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Abstract: In this paper, we consider the task of assigning relevant labels to studies in the social science
domain. Manual labelling is an expensive process and prone to human error. Various multi-label
text classification machine learning approaches have been proposed to resolve this problem. We
introduce a dataset obtained from the Finnish Social Science Archive and comprised of 2968 research
studies” metadata. The metadata of each study includes attributes, such as the “abstract” and the
“set of labels”. We used the Bag of Words (BoW), TF-IDF term weighting and pretrained word
embeddings obtained from FastText and BERT models to generate the text representations for each
study’s abstract field. Our selection of multi-label classification methods includes a Naive approach,
Multi-label k Nearest Neighbours (ML-kNN), Multi-Label Random Forest (ML-RF), X-BERT and
Parabel. The methods were combined with the text representation techniques and their performance
was evaluated on our dataset. We measured the classification accuracy of the combinations using
Precision, Recall and F1 metrics. In addition, we used the Normalized Discounted Cumulative
Gain to measure the label ranking performance of the selected methods combined with the text
representation techniques. The results showed that the ML-RF model achieved a higher classification
accuracy with the TF-IDF features and, based on the ranking score, the Parabel model outperformed
the other methods.

Keywords: multi-label classification; supervised learning; text representation; text feature extraction

1. Introduction

The Finnish Social Science Data Archive (FSD) is a Finnish entity that stores and
provides access to digital social sciences research data. The research data are comprised
of studies that are structured according to the Data Documentation Initiative standard.
FSD translates the metadata of every study to English and implements a manual study
labelling process through which a variable-length set of relevant labels are assigned to
each respective study. Manually labelling the studies in their archive has become more
challenging and expensive with the increasing amount of digital research data. In this
work, we considered the task of identifying and selecting a label recommending approach
to facilitate the study labelling process at FSD.

The task of assigning relevant labels to an entity based on its corresponding features is
known as Multi-label Classification (MLC). The MLC methodologies have been applied in
various domains. Loza Mencia and Fiirnkranz introduced the EUR-Lex database of legal docu-
ments of the European Union where each document is assigned a set of labels [1]. EUR-Lex has
been used as a benchmark dataset for various MLC techniques [2-4]. Papanikolaou et al.
implemented an ensemble of algorithms to perform MLC on a dataset comprised of about
12 million biomedical papers [5]. News articles published online are another domain of
application for MLC task. Al-Salemi et al. proposed a benchmark news dataset for the
Arabic language and used it to test the performance of various classification techniques [6].
Fiallos et al. applied MLC methods in the domain of social networks [7]. The authors
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proposed a methodology to train a multi-label model on a dataset obtained from the Reddit
online forum and use the trained model to predict the topics of interest on a Twitter dataset.

Our data snapshot consists of 1484 Finnish study metadata and the 1484 corresponding
English-translated study metadata. The metadata of every study includes information such
as the title, abstract, author(s), set of labels etc. We selected the abstract and the set of labels
of each study to test various MLC methods. We used the information contained within the
abstract field as an input for the MLC methods because it provides a summary for each
respective study. The goal of the MLC methods was to learn any patterns and correlations
emerging between the abstract and the set of labels of every study. The information
contained within the original form of the abstract field of every study is not computable by
the machine learning classification models. We transformed the textual information into
a machine-readable format by employing four text feature extraction techniques: Bag of
Words (BoW), TF-IDF, FastText-based and Bert-based.

We use the extracted features to train and test a selection of MLC methods which
consist of Naive approach, Multi-label k Nearest Neighbours (ML-kNN), Multi-label
Random Forest (ML-RF), X-BERT and Parabel. We computed the accuracy and the ranking
scores for the technique combination with the feature extraction techniques.

The main contributions of our work are summarized in the following list:

*  We introduce the FSD dataset as a benchmark for the MLC task. The properties of
this dataset, such as size and the bi-lingual metadata, make it particular in the field
of MLC.

¢  We evaluate the performance of several textual MLC approaches in the domain of
social sciences. We used a Naive approach, and the ML-KNN, ML-RF, X-BERT and
Parabel techniques to tackle the MLC problem.

e We compare the performance of a set of text representation techniques by combining
them with the selected MLC methods. This quantitative evaluation provides an
objective comparison of the text representation techniques.

The rest of this work is organised as follows. In Section 2, we discuss the task and
our workflow analysis. In Section 3, we provide details on the dataset and discuss the
approach we employed to split it into two parts to be used during the training and testing
of the selected models. In Section 4, we report the feature extraction techniques we used
and, in Section 5, we describe the classification models that we applied and the respective
reasoning of selection for each. Finally, in Section 6, we describe the experimental setup
and report the results that we obtained.

