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Abstract: A significant problem in Massive Open Online Courses (MOOCs) is the high rate of
student dropout in these courses. An effective student dropout prediction model of MOOC courses
can identify the factors responsible and provide insight on how to initiate interventions to increase
student success in a MOOC. Different features and various approaches are available for the prediction
of student dropout in MOOC courses. In this paper, the data derived from a self-paced math course,
College Algebra and Problem Solving, offered on the MOOC platform Open edX partnering with
Arizona State University (ASU) from 2016 to 2020 is considered. This paper presents a model to
predict the dropout of students from a MOOC course given a set of features engineered from student
daily learning progress. The Random Forest Model technique in Machine Learning (ML) is used
in the prediction and is evaluated using validation metrics including accuracy, precision, recall,
F1-score, Area Under the Curve (AUC), and Receiver Operating Characteristic (ROC) curve. The
model developed can predict the dropout or continuation of students on any given day in the MOOC
course with an accuracy of 87.5%, AUC of 94.5%, precision of 88%, recall of 87.5%, and F1-score of
87.5%, respectively. The contributing features and interactions were explained using Shapely values
for the prediction of the model.

Keywords: prediction; dropout; MOOC; random forest; AUC; ROC; SHAP

1. Introduction

Massive Open Online Courses (MOOCs) are (typically) free, Web-based courses
available to learners globally and have the capacity to transform education by fostering
the accessibility and reach of education to large numbers of people [1]. They have gained
importance owing to their flexibility [2] and world-class educational resources [3]. ASUx®,
Coursera®, and Khan Academy® are some examples of popular MOOC providers. Since
2012, MOOC offerings have increased at top Universities [4]. Investigations undertaken
by such institutions indicate that the use of MOOCs attracts many participants towards
engagement in the space of courses offered due to the removal of financial, geographical,
and educational barriers [4].

However, despite the potential benefits of MOOCs, the rate of students who drop out
of courses has been typically very high [5–7]. Recent reports also show that the completion
rate in MOOCs is very low compared to the number of those enrolled in these courses [8];
hence, the prediction of the student’s dropout in MOOCs is essential [9]. Even though there
are many reports on prediction, there is no prediction based on the features in machine
learning (ML) using random forest (RF). The contribution of this paper is a prediction
model of students’ dropout in a MOOC for an entry-level science, technology, engineering,
and mathematics (STEM) course using RF. While this model may be improved, we believe
it is a valuable step to understand feature interaction and has applicability to similarly
framed STEM MOOCs.
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This paper is focused on predicting the dropout of students from MOOC with the
help of ML by the application of RF using features that have not been used before. Two
research questions are raised concerning this context:

RQ 1: What are the features of changes in learning progression that are associated with
students who drop out of a MOOC course?

RQ 2: Given a set of features of changes in the learning progression of a student on a day
of consideration, can we predict the day of dropout of a student in a MOOC course?

These research questions are of great significance because of the following reasons:

â Predicting when (the day) a student may drop out of the MOOC course helps in
designing a targeted intervention that can bring the student back into the course.

â Many self-paced courses use Knowledge Space Theory, and this research could be
extended to such courses.

â MOOC courses offering college credit, such as the one considered for this research,
where students drop out would be interested in addressing this problem.

2. Related Work

Educational Data Mining (EDM) is the application of data mining techniques to
educational data to obtain solutions to problems in the field of education [10]. EDM
engrosses the use of statistics, visualization, and machine learning techniques for the
assessment and evaluation of educational data [11]. Some of the EDM applications include
the formulation of e-learning systems [10,12], clustering educational data [13,14], and
making predictions of student performance [11,14–16].

Learning Analytics (LA) is an emerging field of research that intends to improve the
quality of education [17,18]. There are various techniques exploited by researchers in LA,
like Web analytics, artificial intelligence, and social network analysis [17]. The key feature
of LA is its capacity to evaluate actionable data in a more objective way [18,19]. Although
many works have been reported in the literature to analyze the learner performance in the
e-learning environment, it is still challenging to construct predictive models for MOOCs [4].

Dropout in MOOCs refers to the event of students failing to complete the course [20].
Even though there are a great deal of reports on the prediction of student dropout in
MOOC, it remains an important problem in this research area [9]. One of the reasons
for this problem remaining important despite a decade-plus of MOOC offerings is that
there has been no universal technique to predict student dropout that can be applied to
multiple courses.

2.1. Feature Engineering

Feature engineering is emerging as an important technique. The incorporation of
features, including test grades, within a course could prove to be a useful and effective
solution to the prediction problem in EDM [5].

