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Abstract: This paper presents a novel method that absorbs the strong discriminative ability from
absent color indexing (ABC) to enhance sensitivity and combines it with a correlation filter (CF)
for obtaining a higher precision; this method is named ABC-CF. First, by separating the original
color histogram, apparent and absent colors are introduced. Subsequently, an automatic threshold
acquisition is proposed using a mean color histogram. Next, a histogram intersection is selected
to calculate the similarity. Finally, CF follows them to solve the drift caused by ABC during the
matching process. The novel approach proposed in this paper realizes robustness in distortion
of target images and higher margins in fundamental matching problems, and then achieves more
precise matching in positions. The effectiveness of the proposed approach can be evaluated in the
comparative experiments with other representative methods by use of the open data.

Keywords: color histogram; matching; apparent colors; absent color indexing; correlation filter;

margin

1. Introduction

In the field of computer vision [1,2], color histogram-based features have been ap-
plied in various applications, including image retrieval [3], face recognition, pedestrian
tracking [4], and object matching [5]. Among other features, such as grayscale, texture,
gradient, and geometric features, color features are much vital in providing useful cues for
object detection or matching. In many applications, the color features often appear in the
algorithms as a main or auxiliary feature. The color feature [6] of an image is an important
statistical feature in histogram-based methods, which facilitates solving problems with
rotation, deformation, and scale variation during the matching process. Therefore, using
the histogram method to perform statistics on colors can effectively reveal the distribution
characteristics of colors to achieve robust search goals. Swain et al. [7] and Stricker et al. [8]
introduced a method to utilize a color histogram-based approach for matching, known as
color indexing (CI) and the cumulative color histogram (CCH). In CI, a histogram intersec-
tion approach is used to perform matching by considering each bin in the color histogram
as a type of color feature. The CCH describes the index to fix the order of the colors and
then recalculates each bin value to strengthen the feature of high-frequency colors. They
can manage the challenges of rotation, deformation, and scale variation; however, they
cannot easily process noise interferences and illumination problems. Thereafter, a series of
fuzzy color histogram-based methods [9-12] have been proposed to overcome the problems
of noise interference and illumination. Verma et al. [13] introduced triangular membership
functions to improve fuzzy color histograms for template matching (TFCM).

However, color histogram-based methods present some disadvantages, such as the
lack of position information, which reduces the discrimination sensitivity. In addition
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to its robustness, as a crucial evaluation indicator in matching, its alignment precision
is another evaluation indicator for improving its accuracy while maintaining robustness
during object matching.

Image matching technologies based on image features have been widely applied,
where classical template matching methods include the sum of squared difference (SS5D) and
normalized cross-correlation (NCC) [14,15]. Most object detection or matching methods,
such as LGCmF [16] and MGNet [17], are based on multi-feature fusion and training
processes. However, in general, they tend to be time-consuming, especially in preparing
sufficiently large training datasets for models designed to learn verified training signals in
applications requiring high performance. In this paper, an efficient approach is proposed
for robust, fast, and accurate matching that is based on color histogram matching and
combination with a high precision matching scheme.

The novel approach proposed in this paper realizes robustness in distortion of target
images and higher margins in fundamental matching problems, and then achieves more
precise matching in position. The effectiveness of the proposed approach is evaluated in
comparative experiments with other representative methods by use of the open data. In
our previous studies [18,19], the fundamental idea of absent color indexing, named ABC,
i.e., the decomposition of a normal histogram into two disjoint ones using fixed parameters,
was introduced to achieve good performances in feasible matching. In this paper, it is
largely modified to give a clear formalization and a new scheme for defining an important
parameter /it by use of an original concept of the mean color histogram to obtain more
effective threshold values. Furthermore, it can be combined with the correlation filter, CF,
that was utilized after ABC to achieve a more precise target search.

The remaining sections of the paper are as follows: Section 2 introduces the concept
of apparent colors and absent colors, as well as a statistical method to determine the
threshold ht. Section 3 describes a method to incorporate CF to improve the match
precision. Section 4 shows the experimental results for real-world and open data. Section 5
presents the conclusions and future work.