2. FSD and Analysis of Workflow

The Finnish Social Science Data Archive (FSD) maintains and provides access to an
archive of Finnish social science studies. The studies are indexed and their metadata are
translated to English. FSD assigns labels to all the studies in their archive to facilitate
the process of organising, retrieving and disseminating the data. The labelling process is
manually performed separately for the Finnish and English metadata of each study. Our
task at FSD focuses on identifying and selecting a technique that would be used to facilitate
the labelling process. The selected method should recommend a list of labels to be assigned
to each new study that is added to the archive. The list of recommended labels would then
be validated and updated manually by the responsible clerk at FSD. This semi-automated
process would speed up the labelling process and would help maintaining a consistent
label distribution among all the studies thus minimizing the potential human error that
would result in labels not being included or included erroneously.

We consider the task of Multi-label text classification in the domain of social sciences
by using the FSD data. We summarize the workflow of our task into four stages: Dataset
Preparation, Train-Test Split, Feature Extraction and Model Training & Evaluation. In
Figure 1, we provide a diagram illustrating the pipeline of our task. Each box illustrates
the respective technique that was used during the corresponding stage.
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Figure 1. The diagram description of our work. Each box represents a specific phase of the
project pipeline.

The first stage of our work focuses on data acquisition and pre-processing. During
the first step we acquire the data from FSD. The metadata of the studies they have in their
archive is released under Creative Commons Attribution 4.0. The data were obtained as a
compressed file and uploaded into a NoSQL database server to ease the process of data
analysis and pre-processing. Through the pre-processing step, we transform the original
data into a format that could be input into our selected classification models. For our task,
this step consisted of transforming the textual information of the metadata into lowercase
and lemmatizing the labels. Since the goal of our models is to predict the set of labels
assigned to a study, given the corresponding study’s abstract, we select the abstract and
the labels fields out of the available metadata fields for every study in our dataset. The
pre-processed and filtered dataset is then propagated to the next phase of our work.

The classification models that we use learn the patterns from a given training dataset
on a supervised manner. The supervised machine learning models are prone to the problem
of overfitting which arises when the models learn the patterns from the training set too
well. Therefore, testing such a model’s performance on the same training data could be
misleading. By evaluating the performance of the classification models on unseen data,
we can assess their level of overfitting. Our approach to address this issue consists of
splitting the dataset in two mutually exclusive subsets: Train and Test. Every model was
trained with the training data and evaluated with the testing data. Ideally, the distribution
of labels in both samples should be equal i.e., the frequency of every keyword would be
the same in both subsets. The small number of studies relative to the number of available
labels in our dataset pose a challenge to the simple random sampling. We addressed that
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issue by employing a stratified random sampling method to minimize the under and over
representation of specific labels in both subsets.

The textual data contained within the abstract attribute of every study is not com-
putable by our selected classifying models in its original form. To address this issue, the
textual information is transformed into a machine-readable format such as a vector of
numerical real values. This text transformation process is generally referred to as a feature
extraction process. During the third stage of our work, we employed 4 techniques to
perform the feature extraction. Each technique transforms the abstract of every study into
a vector of numbers that are used to train and test our selected classification models. The
differences between the techniques consist of their ability to encapsulate the syntactic and
semantic meaning of text.

One of the goals of this work includes the measuring of the performance of the selected
classification models on predicting a set of labels for an unseen study’s abstract. During
the last phase of our work, we trained and evaluated each of the selected classification
models. The performance of the models is then tested on the testing data and evaluated on
the testing data using the F1 score and the Normalized Discounted Cumulative Gain. We
analysed the outcome and reported the results.

3. Dataset

The studies in the FSD archive are structured according to the Data Documentation
Initiative standard and represented using the XML (Extensible Markup Language) format.
Each study’s metadata consists of a subset of defined study-attributes that include the
title, the abstract and a variable-length set of manually assigned labels which describe
the study’s scope. In Figure 2, we provide an illustration of the metadata structure for an
example study.

> _id: ObjectId("5e9c70986746c63c04da8aad")
xml:lang: "fi"
> docDscr: Object
v stdyDscr: Object
> citation: Object
v stdyInfo: Object
v subject: Object
v keyword: Array
> 0: Object
1: "el@amanrakenne"
2:"kehitystehtavat"
v 3:0bject
vocab: "YSA"
vocabURI: "http://vesa. lib.helsinki.fi/"
#text: "arvot"
:Object
:0bject
: Object
:0bject
:0bject
9:0bject
10: Object
11: Object
12: Object
13: Object
> topcClas: Array
> abstract: Object
> sumDscr: Object
> method: Object
> dataAccs: Object
> othrStdyMat: Object
> otherMat: Object
study_id: "FSD2025"

N U A

v vV vV VvV vV VvV VvV VoV

Figure 2. The attributes included in the metadata structure of an example study. The abstract and the
keyword attributes are underlined in red.
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Our data snapshot is comprised of 2969 studies’ metadata in total. We filtered our
data to include the title, abstract and the list of labels from the metadata of every study.
These attributes were stored on a MongoDB database to ease the process of querying and
analysing the data.