Several studies aim at evaluating features from learners’ online activities [21–23], but
few papers also use demographic features [24,25]. Typically, the features considered for
analysis include study time, study duration, content type, and features derived from social
interactions, but the emergence of the online learning platform as a stable and interactive
platform transformed the features to assessment scores, assignment scores, clickstream
analysis, online forum interaction, and location for the analysis process [26]. The selection
and identification of significant features are some of the challenges for researchers due to
diversity in platforms including MOOCs.

The role of demographic features has been analyzed on student rate of retention [27–30].
For example, [31] examined approximately 120 variables, including educational background,
clickstream data, assessment scores, entry test scores, and learning personality data, to
analyze impact on student performance. Even though most of the studies focus on finding the
impact of key features on students’ performance, there are studies that concentrate on early
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prediction, intervention, learned support, and appropriate feedback to guide and prevent
student dropout [32–36].

Tal et al. [37] showed that students performing well demonstrate better engagement
compared to the students of poor performance. Clickstream features, including the online
engagement of students, are more accurate, objective, and comprehensive than self-reported
data in measuring student’s learning behavior [38]. Clickstream data are discreet and do
not require a student’s full attention, as they can be collected effortlessly without interfering
with students’ learning processes [39]. Although most of the studies try to investigate the
relationship between clickstream data and students’ online engagements (e.g., [40,41]),
very few studies have gone one step further to enable instructors to know how and when
to intercede with students at the optimal time [42–45].

2.2. Machine Learning

Creating predictive and flexible models that can adapt and/or adjust in different
learning environments is a significant challenge. Limitations include the presence of var-
ious course structures, different instructional designs, and diverse online platforms [46].
Machine Learning (ML) is a proficient technique that can be applied to Learning Analytics
with the ability to discover hidden patterns of student interaction in MOOCs with advan-
tages over conventional forms of statistical analysis [4,17,19,47,48]. ML algorithms, such
as K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Trees (DT), RF,
Deep Learning (DL), and Recurrent Neural Network (RNN), have been applied to the
prediction of students learning performance at the end of the course [49].

A recent prediction of student dropout in online courses using a time-series clus-
tering approach was developed with better accuracy than the conventional aggregation
method [50]. Gokhan et al. [51] developed another early warning system that employed
students’ eBook reading data to predict students’ performance for academic failure. Among
them, the best predictive model was selected based on the accuracy/Kappa metric [52,53],
and the RF, J48, and Naïve Bayes (NB) showed better performance compared to others.

Students who have a high possibility of failure were analyzed by four ML algorithms
for the early identification of their performance. Among them, the Support Vector Machine
(SVM) was the most effective algorithm in the earlier identification of students. The
accuracy was found to be 83%. Moreover, the preprocessing of data was found to be
important in increasing the performance of ML algorithms [54]. Earlier studies describe
the development of predictive models, but many challenges limit their application to a
specific learning platform. Creating predictive and flexible models that can adapt and/or
adjust in the different learning environment is a significant challenge. The limitations
were the presence of various course structures, different instructional designs, and diverse
online platforms [46].

Recently, researchers have used both statistical and predictive models to explore in
a large repository, including formal and informal educational settings [47,48]. Alberto
et al. [55] reported that the multi-view genetic programming approach to develop clas-
sification rules for the analysis of students learning behavior to predict their academic
performance and trigger alerts at the optimal time to encourage at-risk students to im-
prove their study performance. Logistic regression was also employed to identify students’
dropout in an e-learning course [56]. This technique showed a higher performance score in
validation including precision, recall, specificity, and accuracy than feed-forward neural
network (FFNN), Support Vector Machine (SVM), a system for educational data min-
ing (SEDM), and Probabilistic Ensemble Simplified Fuzzy Adaptive Resonance Theory
Mapping (PESFAM) techniques.

Knowledge discovery in databases (KDD) was employed to mine information that
may enable teachers in finding the interaction of students with e-learning systems [12].
A Decision Tree (DT) algorithm was used [57] to establish significant features that assist
MOOC learners and designers in developing course content, course design, and delivery.
Various data mining techniques were applied to three MOOC datasets to evaluate the
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in-course behavior of the online students. The authors claim that the models used could be
beneficial in the prediction of significant features to lower the attrition rate.

These studies help in the prediction of student performance, including dropout rate;
however, none of these studies predict students at-risk of dropout at a different stage of a
course. Further, there is no study on the prediction of the dropout of students using RF
with the features identified in this research. Hence, we report the RF model with features
including average, standard deviation, variance, skew, kurtosis, moving average, overall
trajectory, and final trajectory.

