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Abstract: A growing body of research in retinal imaging is recently considering vascular tortuosity
measures or indexes, with definitions and methods mostly derived from cardiovascular research.
However, retinal microvasculature has its own peculiarities that must be considered in order to
produce reliable measurements. This study analyzed and compared various derived metrics (e.g.,
TI, TI_avg, TI*CV) across four existing computational workflows. Specifically, the implementation
of the models on two critical OCT images highlighted main pitfalls of the methods, which may fail
in reliably differentiating a highly tortuous image from a normal one. A tentative, encouraging
approach to mitigate the issue on the same OCT exemplificative images is described in the paper,
based on the suggested index TI*CV.
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1. Introduction

Since the introduction of Optical Coherence Tomography as a retinal morphofunctional
investigational technique, an exceptional amount of diagnostic information is overwhelm-
ing clinicians, and this trend is constantly increasing with the evolution of the technology
and the features of the associated software [1]. Researchers detected at least a couple of
relevant weaknesses within this trend:

1. A certain number of studies recognized that this bulk of clinical information still
needs to be “standardized” both for the nomenclature used and for the way to report
information [2–5];

2. The reliability of certain measurements needs to be carefully assessed, especially in
view of artificial intelligence applications [6–8].

As a paradigm of these weaknesses, retinal vascular tortuosity is one of the features
that are recently gaining increasing attention.

Vascular tortuosity is a striking physiological feature that has been studied since
Leonardo Da Vinci ‘s works [9–11]. This 16th century scientist was the first to observe that
superficial vessels of an elderly’s arm were more tortuous than the corresponding vessels
of a young individual. Since then, vascular tortuosity has been a subject of study in a wide
range of body districts; this phenomenon, in fact, affects both small size vessels, such as
distal finger capillaries and retinal arteries, and middle and large size arteries, such as the
aorta and the coronary, cerebrovascular or iliac vessels.

While mild vessel tortuosity is usually asymptomatic, increased or severe vessel
tortuosity can lead to ischemic manifestations in the affected organ. Clinical studies have
linked vessel tortuosity to aging, atherosclerosis, hypertension, genetic defects and diabetes
mellitus [12–16].

The mechanism of progression, if any, is still poorly understood.
Retinal vascular tortuosity is getting in researchers focus both for its retinal conse-

quences and the suggestive correlations with systemic diseases: several papers deal with
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retinal tortuosity in people with diabetes [17–19] even without diabetic retinopathy [20],
carotid artery stenosis [21], cognitive impairment, Alzheimer’s disease [22–24], increased
cardiovascular risk [25,26], prematurity [27], hypertensive and diabetic retinopathy, macu-
lar degeneration, acute stroke, neovascular glaucoma, as well as coronavirus disease [28,29].

Retinal tortuosity can be described as the presence of curliness in vessels; however,
there is not a standardized agreement on how to clinically define a tortuous retina: vessel
tortuosity is mostly assessed using the clinician’s experience in identifying variations in
vessel normal course, mainly highlighting dissimilarities with respect to normal healthy
vessels. This subjective assessment of vessel tortuosity can lead to a high inter-expert
variability, and has been a promoting factor for several studies aimed at delivering more
formal mathematical definitions of tortuosity [30–32].

In the Artificial Intelligence and Big Data Era, some questions may arise observing
the diverse applications of more or less established computer-based analysis techniques,
together with the need to critically review their application, especially in the context of
scientific repeatability of results [33]. This is a relevant topic, especially in those cases where
technological advancements render complex tools, whose limitations are less evident than
their capabilities, available to a broader and broader number of researchers.

Main aim of this paper is to discuss some criticalities that frequently used tortuosity
computation workflows may encounter in analyzing retinal tortuosity. In particular, Au-
thors’ efforts focus on finding and commenting potential pitfalls identified in the Lee’s
method [34], an AI-based computational workflow easy to implement and exhaustively
described in the literature. To better understand those criticalities, tortuosity indexes of
two exemplificative, critical OCT images are computed by using Lee’s method and other
published methods, either AI-based or traditional. Further, a preliminary exploration of
possible mitigation actions is described in the paper, and a potentially better performing
tortuosity index is proposed and used on the same tricky images.

2. Materials and Methods

The method from Lee [34] was identified as a potential example of a computational
workflow easily available to researchers. A PubMed search was carried on to identify
a subset of papers citing Lee’s work and dealing with tortuosity indexes. The full text
of those papers was reviewed in order to identify whether and how they actually used
Lee’s method.

Tortuosity indexes and other image derived statistics were then computed by using
the Lee’s method (Method A), the deep learning method described by Zhao [35] (Method B)
and two classical image processing methods (Methods C and D) previously used by our
group. In more detail:

Method A: machine learning classification task was performed using Fiji’s Trainable
Weka Segmentation plugin [36] following the previously published procedure [34,37]. The
classifier’s output consists of a segmentation probability map highlighting the retinal struc-
tures detected as vessels. The probability map was then converted into a binarized image.

Method B: the skeletonization results coming from the deep learning method described
by Zhao [35] and available in the ROSE-2 subset were used for this analysis.

Methods C and D: image binarization was performed with classical image process-
ing methods (no artificial intelligence support) previously used and published by our
group ([38] and [39], respectively). Briefly, Method C uses some preprocessing tech-
niques (Niblack’s algorithm, histogram equalization) followed by image binarization by
the method of Ridler and Calvard [40], while Method D uses Otsu’s segmentation [41]
method followed by active contours (snakes) region growing technique [42].