In Figure 3, we show a histogram of the distribution of labels among the studies. The
number of labels assigned to the studies follow a normal distribution for the Finnish and
English metadata. On average, the number of labels appearing in the English-translated
metadata is smaller than the number of labels used in the original, Finnish metadata. This
change is explained by the linguistic differences between the two languages.

English Keywords
Finnish Keywords
250

200

150

100

© 2 4 6 B8 10 12 14 1 18 20 2 24 2 28 3B 32 34 3B 3B 40 42 M 46 48
Studies

Figure 3. Keyword Frequency Distribution for the English and Finnish studies’ metadata.

Next, we proceeded with the data pre-processing step. This process consists of
transforming the information to make it machine-readable and adapt it for our specific use
case. We converted the abstract and the set of labels of every study into lowercase. We
observed that some labels were very similar semantically and syntactically but did not
match due to the manual labelling of the studies. We applied the lemmatization technique
to the labels of every study. Lemmatization consists of reducing a word to its root form by
removing the prefixes and suffixes. For example, the words 'financing” and 'financed” are
both converted into finance’ lemma. Lemmas match to an actual word in a dictionary.

In Table 1, we provide further details for the snapshot of the data after the pre-
processing step. After the keyword lemmatization, the ratio between the number of
distinct labels and the number of studies is 1.95 for the Finnish metadata and 1.15 for the
English metadata.

Table 1. Details of our snapshot of data.

Finnish Metadata English Metadata Total
Number of Studies 1484 1484 2968
Distinct Labels 2896 1709 4605

Labels/Studies 1.95 1.15 1.55
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The supervised machine learning models in the task of MLC learn patterns from a
given dataset. Such models are evaluated by analysing their performance on an unseen set
of data. Following various related work [4,8], we split our dataset into train and test sets for
both languages. We employed an iterative stratified sampling method given the small size
of our dataset versus the large number of available labels. This approach was proposed by
Sechidis et al. [9] and minimizes the over/underrepresentation of labels in both sets of data
obtained from the split. The train and test datasets are sampled without replacement from
the original dataset while attempting to keep the same distribution of labels. The method
consists of sampling the entities that are labelled with the most underrepresented labels
in an iterative way. For both the Finnish and English metadata, we sampled 70% of the
dataset for the training set and used the remaining 30% for the testing set. In Figure 4, we
illustrate the label distribution of the generated samples of data.

0.005

Original Data
Train set

Test set
0.004

0.003

Class Proportion

0.002

0.001

0.000
Classes

(a) English metadata

00035 Original Data
Train set
Test set

0.0030

0.0025

0.0020

00015

Class Proportion

00010

0.0005

0.0000
Classes

(b) Finnish metadata

Figure 4. The sorted label distributions on the train and test data sets for the English and Finnish
studies’ metadata. The labels are sorted along the horizontal axis, based on their occurrences in the
original data. The vertical axis represents the relative class proportion of each respective label.

4. Feature Extraction

The textual information contained within the original form of the abstract attribute of
every study is not computable by our selected classification models. We addressed this
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issue by transforming the textual information into a machine-readable format consisting of
vectors of numerical real values. The outcome of this transformation process is referred
to as text representation. We used the Bag of Words (BoW), TF-IDF term weighting and
Pretrained Word Embeddings techniques to generate the representations for every study’s
abstract field.

4.1. Bag of Words

The Bag of Words is one of the simplest text representation techniques that we used.
This approach does not take into consideration the grammar nor the order of the words in
a text. The technique consists of assigning a word to every position in the representation
vector, without a specific order. The value of the corresponding position in the vector
equals the number of occurrences of the associated word in the represented text. A BoW
representation of a text d has the following form:

RBOW(d) = (Cwlr Cer cecy Cwn)r (1)

where cy;, is the number of times the term w appears on a document and # is the size of
the dictionary over the corpus. In this work [10], the authors developed a BoW model to
represent textual information obtained from a list of publications in the fall-detection area.

4.2. Term Frequency—Inverse Document Frequency

TF-IDF is a standard term weighting approach. Given the set of all documents, the
words that appear in fewer documents will be given a higher weight and vice versa. Like
the BoW representation, TF-IDF text representation does not take into consideration the
grammar nor the order of the words in a text. Given a word w, a set of documents D and a
document d such that d € D, the TF-IDF score is calculated as follows:

D
TFIDF,, = freq(y,q) * log(frJq('D)), ()

where freq(,, 4) is the number of occurrences of the word w in the document d and freq,, p)
is the number of documents where the word w appears at least once. The TF-IDF represen-
tation of a document d would have the following form:

Rrpape(d) = (tfidfu, tfidfuo, ..., tfidfun), 3)

where tfid f,,, is the TF-IDF score of w and # is the size of the dictionary over the corpus.
We limited the TF-IDF representation to only include words that appear at least 3 times
over all the studies” abstracts in the training data.