3. Data Description and Methodology
3.1. Data Description

The data from the self-paced math course College Algebra and Problem Solving
offered on the MOOC platform Open edX offered by EdPlus at Arizona State University
(ASU) from 2016 to 2020 was considered. Restrictions apply to the availability of these data.
Data were obtained from EdPlus and are available from the authors with the permission
of EdPlus. Additionally, this data cannot be made publicly available because it is private
student data protected under the Family Educational and Privacy Act (FERPA). The work
in this study is covered under ASU Knowledge Enterprise Development IRB titled Learner
Effects in ALEKS, STUDY00007974.

The student demographic data were analyzed to get an idea of the background of the
students, and such a description helps us in understanding the impact of this research. The
distribution of the students in this course is shown in Table 1.

Table 1. Distribution of Students in the Course.

Class Number of Students Percentage

Complete 396 12.50%
Dropout 2776 87.50%

From Table 1, we see that out of the 3172 students in the course, only 396 students
completed the course, while 2776 students dropped out of the course. This problem
of dropout is seen in this course, and research has shown that it is very prevalent in
MOOCs. We also looked at the demographic distribution by age, gender, and ethnicity (see
Appendix A), and while we found primarily white, more male than female, and mostly
20 year-old learners, we did not detect any bias based on these moderators.

Our first prediction model attempted to apply a clustering approach utilizing the
process suggested by [58]. Feature identification followed the work of [59], who performed
a k-means clustering on a small EDM dataset to identify detrimental behavior to learning,
which helps discover the relationship between behavioral interventions and learners’
requirements. K-means clustering was then performed using Lloyd’s algorithm [60]. This
initial attempt yielded poor accuracy (22%) and led us to examine our model and what
was occurring. The key insight was realizing the temporal aspect of rate-of-change in
learning as the key predictor instead of simply clustering based on whether the student
did indeed drop out of the course. We re-evaluated the data and applied a Random Forest
(RF) classifier, as described next.

3.2. Methodology

The methodology is organized into three parts data handling, machine learning
modeling, and model evaluation. The flow of the methods is explained in Figure 1.
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Figure 1. Methodology. The three components are data handling, machine learning modeling, and
model evaluation. The steps within each component are explained in this section.

3.2.1. Data Handling

Data handling is done by the standard process of KDD [61]. The data handling involves
three steps: data extraction, data preprocessing, and data cleaning and feature engineering.

3.2.2. Data Extraction

Data extraction involves extracting data from the data source by using data mining
methods. The ALEKS platform has an API, which is used to access the data in the SQL
Database. The data selection method was used to select query on the data source [62] from
the SQL database. Once the data selection is performed, the queried table is stored as a
comma-separated values (CSV) file. Jupyter notebook was used to access CSV file and
processed by the python programming language.

The total number of participants in this course is 3172, and each has some level of
activity after their Initial Knowledge Check (IKC). The IKC is a proficiency test conducted
at the beginning of the course for all students to assess their current knowledge. Moreover,
the ALEKS system adaptively designs the students’ knowledge domain based on the IKC
and progresses from their existing knowledge space.

3.2.3. Data Preprocessing and Data Cleaning

Data preprocessing is the process of extracting data needed for the machine learning
model from the target data. The features of change in student learning that are associated
with student dropout were found and used to predict this event. The extracted dataset
has data as a time series with no primary keys. The grouping was performed based on
student identity, which gives structure to the raw dataset [62]. Once grouped, the learning
progression data for each student from the target data can be extracted and stored as a
table called the preprocessed data.

A student in ALEKS [63,64] goes through a knowledge check after every topic or
every 120 min in the platform, based on whichever event happens first. If they clear the
knowledge check, then they are recorded as mastering the topics assessed, and if they
do not clear, then they are recorded as not mastering topics (even if they mastered them
before). These topics mastered serve as the measure of progress to a student, and when they
cover 90% of the topics in the course, they are considered to have completed the course.
This research focuses on predicting the dropout occurrence, so we considered the topics
mastered by these 2776 students. The data table holds a student and their entire learning
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information in one row. Here, we took the entire learning data and separate them by day.
The progress (%) in assessment_report is the topics the student has mastered concerning
the total 383 topics in this College Algebra and Problem-Solving course. The time_spent in
timeandtopic_report is the time spent by the student on that day. We had to group the three
datasets by Student ID and spread the information of each day out into multiple columns.
This results in a sparse but fine-grained dataset. The complete dataset has 521 attribute
columns, with each row holding the whole learning information of a student. The attribute
that represents learning progression is the topics_mastered. In this complete dataset, we
recorded the measurement of this attribute for each day. This attribute is a cumulative
score, and Figure 2 (left). shows the rate of learning progression of each student. The
changes in the learning progression of a student are the dataset from which we obtained
multiple features to be used in the machine learning model. Figure 2 (right) visualizes the
rate of changes in learning of each student.
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The predictive modeling employed in this problem is sequence classification [65],
depicted in Figure 3. The data needed for this experiment is derived from the learning
progression data, which is the topics_mastered in timeandtopic_report.
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Figure 3. The Data Preprocessing Method: Sequence Classification.