2. Absent Color Indexing
2.1. Why Are Minor Colors Important?

The motivation of introducing a novel concept is to enhance color-based features in
cases where an object to be searched has a few but prominent colors together with existing
features. For example, when identifying an individual person, eye color is a quantitatively
minor or hidden color feature, but it can provide an important feature for identification.
Especially in the cases of image pattern search problems by computers, these may be
somewhat hopeful to contribute separation of the targets from other candidates through
enhancement of identifier in apparent or neutral color features.

In Figure 1, I; and I, are examples of the same size (100,90) that exhibit extremely
similar colors; the major color is black which occupies a large proportion; yellow, red, and
white are minor colors with relatively few pixels. For conventional color histogram-based
matching, the main colors have played an essential role in existing similarity calcula-
tion methods. However, minor colors were ignored as trivial information for evaluating
similar images.

The proposed approach focuses on low-frequency colors in any pair of two histograms
of the reference and target images. To evaluate histogram similarity, three conditional
combinations with respect to high and low frequencies in their respective bins are required.
If both of two bins include high frequencies, they may have high similarity. In contrast, if
only one of the two bins has a lower frequency, its contribution to the overall similarity may
be much lower. The last case where they both have low frequencies has been evaluated
as having only a relatively small contribution to the overall similarity; however, it is
considered to be of interest in this work. This shows that the two images include the color
with low frequencies represented in the bins. In this study, this case was formalized as
an effective feature in histogram evaluation. However, we must prevent contamination
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by additional noise in histograms when designing algorithms, because noise may easily
influence such low frequencies. This problem should be one of the subjects in the paper to
solve by use of some particular definitions of minor colors.

Figure 1. Two images I; and I, as example of same size.

2.2. Color Space Selection

Many color spaces have been proposed in color management and image processing,
e.g., HSV, YUV, and L*a*b*. In this study, the L*a*b* color space [20] was used for ABC be-
cause it is a perceptually uniform space, where the color distribution shows a concentrated
distribution trend, and the L* channel expresses the lightness. The value of L* channel
defines from 0 and 100. The a* and b* channels mean colors from green to red and blue to
yellow, respectively. The range of these two channels is —128 to 127. L*a*b* color space is
closer to human vision. It can separate the lightness independently. To avoid the effect of
illumination, the a* and b* channels without the L* channel are used in this study.

2.3. Apparent and Absent Color Histograms
With reference to the schematic diagram in Figure 2, a detailed mathematical formula-
tion of the proposed procedure is given.

| Original Histogram | Separate Histogram | Inverted Histogram | Normalized Histogram| Similarity Measurement |
! [ arm ! —— ! |
! Lol m. Lol |

hT B ABH
‘ Histogram Intersection: I(HAP, GAP)

Similarity Measurement
--------------------------------------------------------------------------- S = wi(HA?, GP) + (1 — w)I(HAB,GAP)

G D D D D |:| Histogram Intersection: I(HAB, GB)

ABG

Figure 2. Methodology of ABC approach.

It may be helpful to prepare a kind of nomenclature of definitions for reading the
formalization as follows: AP(-) and AB(.) show a pair of apparent and absent color his-
tograms before normalization and inverting. “B(") is absent color histogram after inverting,
and then (-)* and (-)*P are apparent and absent color histograms after normalization.
Assume that each image has N pixels and the color space has 1 by B, bins or quantization.
They are represented by two-dimensional color histograms H’' and G/, respectively, as
follows [21]:

H = {n; !
{ 1]}(i,j):(l,l),“',(ﬁl/ﬁz) W
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G ={g; ?
{gu}(i,j):(l,l),“',(ﬁl/ﬁz) @

where 1] j is the frequency in pixels in the bin at position (i, j) in the color space. Using H
as a representative in the following formalization, the relative frequencies are defined as

.
H={hj} = {5 ()
1y N
(@) =(11),(B1.p2)

The histogram G’ is transformed to G in the same manner. Figure 3 shows the relative
histograms H and G for images I and I, respectively. An apparent color histogram A" H
and another absent color histogram “BH are defined from H as

APH = {Aphi]’|APhi]’ = hjj > hT} 4)