4.3. Pretrained Word Embeddings

The representations obtained from the BoW and TF-IDF techniques do not manifest the
semantic meaning of the underlying text. The encapsulation of the syntactic and semantic
meaning of a word into a representation vector is known as word embedding. The word
embeddings are generated by training a specific language model on large amounts of
textual data. We generated the word embeddings using pretrained models since it was
not feasible to train such models from scratch given the small size of our dataset. The
language models are usually implemented using the neural network architecture. During
the training process, the goal of the model is to learn the joint probability function of a
sequence of words in a language [11]. Mikolov et al. introduced Word2vec model that
employs two learning approaches, CBOW and Skip-Gram [12]. Ali et al. trained a Skip-
Gram Word2vec model to represent the semantic meaning of individual user-generated
text in social media related to the issues in the transportation industry. Word2vec model
can then be used to generate word embeddings, but its main limitation is its inability to
generate representations for unseen words.
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Fasttext is a model that learns the representations in the word and character level [13].
The FastText model will represent words as the sum of its corresponding n-gram representa-
tions. In this work [14], the authors used a FastText embedding model to transform formal
and informal words from social networking text into low-dimensional vector representa-
tions. Mikolov et al. trained high-quality word vector representations using FastText for
different languages including Finnish and English [15]. We use the Finnish and English pre-
trained models to generate the respective vector representations for every abstract field of
our study. The Fasttext vector representation of a document d has have the following form:

RFasttext (d) = (Ulr 020vey vm): 4)

where m is the size of the vector generated by the model and v is a value in the vector.

Devlin et al. proposed BERT [16], a bidirectional encoder representation model that
is based on the transformer architecture [17]. The previous models consume text in a
left-to-right fashion, but the BERT model trains on an unlabelled text on both left and right
context simultaneously. We use the following BERT pretrained models: bert-base-cased, bert-
base-multilingual-cased and bert-base-finnish-cased-v1. The bert-base-finnish-cased-v1 pretrained
model was introduced by Virtanen et al. [18]. The model was trained from scratch on
Finnish textual data and performed better than the bert-base-multilingual-cased model on
several natural language processing tasks. All the pretrained models that we selected
consist of 12 layers i.e., transformer blocks. Each layer forwards a single dimension vector
representation of size 768 to the next layer. The model we use can provide 12 different
representations but there are many approaches to sample a single representation vector [19].
In this work, we generate the vector representation by averaging the representation vectors
that we obtain from the 12 individual layers. Similar to the FastText representation, the
Bert-based vector representation of a document d is defined as:

Rpert(d) = (v1,02,...,07¢8), ®)

where v is a real numerical value in the vector.

5. Multi-Label Classification Methods

The approaches to the MLC problem can be categorized in two groups: Problem
transformation and algorithm adaptation. The methods can be combined with textual
feature extraction techniques to handle multi-label text classification.

The transformation of an MLC problem into a single-label classification consists of
predicting the probability of each label being assigned to an entity and then combining all
predictions into a single output. One of the first methods following this approach is the
binary relevance [20]. The method consists of building n binary classifications where 7 is
the total number of labels available. The single-label classification problems are solved
independently, and the outputs are merged. Read et al. pointed out that binary relevance
method learns the labels independent to each other and provided Classifier Chains method
which addressed the issue [21]. The Classifier Chains method randomly sorts the single-
label classifiers into a chain such that the output of a classifier is used as an input for the
next one in the chain. An alternative approach to the multi-label problem transformation
named Pairwise Comparison was introduced by Hiillermeier et al. [22]. This method
consists of generating L(L — 1) /2 pairs of labels where L is the total number of labels, and
sampling the original data such that each data sample is labelled with at least one of the
respective label pair. Tsuomakas et al. introduced the Label Powerset method [23]. This
method consists of generating the powerset of the available labels and run a classifier for
every element of the list. The size of the powerset equals 2! where L is the number of
available labels to learn. Through this approach, the total number of classifiers needed
would exponentially increase as the number of available labels increases. Given a relatively
small size dataset, some combinations in the powerset may not co-appear in any entity
making the respective classifier redundant.
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Algorithm adaptation approaches consists of modifying single-label classification
methods to support multiple label classification. Schapire et al. proposed two modi-
fications to of the original AdaBoost algorithm [24] by introducing AdaBoost.MH and
AdaBoost.MR [25]. Both modified algorithms train by generating sets of weak learners on
feature pairs and test their performance. AdaBoost.MH assigns weights to every learner’s
output based on their contribution to minimize the hamming distance between the pre-
dicted and actual labels. The AdaBoost.MR will instead optimize the learners based on
a ranking metrics. The conventional k’th Nearest Neighbours algorithm has also been
adapted for MLC task on previous work such as BRKNN [26] and IBLRML [27]. In this
work, we use an adaptation of the kNN algorithm that was introduced by Zhang et al.
named ML-kNN [28]. ML-kNN managed to outperform well known approaches at that
time, including the AdaBoost and SVM-based alternatives.

