification.

2.3. Feature Classification

In the process of feature classification, due to the complexity of heart sound signals, it
was necessary to synthesize the information of one or more cycles of heart sound signals in
the feature extraction in order to improve the classification capability at each time point.
These heart sound signals had a large number of features, which meant that the algorithm
of feature classification became very complicated. Currently, CNNs and recurrent neural
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networks (RNNs) are the mainstream algorithms used in the study of heart sound signal
classification because their multi-layer networks can better fit complex functions [18] and
they usually have better classification capabilities. However, their numbers of parameters
and calculations are relatively large. To take advantage of the powerful learning ability
of CNN, we used a three-layer CNN network model to classify features. Compared with
traditional networks, this network model was simpler and it was able to adapt to become
compatible with input features of different sizes. The model structure of the improved
CNN is shown in Figure 4.
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As shown in Figure 4, a three-layer two-dimensional CNN network for feature learning
and classification was adopted firstly. The size of the input to the two-dimensional-feature
model was 79 × 76. Then, filters were used to extract the features of each layer, and the
maximum pooling was used to reduce the parameters of the subsequent fully-connected
layer and realize adaptability to different sizes of the input matrix. Finally, through the
SoftMax layer, the probabilities of predictions of 1 and 0 were obtained, among which the
higher probability was the prediction category of the sample.

Compared with the traditional CNN network, our model made the following im-
provements:

1. The pooling layer after each layer of convolution was removed, and a batch normaliza-
tion module was introduced before the activation function of Relu, which normalized
the model of each layer [14]. The added batch normalization module is

αnorm
i = γi·

αi − µ

σi
+ βi (1)

2. where αi is the original activation function of a certain neuron, µ and σi are the mean
value and standard deviation of the input neuron, γi is the expansion factor, βi is
the translation factor, and αnorm

i is the normalized value. Formula (1) normalizes the
convolution result to a standard normal distribution with a mean of 0 and a variance of
1 and then performs the corresponding scaling and shifting operations. This operation
ensures that the input of each layer of the neural network retains the same distribution,
which can alleviate the gradient explosion and disappearance phenomena that may
perturb the propagation process, and help the model converge faster.

3. Before the fully connected layer, the maximum pooling layer was introduced, which
can greatly reduce the quantity of parameters of the fully connected layer. As a result,
the 9520 parameters before maximum pooling were reduced to only 8 parameters
after maximum pooling, which greatly simplified the optimization parameters of the
fully connected layer.

4. The entire model only used a 3-layer CNN network, a maximum pooling layer, and
a fully connected layer to output the results, which is a very light structure in the
application of heart sound classification.
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2.4. Solving the Problem of Unbalanced Classification

For the binary classification task, in the usual CNN network, the feature nodes gener-
ated by the fully connected layer are fed to the classification layer to output the probability.
Usually, in the loss of the model calculation, each category has the same loss weight by
default. However, when performing classification tasks with unbalanced samples, this may
make the results of the prediction model extremely unbalanced. In many clinical datasets,
the number of positive samples is far greater than the number of negative samples. If
the method of balancing the samples is not adopted, the prediction result will make the
accuracy of negative samples very low and the accuracy of the prediction results of positive
samples high. Therefore, in this experiment, we adopted FocalLoss as the loss function
of our model [13]. This model applies different penalties to mispredicted categories and
defines new weights for each category. The loss function is

L f l =

{
−(1− α)(1− y′)γlogy′, y = 1
−αy′γlog(1− y′), y = 0

(2)

where α can be used to balance the importance of positive and negative samples and γ is
used to adjust the rate of weight reduction of simple samples. Experiments have found
that a γ value of 2 is the best [13]. In Formula (2), the greater the probability of sample
misclassification, the greater the probability of its loss function, and the greater the penalty
for small sample misclassification through α adjustment. A greater probability of sample
misclassification causes an increase in the probability of its loss function and results in a
rising penalty for small sample misclassification through α adjustment.

2.5. Evaluation of Results

In the last layer of the CNN, we used Softmax to predict the results of the probability
values of 0 (normal) and 1 (abnormal). If the predicted probability of 1 was greater than
that of 0, we marked the predicted label of this small segment (of 3 s) as 1; otherwise, it
was 0. We then used Formula (3)

i f
(

Sum(lable_split == 1)
Sum(lable_split)

){
> Threshould label = 1
<= Threshould label = 0

(3)

to mark the label of the entire signal.
In Formula (3), we counted the proportion of the segment marked as 1 to the entire

segment entry of the heart sound signal. When it was greater than our threshold, the entire
heart sound signal was marked as 1 (abnormal); otherwise, it was marked as 0 (normal).