Here, each x is the sequence of topics mastered by the student from the start of the
course to the day in consideration, and each y is the label for that sequence, implying if the
student continued in the course or dropped out of the course on that day. This gives the
preprocessed data needed for the ML model. Most of the attributes of the preprocessed
data are of different data types, and so it is cleaned to be of the same numerical data type
for modeling [61].
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3.2.4. Feature Engineering

The dataset is transformed into a feature table where each row depicts the rate of
student learning on any given day from the start of the course. Further, a target column is
created in the table, which depicts the label of the learning of the student on that row. The
target column was labeled as a “1” if that row of learning led to a student dropout on a
particular day and labeled as “0” if that student had a day of learning after that day, which
means that the student continued in the course.

From the cleaned data, the topics mastered on each day that the student learns during
a course is represented by the array of topics_mastered. The rate of student learning on a
particular day is represented by a set of statistical features from the array. The most common
statistical features employed are the average, standard deviation, variance, skewness, and
kurtosis [66,67]. The graph of student learning expressed as topic mastered over time
is shown in Figure 4. We can see that the curve is very rough, so average alone cannot
aptly represent the rate of learning. Hence, the average calculated in windows through
the time series was obtained. This list of averages along with the average can give an
overview of the rate of learning and is called the moving average, and the normalized
value of this list is used as a feature. Three moving averages with different window sizes,
along with the average, were considered. This gives four features to represent the rate
of changes in learning. Since the curve in Figure 4 is very rough, four features, namely
skew, standard deviation, variance, and kurtosis, are used to represent this roughness. The
other features used in the analysis are topics_mastered, overall trajectory, and final trajectory.
The relationship between the first and the last day in distribution is calculated as overall
trajectory The relationship between the last two days in distribution is calculated as the
final trajectory.
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3.3. Machine Learning Modeling

Once the feature table is created, it holds the data for the machine learning model. The
ML modeling uses the given input features to perform the prediction of dropout of MOOC
students. The ML modeling has three steps:

1. Feature selection and model fitting,
2. Prediction model training, and
3. Prediction model testing.

3.3.1. Feature Selection and Model Fitting

In this step, the features generated were evaluated and validated. To predict the
student learning outcomes in MOOC, Exploratory Data Analysis (EDA) technique, called
the correlation matrix method, was used to validate the features [16]. This in turn would
avoid data leakage in the ML model and increase the success of the modeling experiment.
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Once the data is balanced, the sci-kit learn tool was used to split these vectors into the
training features, training labels, testing features, and testing labels. From the generated
data, 75% was used for training the model, while the remaining 25% was used to test
the model.

3.3.2. Prediction Model Training

The Random Forest (RF) ensemble learning approach was chosen for this method due
to its robustness to outlier data and the ability to inspect the model for insights into the
most powerful discriminating variables. These aspects support our longer-term research
goal to take these insights and target interventions at these variables.

The most used ML models in EDM include XGBoost, RF, and SVM [53]. Among
the ML models in EDM, RF performs better [16,53]. The accuracy of the RF model is as
good as or sometimes even better than most of the ML models [68,69]. RF is more robust
to outliers and noise. The internal estimates of error, strength, correlation, and variable
importance are very useful in this research. The classification trees in RF make use of Gini
impurity to reduce the errors in prediction by the decision trees. RF works to reduce this
value for each tree, thereby reducing overfitting and data bias errors. This makes RF very
robust when predicting the noisy dataset with many outliers. The dataset in this research,
although it goes through proper feature engineering and feature selection processes, still
holds a great deal of outliers, and hence, random forest is better suited for this research.
Gini impurity, since attached to each feature, provides individual predictor importance
values. RF methodology is highly suitable for use in classification problems when the goal
of the methodology is to produce an accurate classifier and to provide insight regarding
the discriminative ability of individual variables [70]. This research focuses on the feature
engineering approach and its contribution, hence making RF the prime choice for the
machine learning model. Here, the RF model was trained with the training data and was
ready to predict whether the student will drop out of the course or continue the course
when features of learning of a student in MOOC were input to the model.