We defined two main objectives when selecting the classification models. The first
one is to identify easy to implement MLC models that would perform well given the
relatively small size of our dataset. The second objective consisted of identifying the
recently proposed methods which performed well on related tasks and implement them
on our task. The evaluation of the models provided us with quantitative proof to help
the decision-making process on selecting which method would meet the requirements for
deployment in the FSD system and similar classification tasks.

5.1. Naive Approach

Our implementation of the Naive approach was inspired by the manual labelling
process that took place at FSD. The clerk would inspect the target study and identify
relevant labels that could be used to describe it best. We defined the Naive approach to
recommend assigning specific labels if they appear in the textual content of the abstract of
the target study as is. This method is included as a baseline to contrast its performance
against the other methods.

5.2. Multi-Label k Nearest Neighbours

The abstract sections of the studies in our dataset are written in a short and concise
manner. This limits the performance of the Naive approach that we defined initially. The
second model that we employed is the ML-kNN classifier that was introduced by Zhang et
al.. This model is based on the kNN (k’th Nearest Neighbours) algorithm [28]. The feature
representation vectors that we defined in Section 4 can be used by this method to measure
the similarity between the studies’ abstracts. On the training phase, the train set studies
are grouped into several clusters K using the Euclidean distance metrics. The label vector
L of a study x in the training set is represented as L(x) = (1,0,...,1). These vectors are
used to count the number of neighbours that have each respective label assigned. The prior
and likelihood probabilities are then computed for each label. During the prediction phase,
the k’th nearest neighbours of the unseen study are identified. The statistical information
that was collected during the training phase is used to generate the predictions for the
new study by using the maximum a posteriori (MAP) principle. MAP estimates the
probabilities for the most probable labels to be assigned to a study based on the observed
label distribution from the k nearest neighbours combined with the prior information on
the label distribution over all the dataset.

5.3. Multi-Label Random Forest

Another alternative approach that can use the feature representation techniques that
we defined in Section 4 is based on the Random Forest (RF) model. The RF model is a
general-purpose machine learning algorithm that is comprised of decision trees [29].

The RF algorithm consists of extracting n equally sized sub-samples from the dataset
where 7 corresponds to the number of decision trees that comprise the model. On a random
forest, the decision tree models are constrained to select optimum splitting points out of a
random subset of features. Using these two constraints, RF imposes an inter-tree diversity,
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making it a robust machine learning model. The output of a random forest model is
obtained through averaging the individual outputs of all the 1 decision trees, a process
known as voting. Figure 5 provides a diagram of the prediction process that takes place
on the Random Forest algorithm. The RF algorithm has been modified and applied to the
MLC tasks [30,31]. Such models are not able to learn from any dependencies within the
labels and are expensive in terms of space and time during training and evaluation [29].

-

ANV SV
SRER &)
\\

Voting

|

Results

Figure 5. Random Forest model prediction pipeline.

5.4. X-BERT

Multiple deep learning-based MLC methods have been proposed. Such methods
use several neural network architectures to perform the classification task. The BP-MLL
was one of the first deep-learning-based method proposed by Zhang et al. [32]. This
approach consists of a fully connected neural network that is trained by minimizing the
pairwise ranking loss of the predicted output compared to the actual labels. Kurata et
al. proposed an MLC method that is based on the Convolutional Neural Network (CNN)
architecture [33]. Yang et al. introduced an application of the Recurrent Neural Network
(RNN) to assign the probabilities for every label available [34]. X-BERT is an MLC method,
proposed by Chang et al. [35]. The Naive, ML-kNN and ML-RF models that we presented
previously are not able to learn any dependencies within the labels. X-BERT tackles this
issue by combining the pretrained transformer language models with label clustering and,
a linear ranking algorithm. Initially, the labels are clustered based on their syntactic and
semantic meaning using ELMo [36], a deep learning word representation technique. The
pretrained models are fine-tuned to assign each study to a cluster of labels. A linear ranker
is then trained to order the labels within each cluster of studies by minimizing the error of
the output of the trained transformer model compared to the ground truth. The pretrained
models allowed us to apply such deep learning-based method to our dataset despite the
small size of the training set.