In Methods A, C and D the binarization was followed by a skeletonization (each
white object in the binary image was converted to a single pixel line) in Fiji; in all the
four methods the skeleton features (branch length (BL), vertices positions, branch Euclidean
distance (ED)) were calculated in Fiji using the available AnalyzeSkeleton plugin [43]. The
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previously published procedure setup [34] was implemented for skeletonization and
skeleton feature extraction. Figure 1 reports examples for method A.

Information 2021, 12, x FOR PEER REVIEW 4 of 12 
 

 

 
Figure 1. (Left): ‘N’ OCT scan; (Right): ‘T’ OCT scan; from top to bottom: (Panel A): original image; 
(Panel B): binarized image (Method A); (Panel C): skeletonized image. 

Table 1. Tortuosity indexes and branch-related features of the two exemplificative OCT images, 
calculated by means of the four investigated methods. 

 Method A Method B Method C Method D 
 N T N T N T N T 

TI 1.151 1.146 * 1.169 1.177 1.174 1.179 1.187 1.167 * 
TI_avg 1.139 1.129 * 1.146 1.146 1.133 1.135 1.168 1.162 * 
TI*CV 0.98 1.04 0.89 0.97 1.19 1.21 0.94 1.02 

# branches 2874 2117 2526 2441 4235 3953 3269 1641 

Mean BL 9.15 ± 7.83 8.81 ± 8.02 
12.97 ± 

9.89 
13.28 ± 
10.96 

6.58 ± 6.69 6.56 ± 6.76 7.89 ± 6.24 8.49 ± 7.41 

Max BL 79.36 86.46 108.05 135.74 81.04 76.33 80.18 59.36 
Min BL 1 1 1 1 1 1 1 1 

Mean ED 7.95 ± 6.79 7.69 ± 7.01 11.1 ± 8.34 
11.28 ± 

9.18 
5.61 ± 5.7 5.56 ± 5.69 6.65 ± 5.37 7.27 ± 6.49 

Max ED 72.24 78.10 89.40 89.94 65.37 69.53 72.24 54.20 
Min ED 0 0 0 0 0 0 0 0 
# ED = 0 14 14 75 111 60 70 61 16 
BL < 10 68.16% 68.73% 47.23% 48.22% 80.85% 80.75% 75.13% 72.64% 
BL < 21 92.59% 93.06% 84.52% 83.08% 95.96% 95.70% 95.87% 93.78% 
BL = 1 3.97% 6.57% 0.48% 1.11% 14.88% 16.27% 2.84% 4.57% 

Legend: N: less tortuous retina; T: more tortuous retina; TI: tortuosity index; TI_avg: mean of indi-
vidual tortuosity indexes (one index for each branch); CV: coefficient of variation of BL; #: “num-
ber of”; BL: branch length; ED: Euclidean distance; * lower than the corresponding value for image 
N; all length measurements are expressed in pixels. 

Figure 1. (Left): ‘N’ OCT scan; (Right): ‘T’ OCT scan; from top to bottom: (Panel A): original image;
(Panel B): binarized image (Method A); (Panel C): skeletonized image.

Starting from the skeleton features, tortuosity index was computed as previously
proposed [34], namely:

TI = ∑ Branchlengths
∑ Euclideandistances

(1)

Several additional branches measurement-related metrics were calculated as well, and
reported in Table 1. Conversion from measurements expressed in pixels to metric lengths
and areas were performed considering a pixel transverse size of 9.37 µm [44]. All image
processing was performed using a combination of Mathwork’s Matlab [45], Fiji [46] and
some Fiji plugins [43]. A more detailed insight of the implemented methods is available in
Supplementary Material S1.

OCT en face angiograms were obtained from the Rose Dataset (ROSE-2 subset) [35],
containing OCT-A images acquired by Heidelberg OCT2 system with Spectralis software
(Heidelberg Engineering, Heidelberg, Germany), within a 3 × 3 mm2 area centered at the
fovea. In this database, two retinal angiograms (N and T) were selected which resulted
clearly distinguishable as for vessel tortuosity, the latter (T) being characterized by evident
vessel tortuosity (Figure 1, panel A, left N, right T).
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Table 1. Tortuosity indexes and branch-related features of the two exemplificative OCT images, calculated by means of the
four investigated methods.

Method A Method B Method C Method D

N T N T N T N T

TI 1.151 1.146 * 1.169 1.177 1.174 1.179 1.187 1.167 *
TI_avg 1.139 1.129 * 1.146 1.146 1.133 1.135 1.168 1.162 *
TI*CV 0.98 1.04 0.89 0.97 1.19 1.21 0.94 1.02

# branches 2874 2117 2526 2441 4235 3953 3269 1641
Mean BL 9.15 ± 7.83 8.81 ± 8.02 12.97 ± 9.89 13.28 ± 10.96 6.58 ± 6.69 6.56 ± 6.76 7.89 ± 6.24 8.49 ± 7.41
Max BL 79.36 86.46 108.05 135.74 81.04 76.33 80.18 59.36
Min BL 1 1 1 1 1 1 1 1