3.3.3. Prediction Model Testing

Once the model was trained, we performed experiments to test the model for its
performance and see if the model could predict the correct outcome for a given set of
features. In this study, we performed five experiments to test the performance of the model
with different sets of inputs. The experiments were set up in a way to test the model in
both the edge case scenarios as well as normal case scenarios. Further, these experiments
check whether the model performs expectedly. The details of these five experiments are
explained in the Experimental Setup section, and the results from these experiments are
described in the Model Evaluation section.

3.4. Model Evaluation

There are three main processes of model evaluation employed in this research. They
are model validation, feature importance, and SHAP plot.

3.4.1. Model Validation

Different methods have been reported to validate the models, including direct correla-
tion, Cohens Kappa, and Accuracy [71], but accuracy is not recommended for evaluating
the model because it depends on the base rates of different classes [72]. It is important to
calculate the missed calculations to measure the sensitivity of the classifier using recall.
Moreover, for the evaluation of a prediction model, a combined method, such as F1-score,
which considers both true and false classification results based on precision and recall, is
the better metric. We also performed the model validation using these four metrics [73].

Even though accuracy alone cannot be used to validate a model, it portrays the
performance of the model, therefore the accuracy of the model was also calculated. The
Receiver Operating Characteristic (ROC) curve is a plot to show the predictive power of
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binary classifier models [74]. This curve is obtained by plotting the True-Positive Rate to the
False-Positive Rate. With this curve, we can also see the Area Under the Curve. The Area
Under the Curve (AUC) is the other validation method employed in evaluating a prediction
model. A value of at least 0.7 for these metrics is accepted in the research community.

3.4.2. Feature Importance

To predict retention of students in MOOCs, the feature importance method was used as
an iterative process to identify important features for the prediction model RF classifier [75].
The success of this evaluation method motivated its use in the feature selection performed
in the research.

This evaluation method is a visualization technique used to analyze the features used
in the model. Every model has a coefficient score attached to a feature after its training
by calculating the Gini impurity. The feature with the highest coefficient value associated
with the model is the most important contributor to the prediction. All scikit-learn models
generate a coefficient summary, which is used to plot a histogram plot in this research
to visualize the importance of the features used. This can be an iterative process, where
the more important feature can be selected over the less important feature if there is a
dependency established between them.

3.4.3. SHAP Plot

SHAP plots are visualizations used to identify the most important contributor to the
model’s predictions. SHAP is a relatively new visualization technique used to evaluate
the features used in the machine learning model for individual predictions. It plays an
important role in visualizing the contribution of features towards the prediction by the
model [76]. These plots show the feature as they contribute to either the positive or the
negative class in the prediction and how the model is moved step by step by the features
towards its predictions.

4. Results and Discussions
4.1. Data Extraction

Among the 3172 students, only 396 students completed this course, while the remain-
ing 2776 students did not due to some reason. This shows that only 12.5% completed the
course successfully, and 87.5% of students in this course dropped out.

The data is in 4 different reports:

1. class_report,
2. assessment_report
3. progress_report
4. timeandtopic_report

The class_report is the highest-level data that was not used for the analysis, while
assessment_report, progress_report, and timeandtopic_report were grouped with student ID as
the key. The attributes considered from the datasets are tabulated in Table 2.

Table 2. Attributes in Dataset.

Attributes Description

Student ID Student primary key
time_and_topics the time taken and the topics mastered for a day
topics_mastered the topics mastered for a day
topics_practiced the topics practiced by the student for a day

time_spent the time spent by the student for a day

4.2. Feature Engineering

Eleven features were considered to represent the rate of student learning in the MOOC
course till the day of consideration for analysis, as shown in Table 3.
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Table 3. Features Engineered in this Research.

Average Kurtosis Overall Trajectory

Standard Deviation Moving average with window size 2 Final Trajectory
Variance Moving average with window size 3 Days in consideration

Skew Moving average with window size 4

These 11 features were found to make the learning features of a student on a day. A
small sample of the final feature table is shown in Table 4.

Table 4. A Sample Feature Table.