5.5. Parabel

The FSD archive is likely to grow gradually in the future. Increasing the number of
studies and labels available would result in an increased space and time complexity of the
approaches introduced above. These issues are addressed by a subfield of MLC known
as Extreme Multi-label Classification (XMC). One approach to the XMC problem consists
of organising labels as leaves on a tree structure. The probability of each leaf or label is
calculated by using the scores of nodes that are part of the path traveled to reach the specific
leaf from the root of the tree. The Hierarchical SoftMax model was one of the first proposed
approaches that was-based in the label tree structure and applied in the domain of natural
language processing [37]. Applications of label tree-based approaches to the XMC problem
such as DiSMEC [38] and SLICE [38] consist of training one linear classifier for each label.
These methods are accurate but computationally expensive during the training and the
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prediction phase. The method that we selected to train and evaluate on our dataset is
Parabel [4]. This approach addresses the computational issues of previous label tree-based
methods and performs more efficiently by partitioning the label space through a balanced
binary tree of labels. We combine this approach with the TF-IDF features extracted from
the textual abstract field to represent each study.

6. Experimental Evaluation

Our task targets at identifying the optimal methodology to implement an online
keyword recommendation tool for new studies listed at FSD. The factors motivating
the methodology selection process included performance, space and time complexity,
feasibility, and scalability of all the selected methods. We set up an experiment to quantify
each factor for the selected methods and compared the results.

6.1. Experimental Setup

The approaches that we evaluated consist of Naive approach, ML-kNN, ML-REF, X-
BERT, and PARABEL. The selected models were trained and evaluated with the respective
training and testing data that was obtained from the stratified random splitting technique,
for both English and Finnish languages.

The Naive approach that we introduced as a baseline model uses the BoW repre-
sentation to represent the textual information of the abstract field of every study. Our
implementation of this method consists of representing each study’s abstract with a BoW
feature vector. During the testing phase we assign a label to a test study if the specific
label’s respective counter in the abstract representation vector is larger than zero.

The ML-kNN model is defined with the parameter k. We tested a set of integer values
for this parameter ranging from 1 to square root of n where 1 is the size of the training
dataset. We tested these values of k for both language training sets combined with each
text representation method. For each value of k we measured the sum of absolute errors
at predicting the labels in the training set. The absolute error was lower at k = 3 and
increased proportionally as the value of k increased. We obtained the same results on all 8
language-to-feature-extraction-method combinations that we evaluated.

Similar to the ML-kNN evaluation, the ML-RF model performance was trained and
evaluated for each language’s training set combined with each text representation methods
that we used. The multi-label random forest model is configured through multiple param-
eters. Searching for the optimal set of parameters to initialize the model for our specific
problem, similar to what we did for the ML-kNN model, may result in the model learning
"too well” and overfitting. Ideally, another set of data would be used to validate the results
and assess the level of overfitting while optimizing the parameters. It was not feasible
to conduct such parameter optimization given the small size of our data. We initialized
the random forest model with the default values [29] for each the 8 language-to-feature-
extraction-method combinations that we evaluated.

We trained the X-BERT model using the pretrained bert-base-multilingual-uncased model
for the training datasets of each language [16]. The X-BERT algorithm includes a pre-
processing step of data, so we provided it with the raw abstract field and the labels of
the training data. We tested various initialization configurations for the model to identify
the optimal training settings. With a learning rate equal to le-5 and the training batch
size to 8 the model achieved better convergence rate with smaller error on training data,
for both languages. The model converged in two epochs due to the small size of our
training datasets.

The PARABEL model uses 4 parameters during the initialization. We found that
updating the default settings did not improve the performance of the model during the
training phase. We used the following values selected as default from the method’s authors:
number-of-trees = 3, maximum-number-of-paths-traversable-in-a-tree = 10, maximum-
number-of-labels-in-a-leaf-node = 100, misclassification-penalty-for-internal-and-leaf-node-
classifiers = 10. The TF-IDF features extracted from the abstract fields were used to represent
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each respective study in the training data. Two separate model instances were trained and
evaluated on the respective English and Finnish data.

6.2. Evaluation Metrics

The predicted labels obtained from an MLC model are used to implement a semi-
automatic labelling system for FSD. The model will predict a set of labels for a new study
and the responsible clerk will inspect the output and update it accordingly. An ideal
classification model would minimize the amount of input from the clerk. Our evaluation
metrics selection process was guided from our specific use case.

The methods were evaluated using the Precision, Recall, F1 score and the Normalized
Discounted Cumulative Gain denoted as nDCG@k where k € (1,2,3) [39].

Precision, Recall and F1 score measure the performance of a model at predicting all
the labels, ignoring their order. The ranking-based nDCG@k evaluation metric [39] is used
in the related MLC tasks to measure the label ranking performance of a model [3,40,41].

Table 2 provides an illustration of the confusion matrix mapping the predictions of a
classification model versus the ground truth.

Table 2. The classification confusion matrix.