Mean ED 7.95 ± 6.79 7.69 ± 7.01 11.1 ± 8.34 11.28 ± 9.18 5.61 ± 5.7 5.56 ± 5.69 6.65 ± 5.37 7.27 ± 6.49
Max ED 72.24 78.10 89.40 89.94 65.37 69.53 72.24 54.20
Min ED 0 0 0 0 0 0 0 0
# ED = 0 14 14 75 111 60 70 61 16
BL < 10 68.16% 68.73% 47.23% 48.22% 80.85% 80.75% 75.13% 72.64%
BL < 21 92.59% 93.06% 84.52% 83.08% 95.96% 95.70% 95.87% 93.78%
BL = 1 3.97% 6.57% 0.48% 1.11% 14.88% 16.27% 2.84% 4.57%

Legend: N: less tortuous retina; T: more tortuous retina; TI: tortuosity index; TI_avg: mean of individual tortuosity indexes (one index for
each branch); CV: coefficient of variation of BL; #: “number of”; BL: branch length; ED: Euclidean distance; * lower than the corresponding
value for image N; all length measurements are expressed in pixels.

3. Results

In the PubMed search 33 papers citing the Lee’s 2018 publication [34] were found. Full
text review identified 10 papers which actually used Lee’s method, eight of which were
from groups different from Lee’s one. Incidentally, in other, side searches, some papers were
found [21] which use the same (or similar method) without citing the original reference.
This result is consistent with the good acceptance of Lee’s work, and the relatively high
number of groups who have been using this method in the last three years; this shows the
diffusion of the method and, consequently, the importance of getting a better insight on the
used methodologies.

Segmentation and skeletonization results are reported in the exemplificative Figure 1
(Method A). Regarding the computed metrics, Table 1 contains three different tortuosity
indexes and several branch-related features.

All methods identified a smaller number of branches in the more tortuous retina (T),
and AI- based methods (methods A and B) resulted in a generally smaller number of
branches with respect to conventional image processing methods. Regarding the distribu-
tion of branch lengths, several potential criticalities should be noted. As a general observa-
tion, computed branch lengths are not normally distributed (Shapiro–Wilk, p < 0.05 for all
methods, see histogram in Figure 2 for method A). Mean branch length for image N varies
from 12.97 pixel to 6.58 pixel (121 to 61 µm), while mean branch length for image T varies
from 13.28 pixel to 6.56 pixel (124 to 61 µm). A high percentage of computed branches
(from 47.23% up to 80.85%) are less than 10 pixels length (93 µm), and at least 80% are
less than 21 pixels, corresponding to a metric length close to 200µm. A certain number of
computed branches have unitary length (and consequently, ED = 1). While it is not clear
which impact this computed length has on TI, conceptually this can be classified as an
unwanted effect of the skeletonization procedure.

Additionally, a relevant number of computed Euclidean distances are equal to zero.
This last observation deserves additional comments. First, ED can be zero if and only if the
starting point of the branch and the ending point coincide. This can happen, and actually
does happen, when the skeletonization process identifies a loop (examples are visible in
Figure 3). This means that the presence of loops in skeletons silently affects TI computation,
since they have positive branch lengths (numerator) and zero ED (denominator). For this
reason, in the present work zero ED branches were excluded from the computation of
TI avg.
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 Figure 2. Branch length distribution, Method A, for normal (N, left) and tortuous (T, right) reti-
nal OCTA.
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Figure 3. Result from the Fiji’s skeleton analysis process. Vessel branches are drawn in orange,
separated by green junctions and terminated by blue end points.

In Figure 3, the output of the branch detection computations is shown for upper
right corner of T image. The branch detection algorithm classifies each pixel into three
different categories depending on its neighbors: pixels having less than two neighbors
are classified as end points (blue); pixels having more than two neighbors are classified
as junctions (green), while pixels having exactly two neighbors are classified as slabs
(branches, in orange).

In the figure, it can also be easily observed that most branches are relatively short (their
length is limited by the presence of junctions), and this may affect TI computations (Figure 2).

Regarding tortuosity index TI, (sum branch lengths/sum Euclidean distance) it must
be noted that in two out of four imaging processing workflows (denoted * in Table 1),
the smallest computed index is associated with the most tortuous retina. As a collateral
observation, we hypothesized that the contribution of very small branches may adversely
affect TI behavior. However, this hypothesis was refuted by calculating TI while iteratively
removing increasing length branches. As a matter of fact, TI dependence on branch lengths
has a similar behavior in both cases (N and T) and with all considered methods. As an
exemplificative case, in Figure 4, TI is reported as a function of minimal branch length (for
methods A and B).
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Figure 4. At each abscissa, the two curves represent the values of TI calculated excluding branches
shorter than Min Branch length (blue), and the number of branches included in the computation (red).
TI dependence on branch lengths appears to behave similarly in N—Normal and T—Tortuous cases,
for the different Methods (A and B shown). Min branch lengths are expressed in pixels.

In all considered combinations, TI initially increases-i.e., when removing very short
branches-, reaches a maximum at branch lengths between 10 and 30 pixels, and gradu-
ally decreases until the relatively small number of included branches generates a certain
numerical instability. All methods deliver results with similar behavior. The removal of
small branches from TI computation does not alter the relationship between TI (N) and
TI(T), which remains inverted with respect to what expected -namely, higher TI for more
tortuous retinas.

TI_avg was computed as

TIavg =
1

Nbranches
∗ ∑i

BranchLengthi
Euclideandistancei

(2)

i.e., the average of the ratios between branch length and Euclidean distance for each branch.
This index, introduced to avoid the influence of the length of loop branches and to weigh
the contribution of each individual branch to the tortuosity metric, seems to perform even
worse than TI (Table 1).