Mov Avg 2 Mov Avg 3 Mov Avg 4 Skew Overall
Trajectory

Final
Trajectory Average Standard

Deviation Variance Kurtosis Day

0 0 0 0 0 0 0 0 0 −3 1
0 0 0 0 1.5707 1.5707 0 0 0 −3 2
2 1.3333 0 0.707 1.5707 1.5707 1.3333 1.8856 3.5555 −1.5 3

3.6055 2.4037 1.5 0.493 1.5707 0.4636 1.5 1.6583 2.75 −1.3719 4
5.0249 4.3843 3.1324 0.152 1.5707 1.1902 2.2 2.0396 4.16 −1.6268 5

4.3. Feature Selection and Model Fitting

The correlation between the 11 features is established, as shown in Figure 5. Three
groups of features are very dependent on each other. The three groups of features are (1)
moving averages; (2) the average, standard deviation, and variance; and (3) kurtosis and
skew. The dependency value between kurtosis and day features falls in the range of 0.8
and above. Hence, to remove this dependency, a trial run on an RF ML model was run, and
the feature importance plot for this set of features was obtained and shown in Figure 5.
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From Figure 6, the most important feature in each of the three dependent feature
groups was selected. The features moving average with window size 2, skew, and average
was selected, and other features were removed from the group. Once again, the correlation
between the features after the feature selection was tried, and the correlation matrix
obtained after feature selection is shown in Figure 7.
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The target spread is shown in Table 5. From the correlation matrix obtained after the
feature selection, there is no correlation between two features with more than 0.5, and all
the features are completely independent of the target variables.

Table 5. Target Values.

Target Value Num Data Points

0 39,529
1 2776

The sci-kit learn tool was now used to split these vectors into the training features,
training labels, testing features, and testing labels. From this, 75% of the data was used for
training the model, and the remaining 25% of the data was used to test the model.

Here, “0” represents the continue label, while “1” represents the dropout label, as
explained in the feature engineering section. The table shows an imbalance in data points
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where 93.5% of the data points are for continue, while 6.5% of the data points are for
dropout. In this research, we also employed SMOTE to overcome this imbalance [77,78].
The balance in the data after the application of SMOTE is shown in Table 6.

Table 6. Target values after SMOTE.

Target Value Number of Data Points

0 39,529
1 39,529

4.4. Model Training

The RF model was trained from scikit-learn with the specifications shown in Table 7.

Table 7. Random Forest Model Specifications.

Arguments Value Specification

n_estimators 1000 Number of trees
max_features auto sqrt (number of features)
random_state 42 Control the randomness

criterion Gini Gini impurity

This research uses 1000 decision trees, as the number of trees was directly proportional
to the model performance, and the time taken to train more than 1000 trees is too long
that it becomes impractical in application. The random state is set to 42 so that when
the randomness is fixed, the research can be replicated with the same results, and this
is the random state used throughout the experiment. The Gini impurity criterion was
used to obtain the feature importance plot, as shown in Figure 6 in the above section. The
maximum number of features that the model considers is set as “auto”, which is a fixed
value of the square root of the number of features used in the model. This is also fixed to be
able to reproduce the results obtained from this experiment. Once the model was trained
with these specifications shown in Table 5, model testing was performed.

4.5. Model Testing

The model was tested with the testing data to validate the overall performance of the
model. The spread of the test data point for this experiment can be seen in Table 8.

Table 8. Testing Data Point Spread.

Target Value Number of Data Points

0 9883
1 9882

The results show the overall performance of the model as well as the feasibility of this
model to predict the dropout of a student.

4.6. Model Validation

This experiment involved testing the model with the entire testing data separated from
the training data before training the model. We passed the input testing data to the model
and received its predictions for this set of input. Then, we checked the output testing data
values with the model’s prediction values and used them to calculate the model validation
metrics. The results of the model validation are shown in Table 9.
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Table 9. The Results of the Model Validation.

Class Precision Recall F1-Score Support

0 0.91 0.84 0.87 9883
1 0.85 0.91 0.88 9882

The accuracy and AUC of the prediction model are:

â Accuracy = 0.87665
â AUC = 0.94654

The AUC is plotted along with the line representing the True-Positive Rate of 0.5 and
the False-Positive Rate of 0.5 to show the performance of the model, and this method of
validation is called the ROC curve analysis. Figure 8 shows the result of the ROC curve
analysis performed for the model trained and tested in this research, and the AUC is far
away from the 0.5 line, which means that the model covered the dataset well and can
predict the student dropout or continue for most cases in the dataset.
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The variation of accuracy, precision, recall, and F1-score of the model for different
days are shown in Figure 9. It can be observed that the accuracy of the model is consistently
above 70% and mostly above 80%, the precision of the model is always above 70% and
consistently above 80% and mostly above 90%, the recall of the model is always above
80% and consistently above 90%, and the F1-score of the model is always above 70% and
consistently above 80% and mostly above 90%, respectively.
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These results show that the model performs well for any given set of data, as the
dataset has less data as the number of days increases, but this is not reflected on the
performance of the model, showing the robustness of the model. However, even with these
results, the model cannot be explained. Hence, this research uses the SHAP visualizations
to explain the random forest model trained and tested in this research.