ABH = {ABhij|ABhij =h;j < hT} &)

where It is an important threshold or parameter for thresholding to decompose the
histograms H into two disjoint constituent histograms. The definition of ht is provided
in Section 2.4. ATH is an apparent or major color that can be easily observed in images.
ABF contains minor colors because their occurrence is not frequent in the image or the
proportion of pixels in the image is relatively small. A" H and ABH have the same structure
as the two-dimensional histogram H, where their elements APhij and ABhij represent the
frequencies of the colors in the (i, j) bin, respectively. Any other bins without the definitions
above-mentioned have zero or null frequencies at this point. To utilize any information
included in the low frequencies in any histogram, the decomposition process is introduced
systematically and effectively.

eQ
3y

Frequency
o000
chRmRG

(a) H for Image I (b) G for Image I,

Figure 3. Original color histograms (10 x 10 bins).

Next, after decomposition, the inversion of ABF] ig necessary to convert each value
in it to the complement of the value hr. If ABhi]' > 0 for any bin at position (i, j), then the

frequencies in the inverted histogram APH = {ABJ;;;} is defined as follows:
ABhij = hy =P by (6)

Through this inversion operation, one can make inverted evaluation in similarity for
absent colors as distinguished features. For completion of the inversion, some auxiliary
small rules are necessary as follows. If #P7;; = 0 and A'h;; > 0, then #Pf;; = 0 because
the color represented at coordinate (i, ) in the color space should be considered as an
apparent color, and if ABhij = 0 and APhij = 0and ABgij > 0, then Aszij = ht. The last
rule imposes a particular condition on the component ABl_lij, for which AB gij > 0,ie, ABE,'j
may contain the counter part for comparison when evaluating absent colors as enhanced
features. Furthermore, the definition of absent colors is interdependent between the two
images for matching comparisons. It is noteworthy that if #;; = g;; = 0 in the original
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histogram because of no operation on those bins. In the last step, both A" H and “BH must
be normalized to HAP = {hf}‘P} and HAB = {hf?-B} to satisfy the condition that all the

components should sum up to one. Figure 4 shows the apparent color histograms HA? and
GAP

and absent color histograms HB and GAP for images I; and I, respectively.

Frequency
coocoooo
chlmanay

Frequency
v 4
3

(c) GAT for Image I, (d) GAB for Image I,

Figure 4. Example of apparent and absent color histograms.

The procedure proposed here allows us to make certain balanced histograms for the
evaluation of image similarity, and then they are expected as effective features to solve
some troublesome problems through enhancement a rather small part of the images.

2.4. Design of Threshold

The threshold k7 is one of the main roles in defining the apparent and absent colors.
In this section, the approach to define the colors is explained so that meaningful histograms
and effective performances can be achieved. Since jittering just around the level must be a
trouble for stable signal conversion, an excellent algorithm using averaging histograms has
been proposed to solve this problem. The mean color histogram, M, is introduced to obtain
an averaged tendency of color distribution in two histograms to be compared and then to
realize a stable definition of the threshold. M = {mif}(i,j): (A1), (Bupa) 1S defined as
mij =~ 7)

M is a critical phase before threshold selection. It analyzes the proportion of each
component color in the histogram from a statistical perspective to match images. Hence, the
rationality and dynamics of the threshold determination are improved, and the accuracy of
the final similarity measurement is guaranteed. After creating M, it is converted to another
sorted one-dimensional histogram M*°"ted = {1} as follows:

Msorted — {ml@grlted > mlsorted} (8)
where i represents the bin’s index in histogram M4, The threshold value /it can be
defined by the following equation using an order index s related to a significant rate &, by
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which one can separate the set of all bins into two sets of apparent colors and absent colors
in consideration of rare colors in the images.

i=1

S
s = argmin{ Z m?ormd >1- a} )

msorted + msorted
hy = et (10)

Compared with a constant threshold, using the parameter s yields a stable decomposi-
tion that can be performed without any patterning near the threshold value. Because a zero
frequency is important for eliminating noise effects, a removal operation for frequencies
close to zero must be applied in the absent color histogram; for example, the bins re-
tained from the original color histogram should be larger than 0.2 X it in our experiments.
Figure 5 shows the mean color histogram M for histograms H and G. Figure 6 is a Pareto
chart [22] for this example; the significant rate & represents the effectiveness by revealing
the rareness of the absent colors and contributes to the design of the threshold value.