The last index, TI*CV, was computed multiplying TI by the coefficient of variation
(CV) of the branch length (sd/mean for all branches in the image). Since branch length
CV is a measure of mean branch length precision, this index represented an attempt to
compensate mean branch length inaccuracy due to the excessive segmentation (and the
possible underestimation of tortuosity) of longer branches.

At least for the analyzed images, TI*CV seems to correlate better than the other
proposed indexes with the tortuosity of the examined angiograms, in all selected imaging
workflows (Table 1).

The dependence of TI and TI*CV on branch length was finally investigated, by cal-
culating both indexes while iteratively removing branches of increasing length. Figure 5
shows this dependence for method A (similar results were obtained for the other methods);
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the plot clearly shows the inversion of the two indexes between N and T angiograms
(TI*CV higher for T than for N, as expected).
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4. Discussion

Objective quantification of vessels tortuosity in retinal images may be of great clinical
relevance both in the presence of retinal pathologies and in the investigation of correlated
systemic diseases. To the Authors’ knowledge, however, this work is the first to highlight
relevant criticalities emerging from the adaptation of tortuosity computational methods
used in cardiovascular research to the quantitative examination of retinal vessels. Usually,
in fact, papers dealing with the analysis of retinal vessels in retinal images apply published
computational methods to address clinical questions, without systematically investigating
technical or methodological criticalities.

One of the most used and novel approaches, the Lee method has been here analyzed
and tested with respect to two exemplificative retinal images, purposely selected because
it referred to two clearly distinguishable levels of vessels tortuosity. The performance of
the method, which resulted in a higher tortuosity index (TI) for the less tortuous retina
(1.151 against 1.146 for the more tortuous retina) suggested a deeper, step-by-step inves-
tigation: each step (and the corresponding outcomes) of the method workflow was then
analyzed, as well as other relevant branch-related features, the comparison with similar
approaches, and the search for possible mitigation actions.

The first observed criticality concerns a potential limitation of all the four analyzed
computational methods in accurately deriving feature images and numerical measures.
This limitation may entail possible underestimation of the index: tortuosity of long vessels,
in fact, is likely underestimated by the skeleton analysis process which, in turn, depends on
the preceding image segmentation and skeletonization process. The difficulty of the method
to identify branches whose length is comparable with the original, longer vessels may in
fact entail a sort of “piecewise linearization” of those vessels: as a result, the computation of
apparently longer Euclidean distances of the “pieces” of branches contributes to lower the
tortuosity index. Focusing on the results summarized in Table 1, Method B (a previously
published deep learning model [35]) seems to define a bit longer branches than the other
examined methods, with a smaller percentage of very short branches; however, also in this
case, it is worth noticing that more than 80% of branches is shorter than 20 pixels (less than
200 µm). This effect, at the same length cut-off, has been reported by other authors [47],
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and is a common problem well known even in other related fields [48]. Ideally, the impact
of shorter (and smaller) capillary vessels on TI should be carefully assessed, since their
presence and morphology are highly dependent on the image processing workflow and on
the image quality.

Another relevant criticality, as already mentioned in the Results section, is the presence
of loops: they have Euclidean distance equal to zero—thus having no weight in the
denominator of the tortuosity index—but their branch lengths do contribute and affect the
index numerator. From this point of view, and with reference to the two specific images
analyzed in this study, Method A (which implements a machine learning classification
task) seems the most robust, with a significantly lower number of loops.

Methods B and C (classical image processing methods), for the specific image com-
parison, show a suitable behavior and deliver a higher tortuosity index for the more
tortuous retina.

In the attempt to mitigate the impact of segmentation and skeletonization processes
on the clinical relevance of the derived metrics, a different implementation of the TI was
investigated: namely, the TI_avg was calculated as the mean value of the distribution of
individual TI calculated for each branch. This new index, however, seems to perform even
worse than the original TI.

The best performing adaptation of the index came out by introducing a correction
factor which accounts for the different branch length variability within each image. Specif-
ically, the coefficient of variation of branch lengths was calculated for each image; this
relevant indicator simultaneously accounts not only for the branch lengths distribution
but also for their numerosity, and magnifies the TI of those images with higher uncertainty
of the mean. The use of this correction factor brought to the TI*CV index which resulted
higher for the more tortuous image irrespective of the method (Table 1). These results
remain valid also in the case a high-pass threshold is introduced to remove the shortest
branches from the computation. Figure 5 shows the TI and the TI*CV indexes as function
of the fixed threshold for the branch length inclusion/exclusion in Method A (similar
results were found for the other examined methods). With respect to TI index, which is
alternatively—i.e., positively or negatively—affected by short branches removal, TI*CV
remains relatively stable over a wide branch length interval. While working satisfactorily
on the OCT exemplificative images analyzed in this study, this promising index needs
of course a wider validation on an adequate dataset of retinal images. The proposed
mitigation approach, however, may result useful and applicable to other retinal vessel
structural indexes.