4.7. SHAP Visualizations

This research uses the SHAP python library to visualize the impact of the features
used in the prediction model. When the trained model is given to the SHAP library with
the testing input features, it gives the following Figure 10. From Figure 10, we can obtain
the following inferences:

â High values of average topics mastered by the students point towards a continuation
of the course, while low values of average topics mastered by the students point
towards dropout from the course.

â High values of final trajectory in topics mastered by the students point towards a
continuation of the course, while low values of final trajectory in topics mastered by
the students point towards dropout from the course.

â Low values of skew in topics mastered by the students point towards a continuation
of the course, while high values of skew in topics mastered by the students point
towards dropout from the course.

â Low values of moving average of window size 2 in topics mastered by the students
point towards a continuation of the course, while high values of moving average
of window size 2 in topics mastered by the students point towards dropout from
the course.
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Figure 10. The SHAP Summary Plot for this Prediction Model.

To better understand the feature interactions, we present the SHAP force plots for
two different data point examples, shown below. It can help visualize how these features
interact with each other while the model arrives at its prediction. We input the data as
shown in Table 10.

Table 10. Input Values for SHAP Force Plot 1.

Features Values

moving_average 2 0.7675
skew 0.7071

overall trajectory 0
final trajectory 1.5707

average 0.5117
day 3

For the input in the above table, the model correctly predicted dropout, class 1. The
SHAP force plot shown in Figure 11 helps visualize the feature interactions that lead to
this prediction.
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Figure 11. SHAP Force plot 1.

In Figure 11, we can see the moving_average 2, average, and skew pushing the model
to predict 1, while the overall trajectory and final trajectory push the model to predict 0.
Because the features are aptly weighted, the model arrives at its correct prediction.

Consider another set of inputs, shown in Table 11.

Table 11. Input Values for SHAP Force Plot 2.

Features Values

moving_average 2 35.2411
skew 0.3551

overall trajectory 0.0182
final trajectory 1.4272

average 5.7054
day 30



Information 2021, 12, 476 16 of 21

For the input in the above table, the model correctly predicts dropout, class 1. The
SHAP force plot shown in Figure 12 helps visualizes the feature interactions that lead to
this prediction.
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In Figure 12, we observe the moving_average 2, final trajectory, and overall trajectory
pushing the model to predict 1, while skew and average push the model to predict 0.

5. Discussion

The results from the model validation and testing show that the model can predict
the student dropout accurately given the feature set of any rate of changes in the student
learning. These results answer the research questions put forward by this research:

RQ 1: What are the features of changes in learning progression that are associated with
students who drop out of a MOOC course?

The SHAP visualizations and the feature importance from RF point out the features and
their impact on the prediction made by the ML model. The results show that lower average
values, lower final trajectory values, higher skew values, and higher values of moving
average with a window size of two days are features that are associated with student
dropouts, and these features help us in predicting this occurrence.

RQ 2: Given a set of features of changes in the learning progression of a student on a day
of consideration, can we predict the day of dropout of a student in a MOOC course?

The results from validating the model show that it is possible to predict the student
dropout given a set of features of changes in student learning. The results from validating
the model show that it is possible to predict the student dropout with an accuracy of
87.6% given the set of features of changes in the student learning used in this research, and
this is comparable with the previously reported accuracies of 81.8% [53], 86.5% [79], and
87.6% [68]. This shows that if the learning progression data are available, the features of
changes in the student learning should be considered to predict the student dropout. It is
observed from the SHAP visualizations that lower average values, lower final trajectory
values, higher skew values, and higher values of moving average with a window size of
two days are traits of a student on the day they drop out when compared to the days the
student continues in the course.