; - 1
pemr—a i
o =0.1 -
09 k===t . msorted
=027 ‘ o
08 F---- 1 4 028
AI , - - 1l —a -
07 | ,’ ! : E’
1
> | ! 1 i c
ooty ! g
@ 1 ! ]
0.5 ! 8
3 ! . Q
,j_'f 04 ! : 1002
I ' T
03 | ' E
1 1 E
. | ! 1023
1
0.1 | '
. 1
0 Dd:z: 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 6. Parameter « and sorted one-dimensional histogram in Pareto chart.

2.5. Histogram Intersection

Histogram intersection [23-25] is a popular similarity index used in many studies and
applications. It provides the following simple procedure for any two histograms H and G
of the same size defined in a given color space.
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(BuB2)
I(H,G)= Y. min{hyg;} (11)
())=(11)
For the two types of histograms proposed herein, i.e., apparent and absent color
histograms, a scheme for combining two intersections is defined by using a weighting
coefficient as follows [26]:

S = wI(HAP, GAP) +(1- w)I(HAB, GAB) (12)
where 0 < w < 1.

3. Combination of ABC with CF

The proposed method, ABC, is expected to be robust against ill-conditions, such as
rotation, distortion, and scaling [18], while it is not enough in positional precision due to
the loss of pixel location information. Some applications require higher sensitivity and
positioning accuracy, as well as robustness against adverse conditions. As a trial in this
paper, these requirements can be realized by combining ABC and another registration
scheme of higher positional precision.

Correlation filter, CF, is an effective scheme for some kind of precise registration based
on training and filtering in the Fourier domain [27,28], which can produce sharp peaks in
the correlation output and achieve accurate localization of matched images. By training on
deformed samples, CF is expected to be less sensitive to deformations of the target image,
a property that makes it suitable for use in combination with robust but rough registration
schemes, such as ABC.

In this method, an optimal filter is defined by a provided two-dimensional peak-
centered Gaussian-like distribution and is obtained through several training processes to
get a maximum value in a response map, which indicates the best-matched position. Let a
reference image be p in image domain. Subsequently, an output g is calculated to use the
model of Gaussian-like profile, where o = 8 for the reference image of the size 110 x 80, as
shown in Figure 7.

55 -40

@) (b)

Figure 7. Reference image p and output 4. (a) Reference p; (b) Output g of model of two-dimensional
peak-centered Gaussian-like distribution.

The correlation operation with filter u in the image domain was performed via pixel-
wise calculations, which is efficiently performed in the frequency domain [29] as follows:

Q=rour (13)
where P, Q, and U are the Fourier transforms of p, g, and u, respectively; symbols “x” and
“©®” indicate the complex conjugate and Hadamard product [30]. To obtain a better filter
U, several p; are trained as a training set via the affine transformation of the reference
image as shown in Figure 8, and g; as the output was generated to make a two-dimensional
peak. This training is a key process for achieving high and stable sensitivity in finding
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any precise position in spite of the ill conditions. The minimization of the output sum of
squared error [31] is utilized.

e=min)_|POU* — Qi (14)
i

where i is the number of samples from one to 60 in our experiment. A closed-form
expression of U* is obtained as follows:

_ EiQi@PI‘*

u* =
EiPiQPi*

(15)

Let an image t be the input to CF from the searched position by pre-processing, ABC,

as shown in Figure 9. The optimal filter U* is applied to T, the transformed version of ¢,

for making its response map R in the Fourier domain, in which the largest peak indicates
any target position.

R=ToU" (16)

Figure 9 is an overview of the combination of ABC and CF. As shown in the upper
left corner of the figure, ABC as the first step for coarse matching gives a searched image ¢
for initial candidate and then CF is performed as the next step, in which the filter u in the
upper right corner allows for more accurate registration. The figure shows the profile of the
response map 7 in the upper right and the yellow bounding box shows the best-matched
position by use of the image data from Box dataset [32,33].