5. Conclusions

Vessel’s tortuosity in retinal images has a great clinical relevance. Its objective quan-
tification, currently relying on the adaptation of existing tortuosity computational methods
mostly used in cardiovascular research, shows some criticalities. The exploratory inves-
tigation conducted in this study, based on two exemplificative retinal images with very
different tortuosity, highlighted potential limitations of some computational methods,
either AI or not AI-based-in accurately deriving feature images and numerical measures.
Those limitations may in turn entail possible underestimation of the currently used met-
rics associated with the tortuosity index. The study also suggests that attempts may be
conducted to optimize those metrics so as to mitigate the impact of segmentation and
skeletonization processes; in the exploratory attempt conducted by the authors on the
two exemplificative images, the best performing adaptation of the tortuosity index was
shown by introducing a correction factor which accounts for the different branch length
variability. Irrespective of the specific solution hereby proposed, the mitigation approach
may result useful and applicable to other retinal vessel structural indices.



Information 2021, 12, 466 9 of 11

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/info12110466/s1, Supplementary S1: Image processing and branch information calcula-
tions workflow.

Author Contributions: Conceptualization, F.M.; methodology, F.M. and C.G.; software, F.M.; writing—
original draft preparation, F.M. and C.G.; writing—review and editing, F.M. and C.G.; All authors have
read and agreed to the published version of the manuscript.

Funding: This research received funding from Istituto Superiore di Sanità, Intramural Support for
the “Ricerca e innovazione tecnologica nella gestione della funzione visiva” Project.

Data Availability Statement: All OCT images used in this works are available in the publicly avail-
able dataset described in [35]. Matlab codes are made available by the authors on reasonable requests.

Acknowledgments: All OCT images used in this works were drawn, with permission, from the
dataset described in [35].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kashani, A.H.; Chen, C.-L.; Gahm, J.K.; Zheng, F.; Richter, G.M.; Rosenfeld, P.J.; Shi, Y.; Wang, R.K. Optical Coherence Tomography

Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Prog. Retin. Eye Res. 2017, 60, 66–100.
[CrossRef] [PubMed]

2. Cruz-Herranz, A.; Balk, L.J.; Oberwahrenbrock, T.; Saidha, S.; Martinez-Lapiscina, E.H.; Lagreze, W.A.; Schuman, J.S.;
Villoslada, P.; Calabresi, P.; Balcer, L.; et al. The APOSTEL recommendations for reporting quantitative optical coherence
tomography studies. Neurology 2016, 86, 2303–2309. [CrossRef] [PubMed]

3. Mendonça, L.S.M.; Perrott-Reynolds, R.; Schwartz, R.; Madi, H.A.; Cronbach, N.; Gendelman, I.; Muldrew, A.; Bannon, F.;
Balaskas, K.; Gemmy Cheung, C.M.; et al. Deliberations of an International Panel of Experts on OCT Angiography Nomenclature
of Neovascular Age-Related Macular Degeneration. Ophthalmology 2020, 128, 1109–1112. [CrossRef] [PubMed]

4. Spaide, R.F.; Jaffe, G.J.; Sarraf, D.; Freund, K.B.; Sadda, S.R.; Staurenghi, G.; Waheed, N.K.; Chakravarthy, U.; Rosenfeld, P.J.;
Holz, F.G.; et al. Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data: Consensus on
Neovascular Age-Related Macular Degeneration Nomenclature Study Group. Ophthalmology 2020, 127, 616–636. [CrossRef]

5. Staurenghi, G.; Sadda, S.; Chakravarthy, U.; Spaide, R.F. International Nomenclature for Optical Coherence Tomography
(IN• OCT) Panel. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence
tomography: The IN• OCT consensus. Ophthalmology 2014, 121, 1572–1578. [CrossRef]

6. Balaskas, K.; Tiew, S.; Czanner, G.; Tan, A.L.; Ashworth, J.; Biswas, S.; Aslam, T. The Novel Evidenced Assessment of Tortuosity
System: Interobserver Reliability and Agreement with Clinical Assessment. Acta Ophthalmol. (Copenh.) 2016, 94, e421-6. [CrossRef]
[PubMed]

7. Müller, P.L.; Liefers, B.; Treis, T.; Rodrigues, F.G.; Olvera-Barrios, A.; Paul, B.; Dhingra, N.; Lotery, A.; Bailey, C.; Taylor, P.;
et al. Reliability of Retinal Pathology Quantification in Age-Related Macular Degeneration: Implications for Clinical Trials and
Machine Learning Applications. Transl. Vis. Sci. Technol. 2021, 10, 4. [CrossRef] [PubMed]

8. Tan, C.S.; Chan, J.C.; Cheong, K.X.; Ngo, W.K.; Sadda, S.R. Comparison of Retinal Thicknesses Measured Using Swept-Source and
Spectral-Domain Optical Coherence Tomography Devices. Ophthalmic Surg. Lasers Imaging Retina 2015, 46, 172–179. [CrossRef]

9. Ciurică, S.; Lopez-Sublet, M.; Loeys, B.L.; Radhouani, I.; Natarajan, N.; Vikkula, M.; Maas, A.H.E.M.; Adlam, D.; Persu, A. Arterial
Tortuosity. Hypertension 2019, 73, 951–960. [CrossRef]

10. Kemp, M. Leonardo’s Philosophical Anatomies. Lancet 2019, 393, 1404–1408. [CrossRef]
11. Wells, F.C.; Crowe, T. Leonardo Da Vinci as a Paradigm for Modern Clinical Research. J. Thorac. Cardiovasc. Surg. 2004,

127, 929–944. [CrossRef] [PubMed]
12. Del Corso, L.; Moruzzo, D.; Conte, B.; Agelli, M.; Romanelli, A.M.; Pastine, F.; Protti, M.; Pentimone, F.; Baggiani, G. Tortuosity,

Kinking, and Coiling of the Carotid Artery: Expression of Atherosclerosis or Aging? Angiology 1998, 49, 361–371. [CrossRef]
13. Hiroki, M.; Miyashita, K.; Oda, M. Tortuosity of the White Matter Medullary Arterioles Is Related to the Severity of Hypertension.