A key insight of this research is the use of learner progression through frequent
micro-assessments. While many studies use time-oriented features, these are usually
tied to learner engagement through clickstream data, as described in the Related Work
section. This work considers the trajectory, or pattern of student learning. The closest
similar work we have seen is from [80], who examine the greater impact of short-term
“near in time” events compared to long-term events on dropout forecasts using a time-
controlled Long-Short-Term Memory neural network (E-LSTM). The authors claimed a 97%
accuracy result of this model, which is a strong result. However, this result is still based on
engagement data and not assessment data. While it is useful to know if learner behaviors
can be monitored to predict dropout, it is hardly surprising that greater engagement leads
to greater success. In addition, learner behavior models have an implicit closed-world
assumption when it comes to learner engagement—namely that the system can track all
the engagement events. Yet, we know this is not possible; it does not account for self-study
outside of the MOOC platform or for learning styles of students that are less outgoing
and therefore do not participate in online discussion forums and the like. Our approach
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focuses on progression data, with the recency of successful completion of learning gates
(the moving average) as a strong predictor of continued success (and no dropout).

6. Conclusions

Learning analytics has earned considerable attention in EDM and in particular the
prediction of student dropout using ML application. Although learner enrollment in
MOOCs has been increasing progressively, low completion rates remain a major problem.
The prediction of the dropout of learners will help educational administrators evaluate
and comprehend the learning activities of learners through the different interactions of the
learners. It will also enable educational administrators to develop approaches to promote
and deliver learner remediation. The results from this research demonstrate that we can
provide reliable prediction based on six easily obtainable features via an ML approach
using RF for prediction, which this research hopes could be easily and reliably implemented
across various courses from different domains. As discussed in the results section, this
research is successful in predicting the student dropout from MOOC given the set of
features used in this research, and to the best of our knowledge, there is no such stable and
accurate predictive methodology.

The dataset used in this research is derived from the self-paced math course College
Algebra and Problem Solving offered on the MOOC platform Open edX offered by Arizona
State University (ASU). It consists of students taking this course starting from March 2016
to March 2020. The dataset is analyzed using RF; the feature and modeling evaluation is
done by Precision, Recall, F1-score, AUC, and ROC curve; and the model is explained by
SHAP. This model can predict the student dropout at an acceptable standard in the research
community with an accuracy of 87.6%, precision of 85%, recall of 91% and F1-score of 88%,
and an AUC of 94.6%.

This work, like the works discussed in the Related Work section, focuses on machine
learning approaches to predicting MOOC dropout and success. As Ahmed et al. [81]
recently pointed out in their reflections on the last decade of the plethora of MOOC
research, few MOOCs employ formative feedback during the learning progression to
improve effort and achievement. Machine learning models are only useful if applied in
context to encourage higher retention and success rates. For future work, in addition to
continued refinement of this model and potentially generalizing beyond the STEM course
application we have developed this model on, we are also interested in using the model
to design interventions. The power of a model based on learner progression is that it
provides key insights into when a learner may be at risk of dropping out, so a just-in-time
(JIT) intervention may be designed to improve retention and success. We believe powerful
Learning Analytics models coupled with causal approaches, such as that of [82], will result
in specific, targeted JIT interventions personalized to the context of individual learners.
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Appendix A

Table A1. Distribution of Students Across Different Age Groups.

Ranges of Ages Number of Students Success Dropout

0–9 1 0 1
10–19 364 101 263
20–29 1703 147 1556
30–39 737 50 687
40–49 231 14 217
50–59 91 7 84
60–69 20 3 18
≥70 0 0 0

Table A2. Distribution of Students Across Different Gender Groups.

Gender Number of Students Success Dropout

Female 1502 102 1400
Male 1204 138 1066

Table A3. Distribution of Students Across Different Ethnic Groups.

Ethnicity Number of Students Success Dropout

White 1155 114 1041
Black 335 17 318

Hispanic, White 241 27 214
Hispanic 237 18 219

Asian 131 21 110
Black, White 41 3 38

Black, Hispanic 23 0 23
American I 20 1 19

Asian, White 18 3 15
American I, White 13 1 12

Asian, Black 11 1 10
American I, Hispanic 11 0 11

Black, Hispanic, White 10 1 9
Haw/Pac 10 0 10

American I, Hispanic,
White 8 0 8

Asian, Haw/Pac 6 0 6
Haw/Pac, Hispanic 6 0 6

Asian, Hispanic, White 5 0 5
Asian, Hispanic 5 2 3
Haw/Pac, White 4 0 4
American I, Black 3 0 3

Asian, Haw/Pac, White 3 0 3
Asian, Haw/Pac, Hispanic 2 0 2
American I, Black, White 2 0 2
Asian, Black, Haw/Pac,

Hispanic 1 0 1

American I, Black, Hispanic 1 0 1
American I, Asian, Black,

White 1 0 1

Asian, Black, Hispanic 1 0 1
Black, Haw/Pac 1 0 1

Haw/Pac, Hispanic, White 1 0 1
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