In order to evaluate the accuracy of the results, we used sensitivity, specificity, MACC
(mean accuracy, the mean value of sensitivity and specificity) and ACC (accuracy, the
proportion of the correct samples to the entire sample). The formulas are as follows:

Sensitivity:

Sn =
TP

TP + FN
(4)

Specificity:

Sp =
TN

TN + FP
(5)

MACC:
MACC =

Sp + Sn
2

(6)

ACC:
ACC =

TP + TN
TP + TN + FP + FN

(7)

where TP, TN, FP, and FN represent the number of true positive, true negative, false
positive, and false negative samples, respectively, in a certain experiment.
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3. Results

In this experiment, we used TensorFlow to build our network structure. For each
segment of the signal, we first let the signal pass through a 10-Hz high-pass filter. Then, we
took 20% of the data in the a, b, c, d, e, and f datasets as the fixed test set, and randomly
divided the remaining data into a training set (60%) and a validation set (20%). Then, we
divided each entire segment of the signal into small segments of 3 s, overlapping each
time by 1.5 s, and if the final segment was less than 3 s, it was discarded. The window
of each small segment of the signal (3 s) was used for each STFT computation, and the
two-dimensional features obtained were sent to the CNN network model for training and
classification. In the experiment, we determined the final model parameters according
to the validation set of the highest accuracy by conducting multiple random tests on the
length of the window of the STFT, the parameters of the FocalLoss function, and the output
threshold. The remaining 80% of the data was randomly divided into a training set (60%)
and a validation set (20%) and the random division was repeated 6 times. The 6 training
models were thereby obtained and the corresponding results for accuracy were acquired
by using the training models on the test set.

3.1. The Effects of STFTs with Different Window Lengths on Accuracy

STFTs with different window lengths have different resolutions in the time domain
and frequency domain. In order to obtain a relatively high accuracy rate, in the course of
the experiment, we carried out multiple experiments on different window lengths. We
found that, when the window length was 150 and the overlap rate was 50%, the ACC of
the classification result was the highest, as shown in Figure 5.
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3.2. Influence of the Different Weights of the Loss Function and the Final Threshold on the Results

In the training process, to balance Sn and Sp as much as possible, we set different
classification weights through the loss function to solve the classification imbalance and
improve the MACC of the classifier. We set the classification weight α and the threshold
to different values, which varied from 0.1 to 0.5, and trained the model with the prepared
training and validation sets. The optimal parameters of the validation set were used for the
parameters of the final model, and the corresponding test results were obtained. We also
tested the impact of different classification thresholds on the results, as shown in Figure 6.
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As seen in Figure 6, when the FocalLoss value was about 0.2 and the classification
threshold value was about 0.45, the values of ACC and MACC were relatively high, and
Sn and Sp were not very different, indicating that the balance between the positive and
negative samples was optimized and thus the model had the best generalization capability.

Table 1 shows the statistical results when α was set to 0.2 and 0.5, meaning with and
without classification weight, respectively. It can be seen that the MACC obtained with
classification weight was 2% higher than the default average loss function. The default
weight of Sn was very low, indicating that the classification accuracy of abnormal samples
was low. This does not meet our daily requirements for disease classification in that the
abnormal samples should be sensed with high accuracy. In general, when α = 0.2 and
γ = 0.5, ACC was higher, but the results for this statistic were extremely unbalanced. The
positive samples occupied the largest proportion, so it was not reliable to use ACC alone
to evaluate the classification capability. The weighted loss function that we proposed not
only alleviated the impacts of the imbalance of positive and negative samples, but also had
higher MACC and ACC and better classification capabilities.

Table 1. Comparison of classification performance with weight (α = 0.2) and without weight (α = 0.5).

Weight Sn Sp Mean Accuracy (MACC) Accuracy (ACC)

α = 0.2, γ = 2 0.87 0.85 0.86 0.85
α = 0.5, γ = 1 0.77 0.91 0.84 0.88

3.3. Classification Performance for Normal and Abnormal Heart Sounds

Based on all of the above test results, we set the corresponding optimal hyperparam-
eters via the 6 random values for training and testing on the test set. The results of the
6 tests were obtained and corresponding statistics were calculated for the results, as shown
in Table 2.

Our results were robust with stable means and standard deviations across the 6 ex-
periments, although the fluctuations of Sn and Sp were slightly large, which is due to the
imbalance of the data.
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Table 2. Results and statistics verified by 6 experiments (%).