Cerebrovasc. Dis. 2002, 13, 242–250. [CrossRef]
14. Kahe, F.; Sharfaei, S.; Pitliya, A.; Jafarizade, M.; Seifirad, S.; Habibi, S.; Chi, G. Coronary Artery Tortuosity: A Narrative Review.

Coron. Artery Dis. 2020, 31, 187–192. [CrossRef]
15. Owen, C.G.; Newsom, R.S.B.; Rudnicka, A.R.; Barman, S.A.; Woodward, E.G.; Ellis, T.J. Diabetes and the Tortuosity of Vessels of

the Bulbar Conjunctiva. Ophthalmology 2008, 115, e27–e32. [CrossRef]
16. Pancera, P.; Ribul, M.; Presciuttini, B.; Lechi, A. Prevalence of Carotid Artery Kinking in 590 Consecutive Subjects Evaluated by

Echocolordoppler. Is There a Correlation with Arterial Hypertension? J. Intern. Med. 2000, 248, 7–12. [CrossRef] [PubMed]
17. Chua, J.; Sim, R.; Tan, B.; Wong, D.; Yao, X.; Liu, X.; Ting, D.S.W.; Schmidl, D.; Ang, M.; Garhöfer, G.; et al. Optical Coherence

Tomography Angiography in Diabetes and Diabetic Retinopathy. J. Clin. Med. 2020, 9, 1723. [CrossRef]

https://www.mdpi.com/article/10.3390/info12110466/s1
https://www.mdpi.com/article/10.3390/info12110466/s1
http://doi.org/10.1016/j.preteyeres.2017.07.002
http://www.ncbi.nlm.nih.gov/pubmed/28760677
http://doi.org/10.1212/WNL.0000000000002774
http://www.ncbi.nlm.nih.gov/pubmed/27225223
http://doi.org/10.1016/j.ophtha.2020.12.022
http://www.ncbi.nlm.nih.gov/pubmed/33359557
http://doi.org/10.1016/j.ophtha.2019.11.004
http://doi.org/10.1016/j.ophtha.2014.02.023
http://doi.org/10.1111/aos.12907
http://www.ncbi.nlm.nih.gov/pubmed/26686744
http://doi.org/10.1167/tvst.10.3.4
http://www.ncbi.nlm.nih.gov/pubmed/34003938
http://doi.org/10.3928/23258160-20150213-23
http://doi.org/10.1161/HYPERTENSIONAHA.118.11647
http://doi.org/10.1016/S0140-6736(19)30584-7
http://doi.org/10.1016/j.jtcvs.2004.02.002
http://www.ncbi.nlm.nih.gov/pubmed/15052184
http://doi.org/10.1177/000331979804900505
http://doi.org/10.1159/000057850
http://doi.org/10.1097/MCA.0000000000000769
http://doi.org/10.1016/j.ophtha.2008.02.009
http://doi.org/10.1046/j.1365-2796.2000.00611.x
http://www.ncbi.nlm.nih.gov/pubmed/10947875
http://doi.org/10.3390/jcm9061723


Information 2021, 12, 466 10 of 11

18. Sasongko, M.B.; Wong, T.Y.; Donaghue, K.C.; Cheung, N.; Jenkins, A.J.; Benitez-Aguirre, P.; Wang, J.J. Retinal Arteriolar Tortuosity
Is Associated with Retinopathy and Early Kidney Dysfunction in Type 1 Diabetes. Am. J. Ophthalmol. 2012, 153, 176–183.e1.
[CrossRef] [PubMed]

19. Sasongko, M.B.; Wong, T.Y.; Nguyen, T.T.; Cheung, C.Y.; Shaw, J.E.; Kawasaki, R.; Lamoureux, E.L.; Wang, J.J. Retinal Vessel
Tortuosity and Its Relation to Traditional and Novel Vascular Risk Markers in Persons with Diabetes. Curr. Eye Res. 2016,
41, 551–557. [CrossRef] [PubMed]

20. Lajmi, H.; Hmaied, W.; Othmen, A.; Chelly, Z.; El Fekih, L. Optical Coherence Tomography Angiography Microvascular Changes
in Diabetics without Diabetic Retinopathy. Saudi J. Ophthalmol. 2020, 34, 156. [CrossRef]

21. Pierro, L.; Arrigo, A.; De Crescenzo, M.; Aragona, E.; Chiesa, R.; Castellano, R.; Catenaccio, B.; Bandello, F. Quantitative Optical
Coherence Tomography Angiography Detects Retinal Perfusion Changes in Carotid Artery Stenosis. Front. Neurosci. 2021,
15, 640666. [CrossRef]

22. O’Neill, R.A.; Maxwell, A.P.; Paterson, E.N.; Kee, F.; Young, I.; Hogg, R.E.; Cruise, S.; Murphy, S.; McGuinness, B.; McKay, G.J.
Retinal Microvascular Parameters Are Not Significantly Associated with Mild Cognitive Impairment in the Northern Ireland
Cohort for the Longitudinal Study of Ageing. BMC Neurol. 2021, 21, 112. [CrossRef] [PubMed]