Ground Truth
Positive(1) Negative(0)
Positive(1) True Positive False Positive
Predicted Negative(0) False Negative True Negative

The total true positives (TP), false positives (FP), false negatives (FN) and true nega-
tives (TN) values are counted for each prediction. These values are used to calculate the
precision and recall. Precision is the ratio of true positives among the positive predictions
and it is calculated as:

TP

Precision = TP+ EP (6)

The Recall score is calculated as the ratio of true positives among all the positive labels:

TP
TP+FN’ @
A classification model may have a high precision score by only predicting the positive
labels that the model is more confident on. Conversely, a model can achieve a high
recall score by predicting many labels as positive, with a lower confidence. F1 score is a
classification model evaluation metric that balances the precision and recall score using the
following equation:

Recall =

. Precision * Recall ®)
Precision + Recall”

The ranking-based nDCG@k evaluation metric [39] measures the label ranking per-
formance of a model [3,40,41]. Given our use case, labels with higher nDCG@k score are
considered more likely to be assigned to the respective study. Let the label vector L of an
entity x in the training set be represented as y = (1,0, ...,1) and the predicted values as
7=(0.7,0.1,...,0.9). The DCG@k score is computed as follows:

Flscore = 2

— Yi
DCG@k = Z(y) Togali £ 1)/ ©)

ic€ranky
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where the ranky () function returns the top k labels with the highest positive prediction
confidence. The ideal DCG@k score is calculated by ranking the labels according to the
ground truth and is defined as:

min(k[1yllo)

iDCG@k = — (10)
l; logo(i+1)
Finally, the normalized DCG score is obtained from the ratio of DCG@k and iDCG@k

score:
DCGek

(11)

6.3. Results

We evaluated the selected models combined with the feature extraction methods
on the English and Finnish testing datasets. Besides the Naive method which gives
its predictions in a vector of 0-1 integers, all the approaches we selected can provide a
probability distribution for the target labels i.e., Preds)(s) = [0.1,0.5,...,0.02], where M
is the model providing the predictions and s is the target study. Deciding whether to
assign a label to a study given the predicted probability distribution can be solved by
arbitrarily selecting a threshold value. The labels with the corresponding probability value
greater than or equal to the threshold are assigned to the target study. With a threshold
t = 0.3, the previous example would be converted to Predsp;(s) = [0,1,...,0]. Selecting the
threshold value results in a tradeoff between the precision and recall score. We tested 100
different threshold values spaced equally within the range [0, 1] for every combination of
our selected models with the feature representation methods and plot the precision-recall
curves, respectively.

In Figure 6, we provide the precision-recall curves that resulted by combining the
ML-kNN model with the feature extraction methods. The ML-kNN model’s predictions
are inferred from the k’th most similar studies. Our selected value of k = 3 explains the
fragmentation of the precision-recall curves for this model. The plots suggest that the
performance of the model on the English data is consistently higher, but the differences are
small. Combining the ML-kNN model with the TF-IDF features provides higher prediction
performance in terms of precision and recall. We plotted the precision-recall curve for each
combination of our feature extraction techniques with the ML-RF model in Figure 7. The
MLREF provides smoother precision-recall curves compared to the ML-kNN model. The
resulting plots obtained from evaluating ML-RF for studies on both languages’ test data
are similar.

We plot the precision-recall curves for the predictions obtained from X-BERT and
PARABEL in Figure 8. There are minor differences between the predictions obtained for
each language. The predictions of PARABEL method provide a higher recall on average
which explain the wider distribution of the area under the plot along the recall score axis.

For the Naive approach, we did not select any threshold since its prediction output
consists of a vector with 0 and 1 binary values. For the other methods we considered the
optimal threshold values which maximized the F1 score for each respective combination of
the models with the features. The highest obtained F1 score values are marked with a red
dot in each respective precision-recall curve presented in Figures 6-8.
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Figure 6. Precision-Recall curves obtained from evaluating the combination of the ML-kNN model

with the feature extraction methods. The red dots represent the point where the corresponding

maximum F1 score was measured for every plot.
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Figure 8. Precision-Recall curves obtained from the evaluation of X-BERT and Parabel methods
where the red dots represent the corresponding maximum F1 score for each model.

The calculated maximum F1 scores along the respective optimal precision and recall
values for each model are shown in Table 3. The Naive approach predictions resulted in
the smallest accuracy scores that we calculated. For the English metadata, the PARABEL
method achieved the highest accuracy according to the precision, recall and F1 score
metrics. The next highest performance was obtained from the combination of the ML-
RF method with the TF-IDF features according to our metrics. In the Finnish test data,
PARABEL was outperformed by a small margin from the combination of ML-RF model
with TE-IDF features. The ML-kNN method attained higher F1 score when combined with
the TF-IDF features. Besides the ML-RF method, all the other approaches that we tested
achieved smaller scores on the Finnish data. This is explained by the larger number of
labels available in the Finnish data compared to the English data. The models achieved
higher accuracy scores when combined with the FastText representations compared to their
respective combinations with BERT and Multi-BERT extracted features. In the Finnish data,
the models combined with BERT extracted features provided higher scores consistently
compared to their respective combinations with Multi-BERT features.