Sample p; Sample p, Sample p; Sample p, Sample py;

otV Lees
-

o oreA

Sample p;; Sample py, Sample p;5 Sample p;¢ Sample p,,

TV dane. arene ..
Reference ! T

Sample p,s Sample p,¢ Sample p,, Sample p,g Sample pss Sample ps¢

Sample p;,_;  Sample p; Sample p;,;  Sample p;;, Sample ps, Sample pg,

Figure 8. Affine transformation for getting reference samples p;.
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Filter u

Searched image t
by ABC

Response map r Searched result by ABC-CF

Figure 9. Overview of ABC-CF matching.

4. Experiments

Some experiments are performed to demonstrate the performance of our proposed
method by comparing it with other approaches. In Section 4.1, four color histogram-based
approaches, i.e., CI, CCH, ABC, and ABC-CF, are compared using real-world images. In
Section 4.2, not only color histogram-based approaches as comparison, but also template
matching approaches are compared for tracking using the open data.

The same set of parameters are used as those of the two-dimensional color histogram,
i.e., 10 x 10 bins, « = 0.2, and w = 0.6 throughout all the experiments for a fair comparison.

4.1. Experimental Comparison with Color Histogram-Based Methods

Meanwhile, ABC-CF was selected as an improved version of ABC to compare the
matching results. In the experiments, different challenges could be tried, such as rotation,
deformation, occlusion, scale variation, and illumination variation [34-37], to prove the
merits of ABC and ABC-CF. The results obtained in a scene measuring 360 x 640 are
shown in Figure 10. The key feature of ABC is to complete image matching via a color
histogram. Therefore, it is compared with some existing color histogram-based methods to
evaluate the performance of our approach. Figure 10a shows a reference image measuring
100 x 40. Figure 10b through Figure 10f show the different challenges to search for the
reference position. For the case of rotation, deformation, and occlusion, the methods of
ABC, CI, and CCH yielded good performances in the experiments; this demonstrates
the advantages of the color histogram-based approaches. In the case of scale variation,
the CCH indicated a slight shift, whereas ABC and CI maintained the correct matching
position. In the experiment pertaining to illumination variation, only ABC matched with
the target, although the matching target position shifted upward slightly. Figure 10g—i
show the similarity profiles. The best-matched position is compared with the second-best
matched position; ABC demonstrated better discrimination ability compared with the
other two methods. It was evident that the margin distance of ABC was larger than those
of Cl and CCH.
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(a) Reference

100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
Column Column Column

(g) Similarity profile in ABC (h) Similarity profile in CI (i) Similarity profile in CCH

Figure 10. Matched results in (a) reference image. (b—f) show matching results by CI, CCH, ABC,
and ABC-CF. Bounding black, red, blue, and green boxes show matching results by ABC-CF, ABC,
CI, and CCH, respectively. (g—i) show profiles of their similarity in the case of rotation.

Figure 11 shows the results of ABC and ABC-CFE.

Figure 11. High precision matching by ABC-CF. Black bounding boxes show ABC-CF matching, while
red boxes are ABC results. Yellow boxes are their ground truth (GT). (a) Rotation; (b) Deformation;
(c) Occlusion; (d) Scale variation; (e) llumination variation.

ABC-CF, which is the improved version of the original ABC, yielded more accurate
searching results and solved the shift problem. GT represents the ground truth for eval-
uating the performance of the comparison methods. Table 1 shows a comparison of the
location error based on different challenges for color histogram-based methods, where the
location error was calculated based on the Euclidean distance that used GT to compare
with the searched position. In cases involving rotation and deformation, the CCH and CI
can search for the best position in the experiments. The ABC matching position exhibited
a slight downward shift, and this problem was mitigated using the ABC-CF method. In
another three cases, the ABC-CF method proved to be the best method as it yielded the
lowest location error.
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Table 1. Location error comparison with different challenges for color histogram-based approaches.