23. Cheung, C.Y.-L.; Ong, Y.T.; Ikram, M.K.; Ong, S.Y.; Li, X.; Hilal, S.; Catindig, J.-A.S.; Venketasubramanian, N.; Yap, P.; Seow, D.;
et al. Microvascular Network Alterations in the Retina of Patients with Alzheimer’s Disease. Alzheimers Dement. 2014, 10, 135–142.
[CrossRef]

24. Liew, G.; Mitchell, P.; Wong, T.Y.; Lindley, R.I.; Cheung, N.; Kaushik, S.; Wang, J.J. Retinal Microvascular Signs and Cognitive
Impairment. J. Am. Geriatr. Soc. 2009, 57, 1892–1896. [CrossRef]

25. Allon, R.; Aronov, M.; Belkin, M.; Maor, E.; Shechter, M.; Fabian, I.D. Retinal Microvascular Signs as Screening and Prognostic
Factors for Cardiac Disease: A Systematic Review of Current Evidence. Am. J. Med. 2021, 134, 36–47.e7. [CrossRef]

26. Cheung, C.Y.-L.; Zheng, Y.; Hsu, W.; Lee, M.L.; Lau, Q.P.; Mitchell, P.; Wang, J.J.; Klein, R.; Wong, T.Y. Retinal Vascular Tortuosity,
Blood Pressure, and Cardiovascular Risk Factors. Ophthalmology 2011, 118, 812–818. [CrossRef]

27. Rosenblatt, T.R.; Ji, M.H.; Vail, D.; Ludwig, C.A.; Al-Moujahed, A.; Pasricha, M.V.; Callaway, N.F.; Kumm, J.; Moshfeghi, D.M. Key
Factors in a Rigorous Longitudinal Image-Based Assessment of Retinopathy of Prematurity. Sci. Rep. 2021, 11, 5369. [CrossRef]
[PubMed]

28. Abbinante, G.; Plaitano, C.; Gallo, F.G.; Magli, A. A Case of Retinal Vascular Involvement in a 6-Year-Old Patient with COVID-19.
Eur. J. Ophthalmol. 2021. [CrossRef] [PubMed]

29. Sim, R.; Cheung, G.; Ting, D.; Wong, E.; Wong, T.Y.; Yeo, I.; Wong, C.W. Retinal Microvascular Signs in COVID-19. Br. J.
Ophthalmol. 2021. [CrossRef] [PubMed]

30. Abdalla, M.; Hunter, A.; Al-Diri, B. Quantifying Retinal Blood Vessels’ Tortuosity—Review. In Proceedings of the IEEE 2015
Science and Information Conference (SAI), London, UK, 28–30 July 2015; pp. 687–693.

31. Kalitzeos, A.A.; Lip, G.Y.H.; Heitmar, R. Retinal Vessel Tortuosity Measures and Their Applications. Exp. Eye Res. 2013, 106,
40–46. [CrossRef] [PubMed]

32. Kipli, K.; Hoque, M.E.; Lim, L.T.; Mahmood, M.H.; Sahari, S.K.; Sapawi, R.; Rajaee, N.; Joseph, A. A Review on the Extraction of
Quantitative Retinal Microvascular Image Feature. Comput. Math. Methods Med. 2018, 2018, 4019538. [CrossRef]

33. Fawzi, A.A. Consensus on Optical Coherence Tomographic Angiography Nomenclature: Do We Need to Develop and Learn a
New Language? JAMA Ophthalmol. 2017, 135, 377–378. [CrossRef] [PubMed]

34. Lee, H.; Lee, M.; Chung, H.; Kim, H.C. Quantification of Retinal Vessel Tortuosity in Diabetic Retinopathy Using Optical
Coherence Tomography Angiography. Retina 2018, 38, 976–985. [CrossRef]

35. Ma, Y.; Hao, H.; Xie, J.; Fu, H.; Zhang, J.; Yang, J.; Wang, Z.; Liu, J.; Zheng, Y.; Zhao, Y. ROSE: A Retinal OCT-Angiography Vessel
Segmentation Dataset and New Model. IEEE Trans. Med. Imaging 2021, 40, 928–939. [CrossRef]

36. Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Sebastian Seung, H. Trainable Weka
Segmentation: A Machine Learning Tool for Microscopy Pixel Classification. Bioinformatics 2017, 33, 2424–2426. [CrossRef]
[PubMed]

37. Goselink, R.J.M.; Schreur, V.; van Kernebeek, C.R.; Padberg, G.W.; van der Maarel, S.M.; van Engelen, B.G.M.; Erasmus, C.E.;
Theelen, T. Ophthalmological Findings in Facioscapulohumeral Dystrophy. Brain Commun. 2019, 1, fcz023. [CrossRef] [PubMed]

38. Minnella, A.M.; Barbano, L.; Verrecchia, E.; Martelli, F.; Pagliei, V.; Gambini, G.; Placidi, G.; Falsini, B.; Caporossi, A.; Manna, R.
Macular Impairment in Fabry Disease: A Morpho-Functional Assessment by Swept-Source OCT Angiography and Focal
Electroretinography. Invest. Ophthalmol. Vis. Sci. 2019, 60, 2667–2675. [CrossRef]

39. Savastano, M.C.; Gambini, G.; Cozzupoli, G.M.; Crincoli, E.; Savastano, A.; De Vico, U.; Culiersi, C.; Falsini, B.; Martelli, F.;
Minnella, A.M.; et al. Retinal Capillary Involvement in Early Post-COVID-19 Patients: A Healthy Controlled Study. Graefes Arch.
Clin. Exp. Ophthalmol. 2021, 259, 2157–2169. [CrossRef]

40. Ridler, T.W.; Calvard, S. Picture Thresholding Using an Iterative Selection Method. IEEE Trans. Syst. Man Cybern. 1978, 8, 630–632.
[CrossRef]

41. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
42. Chan, T.F.; Vese, L.A. Active Contours without Edges. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 2001, 10, 266–277.