Experiments Sn Sp MACC ACC

1 85.94 85.33 85.63 85.45
2 89.84 84.56 87.20 85.60
3 85.16 85.14 85.15 85.14
4 85.16 85.71 85.44 85.60
5 86.72 87.26 86.99 87.15
6 88.28 82.63 85.45 83.75

Mean/Std 87 ± 1.7 85 ± 1.4 86 ± 0.8 85 ± 1.0

4. Discussion

In this research, we proposed a lightweight method for automatic heart sound recog-
nition. This method used the characteristics of frequency domain signals and an improved
end-to-end CNN model to achieve a higher accuracy classification of heart sounds. Mean-
while, we directly segmented the PCG signal instead of using the official recommended
feature extraction method of dividing the heart sound cycle (s1-systolic-s2-diastolic). Using
frequency domain signal extraction, it was sent to the CNN model that we designed for
classification. By modifying the model structure and continuously adjusting the model
parameters, we obtained the optimal parameter setting for the model. This method does
not require the previous process involving a large number of manual feature extractions,
which greatly reduced the amount of calculation and avoided multiple feature redundancy,
and an unnecessary calculation burden. The batch normalization module was introduced
to speed up the convergence of the model. Maximum pooling was used before the fully
connected layer, which greatly reduced the number of parameters and avoided overfitting
of the model. It also improved the accuracy of the model. In addition, we introduced
the FocalLoss function with weight classification as the loss function, which solved the
imbalance problem of positive and negative samples and made the results of the model
more credible.

We compared our results with the results of the challenge and the most recent litera-
tures, as shown in Table 3.

Table 3. Comparison of results among different methods (%).

Algorithm Classifier Sn Sp MACC ACC Params Relative Index

[19] 1D CNN 76 93 85 89 0.19 M 44
[20] PSD-CNN 82 91 87 89 0.24 M 56
[21] MFCC-CNN 83 96 90 93 12.41 M 2893
[22] AdaBoost-CNN 88 82 85 / / /
[7] CNN DenseNet 86 95 91 93 0.19 M 44
[10] CRNN 98.66 98.01 98.34 98.34 50.13 K 10

This study 2D-CNN 87 85 86 85 4.29 K 1

In Table 3, the most recent results and parameter statistics are shown. The purpose of
the relative index, which is the ratio of the number of other people’s parameters to ours, was
to quantitatively compare the results. From the list, we can see that our results are relatively
common, but our model is simpler with very few parameters (4.29 K) and excellent balance.
Compared with the latest Reference [10], though the accuracy of our results is a little lower,
our feature extraction method is much simpler, and there are already many hardware
IPs about it, so it is more suitable for portable low-power hardware implementation. In
addition, the model we proposed performs well in detecting positive samples (Sn), which
correspondingly leads to the decrease of the accuracy of the Sp and the final ACC because
negative samples account for the majority in the heart sound database. For disease detection
model, the positive detection rate is more important, so it is necessary to balance Sn and Sp
of the models. In addition, we found that increasing the number of model layers and filters
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increased the accuracy of the results proportionately, but the complexity of model training
and the amount of calculation also get increased correspondingly. The aim was to design a
model with a very small number of parameters and a relatively high accuracy rate, so that
we could use it in portable medical equipment.

Our proposed method gave relatively good results with a very lightweight model and
could accurately classify normal and abnormal heart sound signals. Nevertheless, more
detailed clinical data are needed for distinguishing the causes of abnormal heart sounds,
namely, a detailed heart diseases classification, which will be realized in our future work.

5. Conclusions

In this study, we proposed a lightweight heart sound diagnosis method without heart
sound segmentation. This method extracts features from the frequency domain and inputs
them into the improved CNN model, which can achieve relatively good results. The Sn,
Sp, ACC, and MACC observed using the PhysioNet/CinC Challenge 2016 dataset were
87%, 85%, 85%, and 86%, respectively, because we balanced sensitivity and specificity. The
batch normalization, maximum pooling layer, and the weighted classification function
FocalLoss were introduced into the design, which sped up the convergence of the model
and solved the problem of imbalance between positive and negative samples. We also
made a trade-off between the accuracy of the sample balance and the complexity of the
model. With a relatively small and acceptable loss of accuracy, the number of parameters
was hugely reduced by 10-fold compared with the state-of-the-art works. Therefore, this
model is suitable for the low-power mobile medical monitoring equipment.
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