CI CCH ABC ABC-CF
Rotation 3.79 2.23 9.19 3.16
Deformation 2.82 6.09 9.16 5.09
Occlusion 12.04 21.63 10.66 4.46
Scale variation 341 12.16 3.70 3.16
[llumination variation 190.96 164.76 9.05 3.60

4.2. ABC-CF in Open Data

To evaluate the performance of our new approach, ABC-CF, with color-histogram- and
template-based matching methods, the four histogram-based algorithms are selected, i.e.,
ABC, CI, CCH, and TFCM and two template-matching algorithms, i.e., SSD and NCC, for
comparison using open data. Figure 12 shows a reference image of the 85 x 77 from Tiger1
data in [32], where many frames included various instances with severe ill-conditions such
as out-of-plane rotation, occlusion, and scaling in many frames. Pixel-by-pixel scanning
is done over the scene using the reference image for all the algorithms. In Figure 12, the
horizontal axis represents the number of frames, and the vertical axis represents the location
error in the Euclidean distance between their best matched positions and the ground truths.
The five frames are extracted as examples to show some details in finding or matching
the reference in the scene. For instance, Frame #31 shows the matching result under the
conditions of deformation and illumination variation, where ABC, CI, CCH, TFCM and
SSD obtained better positions despite being slightly shifted. The ABC-CF method yielded
the best matched precision. Similar results were observed in other frames.

Reference #31 #53

<2

]

S

400

——SSD
i ——NCcC
300 ! —&-CCH
1 —4—Cl
TFCM
——ABC
—%—ABC-CF|

Location error (pixels)
N
8
T

#16 #42 #70

Figure 12. Comparison of template- and color-histogram-based methods.

The precision plot is shown in Figure 13, in which the horizontal axis shows the upper
limit of the location error. For example, the precision value at limit 15 signifies the total
rate of frames in which the detected positions do not exceed 15 relative to all the frames.
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The vertical axis shows the precision in the range of 0 to 1. Because both the template-
matching-based algorithms failed to increase their precisions as the limits increased, they
might have a clear bound of registration up to a distance of approximately 20 pixels, which
is approximately 20% of the reference size in this case. All the histogram-based approaches
did not exhibit such characteristics; however, their precision increased gradually, albeit
lower than the template-based methods, particularly in the low limits. The ABC method
demonstrated the best overall performance among all the methods, as indicated by the
following two findings: the higher values around the low limits indicated more precise
sensitivity in terms of registration performance, whereas the higher values in the high
limits indicated more robustness in identifying the targets.

1

—*—SSD

——NCC L
CCH

0.75 | _a—¢|

TFCM
——ABC

05 | T¥—ABC-CF //A/ i

Al

0 5 10 15 20 25 30 35 40 45 50
Location error (pixels)

Precision

Figure 13. Precision plot in Tigerl data.

4.3. Computation Cost

The programs for the experiments were implemented in C++ by using Visual Studio
2015 and the OpenCV 2.4.13 library, without any parallel processing or GPU acceleration.
The hardware was a Windows 10 PC with a 2.81 GHz Intel Core i5-8400 CPU and 8 GB RAM.
Since the approach proposed in the paper, ABC-CF, is based on pixel-by-pixel calculation
in nature, the computation cost is proportional to the number of pixels in the reference
images and the target scene. The matching task depicted in Figures 7a and 9 was selected
as a typical example to check the computation time requirements. A reference image of
110 x 80 pixels and a scene of 480 x 640 were used in this task, and the computation time
was then observed using the OpenCV timing function. Table 2 shows the computation costs
for ABC-CF and the other methods. The most efficient methods were SSD and NCC, given
their simplicity. Although ABC-CF exhibited a time disadvantage, this is not problematic
in practical applications because the computation cost of all histogram-based methods does
not differ significantly.

Table 2. Computation costs for seven methods.

SSD NCC CCH CI TFCM  ABC ABC-CF
Computation cost  0.024s 0.026s 534s 383s 582s 7.56s 8.05s

5. Conclusions

A new approach named absent color indexing was proposed for robust pattern re-
trieval by a novel segmentation of histograms for enhancing colors of low-frequency or
no-frequency. Using another particular structure, mean color histogram, the threshold /it
can be calculated for stable segmentation of histograms without any jitter. To supplement
insufficient precision in registration by the absent color indexing, the correlation filter was
combined with it. Experiments on various image data show that the proposed method
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can achieve better performance in image matching and robust tracking compared to other
typical methods.
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