In Table 4, we report the evaluation results in terms of ranking accuracy. The PARABEL
algorithm outperformed the other methods based on the ranking nDCG scores for top 1,
3 and 5 labels, in English and Finnish data. X-BERT provided the second-best-ranking
scores for the English data but was outperformed by the combination of ML-RF with the
TF-IDF features in the Finnish data. The bert-base-multilingual-uncased pretrained model
that we used to initialize X-BERT has been trained in textual data from multiple languages
where English data were dominant [16]. For ML-kNN and ML-RF the combination with
language specific BERT features yielded better ranking scores than the combination with
Multi-BERT features.

Table 3. Accuracy scores obtained from the evaluation of the models in the English and Finnish
test datasets.

Features Precision Recall F1 Score

English metadata
Naive BoW 0.19 0.13 0.32
TE-IDF 0.31 0.57 0.4
VI T
Multi-BERT 0.29 0.47 0.36
TF-IDF 0.58 0.75 0.65
W R 0w e
Multi-BERT 0.46 0.71 0.56
X-BERT - 0.54 0.71 0.62

PARABEL TF-IDF 0.59 0.78 0.67
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Table 3. Cont.
Features Precision Recall F1 Score
Finnish metadata

Naive BoW 0.15 0.11 0.24
TF-IDF 0.28 0.56 0.38
FastText 0.27 0.49 0.35
ML-KNN BERT 0.27 0.50 0.35
Multi-BERT 0.25 0.44 0.32
TF-IDF 0.60 0.76 0.67
FastText 0.53 0.69 0.60
ML-RF BERT 0.49 0.69 0.58
Multi-BERT 0.43 0.68 0.52
X-BERT - 0.41 0.58 0.48
PARABEL TF-IDF 0.58 0.75 0.66

Table 4. Ranking scores obtained from the evaluation of the models in the English and Finnish test datasets.

Features nDCGe@1 nDCG@3 nDCG@5
English metadata

TF-IDF 0.65 0.60 0.58
w08 0 02

Multi-BERT 0.54 0.51 0.49

TF-IDF 0.77 0.74 0.71
YR

Multi-BERT 0.62 0.60 0.58
X-BERT - 0.79 0.75 0.72
PARABEL TF-IDF 0.83 0.78 0.76
Finnish metadata

TF-IDF 0.65 0.61 0.60
R T

Multi-BERT 0.54 0.52 0.50

TF-IDF 0.78 0.75 0.73
R 07 o 0

Multi-BERT 0.64 0.61 0.58
X-BERT - 0.69 0.64 0.60
PARABEL TF-IDF 0.80 0.76 0.74

7. Conclusions

In this work, we applied MLC techniques for textual data in the domain of social
sciences. Our dataset was collected from the Finnish Social Science Data Archive and
was comprised of 2968 research studies conducted in the domain of social sciences. We
extracted features from the abstract attribute of each study by using the following text
representations methods: the Bag of Words (BoW), TE-IDF term weighting and pretrained
word embeddings obtained from FastText and BERT models. The dataset was split into
train and test sets using an iterative stratified sampling method to maintain a similar label
distribution among each set.

We defined a Naive approach as a baseline MLC method and selected the following
MLC techniques to train and evaluate on our dataset: ML-kNN, ML-RF, X-BERT and
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PARABEL. We combined the selected models with the feature extraction techniques and
trained them on the training data. We measured the performance of the selected methods
on the test dataset by calculating the Precision, Recall and F1 score metrics of the respective
predictions. We calculated the nDCG score to measure the label ranking performance of
each method.

We deployed a Multi-label Random Forest classifier using the TF-IDF features in the
label recommending tool at FSD. We justified our decision by considering the evaluation
results, the size of our dataset and the system running the tool. According to the accuracy
scores that were measured during the evaluation process, the ML-RF combined with the
TE-IDF features achieved best performance on the Finnish metadata and was outperformed
by the PARABEL model on the English metadata by 1-3% difference based on the Precision,
Recall and F1 scores. The ranking scores provide similar evidence in the performance of
our selected method compared to the Parabel and X-BERT models. Albeit Parabel and
X-BERT are intended to perform better in the Extreme Multi-label Classification task, they
achieved top scores on our task.

The implementation of the ML-RF method was technically more feasible, given the
constraints set by the system running the study labelling tool. For our task, the marginal
accuracy difference between ML-RF and the other selected methods did not justify the
other implementation costs. These models may be considered when the number of studies
available at FSD archive increases, thus increasing the accuracy gain at predicting the set of
labels for new studies.
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