[CrossRef] [PubMed]

http://doi.org/10.1016/j.ajo.2011.06.005
http://www.ncbi.nlm.nih.gov/pubmed/21907319
http://doi.org/10.3109/02713683.2015.1034371
http://www.ncbi.nlm.nih.gov/pubmed/26086266
http://doi.org/10.4103/1319-4534.310404
http://doi.org/10.3389/fnins.2021.640666
http://doi.org/10.1186/s12883-021-02137-4
http://www.ncbi.nlm.nih.gov/pubmed/33706706
http://doi.org/10.1016/j.jalz.2013.06.009
http://doi.org/10.1111/j.1532-5415.2009.02459.x
http://doi.org/10.1016/j.amjmed.2020.07.013
http://doi.org/10.1016/j.ophtha.2010.08.045
http://doi.org/10.1038/s41598-021-84723-7
http://www.ncbi.nlm.nih.gov/pubmed/33686091
http://doi.org/10.1177/11206721211027069
http://www.ncbi.nlm.nih.gov/pubmed/34176314
http://doi.org/10.1136/bjophthalmol-2020-318236
http://www.ncbi.nlm.nih.gov/pubmed/33741583
http://doi.org/10.1016/j.exer.2012.10.015
http://www.ncbi.nlm.nih.gov/pubmed/23146682
http://doi.org/10.1155/2018/4019538
http://doi.org/10.1001/jamaophthalmol.2017.0149
http://www.ncbi.nlm.nih.gov/pubmed/28301649
http://doi.org/10.1097/IAE.0000000000001618
http://doi.org/10.1109/TMI.2020.3042802
http://doi.org/10.1093/bioinformatics/btx180
http://www.ncbi.nlm.nih.gov/pubmed/28369169
http://doi.org/10.1093/braincomms/fcz023
http://www.ncbi.nlm.nih.gov/pubmed/32954265
http://doi.org/10.1167/iovs.18-26052
http://doi.org/10.1007/s00417-020-05070-3
http://doi.org/10.1109/TSMC.1978.4310039
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.1109/83.902291
http://www.ncbi.nlm.nih.gov/pubmed/18249617


Information 2021, 12, 466 11 of 11

43. Arganda-Carreras, I.; Fernández-González, R.; Muñoz-Barrutia, A.; Ortiz-De-Solorzano, C. 3D Reconstruction of Histological
Sections: Application to Mammary Gland Tissue. Microsc. Res. Tech. 2010, 73, 1019–1029. [CrossRef] [PubMed]

44. Lu, Y.; Wang, J.C.; Zeng, R.; Katz, R.; Vavvas, D.G.; Miller, J.W.; Miller, J.B. Quantitative Comparison of Microvascular Metrics on
Three Optical Coherence Tomography Angiography Devices in Chorioretinal Disease. Clin. Ophthalmol. 2019, 13, 2063–2069.
[CrossRef] [PubMed]

45. Matlab. Version 7.10.0 (R2010a); The MathWorks Inc.: Natick, MA, USA, 2010.
46. Sage, D.; Prodanov, D.; Tinevez, J.-Y.; Schindelin, J. MIJ: Making Interoperability Between ImageJ and Matlab Possible.

In Proceedings of the ImageJ User & Developer Conference (IUDC’12); Mondorf-les-Bains, Grand Duchy of Luxembourg,
24–26 October 2012.

47. Zhou, K.; Song, S.; Legocki, A.; Cheng, Y.; Ding, L.; Rezaei, K.A.; Wang, R.K.; Cabrera, M.T. Quantitative Handheld Swept-Source
Optical Coherence Tomography Angiography in Awake Preterm and Full-Term Infants. Transl. Vis. Sci. Technol. 2020, 9, 19.
[CrossRef] [PubMed]

48. Poplawsky, A.J.; Fukuda, M.; Kang, B.-M.; Kim, J.H.; Suh, M.; Kim, S.-G. Dominance of Layer-Specific Microvessel Dilation
in Contrast-Enhanced High-Resolution FMRI: Comparison between Hemodynamic Spread and Vascular Architecture with
CLARITY. Neuroimage 2019, 197, 657–667. [CrossRef] [PubMed]

http://doi.org/10.1002/jemt.20829
http://www.ncbi.nlm.nih.gov/pubmed/20232465
http://doi.org/10.2147/OPTH.S215322
http://www.ncbi.nlm.nih.gov/pubmed/31749603
http://doi.org/10.1167/tvst.9.13.19
http://www.ncbi.nlm.nih.gov/pubmed/33344063
http://doi.org/10.1016/j.neuroimage.2017.08.046
http://www.ncbi.nlm.nih.gov/pubmed/28822749

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

