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Abstract: Empirical validation and verification procedures require the sophisticated development
of research methodology. Therefore, researchers and practitioners in human–machine interaction
and the automotive domain have developed standardized test protocols for user studies. These
protocols are used to evaluate human–machine interfaces (HMI) for driver distraction or automated
driving. A system or HMI is validated in regard to certain criteria that it can either pass or fail. One
important aspect is the number of participants to include in the study and the respective number of
potential failures concerning the pass/fail criteria of the test protocol. By applying binomial tests, the
present work provides recommendations on how many participants should be included in a user
study. It sheds light on the degree to which inferences from a sample with specific pass/fail ratios to
a population is permitted. The calculations take into account different sample sizes and different
numbers of observations within a sample that fail the criterion of interest. The analyses show that
required sample sizes increase to high numbers with a rising degree of controllability that is assumed
for a population. The required sample sizes for a specific controllability verification (e.g., 85%) also
increase if there are observed cases of fails in regard to the safety criteria. In conclusion, the present
work outlines potential sample sizes and valid inferences about populations and the number of
observed failures in a user study.

Keywords: automated driving; validation and verification; user study; research methodology

1. Introduction

Level 2 driving automation technology [1] is already widely available to consumers, and
the first Level 3 system obtained legal permission in March 2021 in Japan [2]. Moreover, the
United Nations Economic Commission for Europe is also working towards regulations and
standards for Level 3 vehicles [3]. It is likely that there will be different systems created by
different manufacturers on the market in the next few years. A vehicle’s human–machine
interface (HMI) must thus communicate the responsibilities of the system and the driver to the
latter. The design of an automated vehicle HMI will eventually undergo testing procedures to
ensure safety and usability. Compared to the evaluation of HMIs in manual driving focusing
on driver distraction [4,5], a commonly agreed upon methodological framework for validation
and verification does not yet exist. Deliverables on the investigation methodology of consortia
projects can serve as a basis to build upon such a commonly agreed upon framework. For
example, the Response Code of Practice [6] was first published in 2006 and was just recently
been updated in the L3 Pilot project [7]. These reports combine a large body of research on
driving automation systems and human–machine interfaces. Similarly, Naujoks et al. [8]
proposed an approach on how to evaluate automated vehicle HMIs regarding the five criteria
that are contained in the automated vehicles policy published by NHTSA [9]. Therein, the
authors outline an appropriate design for user studies regarding driving scenarios, metrics,
instructions, etc. One important aspect here is the number of participants that is required
for user testing. The authors describe one approach that requires a sample size of N = 20,
assuming that every participant meets the validation criterion. However, there might be
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additional considerations that are necessary to determine the sample size for a study to ensure
the generalizability of the findings to a population. The objective of this work is to provide
researchers and practitioners with a recommendation for how many participants to sample for
validation procedures. Here, we will derive the number of required participants for different
controllability levels. Moreover, researchers can face results in hindsight, where one or more
participant might fail a test criterion. This work can also act as a guide for the interpretation
of such outcomes. It supports researchers with indications of the controllability level that is
permitted in such instances.

Thus, the present work describes an approach on how to recruit an appropriate sample
size for user testing in human factor validation studies.

Before further describing the procedure, we want to emphasize that the use of G-Power
is not applicable to calculate the adequate sample size in this instance. The reason for this is as
follows: In the present case, researchers want to show that no difference between populations
exist or that trials with a certain system come from a population in which (at least) x% of all
trials are controllable. To show that, the researchers hope for a non-significant null hypothesis
(H0) test in order to be able to keep the H0 of controllability. Since no H1 is formulated (or to
be exact: an unspecific H1 is formulated), there is no defined effect size, and power analysis
is not possible. However, it is possible to determine the smallest number of events (hits)
associated with a test probability p that is larger than alpha 0.05 beforehand.

The code of practice for the validation of advanced driver assistance systems (ADAS)
suggests that 20 out of 20 participants in the sample drawn have to meet a criterion to infer
a controllability level of 85% in the population [6]. One example of a controllable event in a
study on driving automation is a successful and safe take-over of the driving task when the
driving automation system issues a request to do so (see, e.g., [10–13]). In contrast, crashes
with a stationary object, exceedance of highway speeds, or crashing into a highway barrier are
examples of uncontrollable events. ISO [14] (ISO 26262) lies the foundation for this approach
by defining controllability levels (e.g., 85, 95, and 99%). This norm defines the required sample
size (without uncontrollable events) for inferring a certain controllability level under an error
probability that is <5%. Similar approaches are in effect today for evaluating HMIs for driver
distraction. For example, NHTSA [4] suggests including a sample size of N = 24 participants
of which at least n = 21 must meet the criteria for gaze metrics. Therefore, they argue that 85%
of the sample must meet the criterion. Taking into account ISO 26262, it becomes obvious
that this does not equal a level of 85% in the population but a considerably lower level.
However, at first glance, many researchers might wonder why a 20/20 criterion is applied to
ensure a controllability level of 85% in a user population. The present work will first provide
background information about the origin of this rule and apply this logic to further examples
of testing in the human factors area.

Prior considerations about sample size and composition are indispensable for human
factor researchers when showing that a certain level of controllability can be met in the popula-
tion. The aforementioned code of practice still represents the state of the art for user testing in
driving simulators or test tracks. The 20/20 criterion for ensuring a 85% controllability level
has been adopted in recent methodological frameworks for evaluating automated vehicles and
HMIs [13,15]. However, it might be the case that one or more participants fail a criterion and
that the researcher does not have a convincing argument to exclude the respective participant
from the sample. Researchers might also have to interpret their obtained results regarding
the level of controllability given a specific number of observed errors. Regarding these issues,
researchers can first find advice in Weitzel and Winner [16], who have proposed a formula
to calculate the number of required participants in a study based on the level of confidence
and respective level of controllability (i.e., number of uncontrollable events). The authors,
however, neither provide a comprehensive and transparent derivation of their solution nor
provide an overview of the relationship between sample sizes, the number of errors, and the
respective error probabilities.

Therefore, this work aims at a comprehensive description of the relationship between
the number of participants in a study, the error probability or the confidence level, and the
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number of uncontrollable events that might occur in a study. We support researchers and
practitioners working on (automated vehicle) HMI evaluation by providing a recommen-
dation for sample size and controllability a priori. Moreover, the present work is helpful
for the interpretation of the number of uncontrollable events by considering the sample
size a posteriori. First, we transparently derive the commonly applied 20/20 criterion
using binomial tests. With these, we calculate the relationship between error probability
by sample size for different controllability levels (i.e., 85, 90, 95 and 99%). The following
section outlines the procedure.

2. Materials and Methods

To determine adequate sample sizes for the validation and verification experiments,
we calculated binomial probability density functions. To be more specific, we first calculated
the error probabilities for zero uncontrollable events for each combination of level of
controllability and the respective sample size. The resulting error probabilities were then
analyzed to find the first value that drops below the statistical significance threshold of
0.05. This respective sample size was then considered as sufficient for the controllability
inference of interest.

To determine acceptable sample sizes with observations that include uncontrollable
events (i.e., from 1 up to 7), we varied the number of uncontrollable observations and calcu-
lated the error probability by using binomial probability density functions (see Algorithm 1).
We accumulated the probabilities and determined the first value for each number of events
that drops below the statistical threshold of 0.05, starting with zero. Thus, we can provide a
range of potential sample sizes for each number of observed uncontrollable events.

Algorithm 1.Calculation of error probabilities

%Loop through sample sizes from 1 up to 150
for ii=1:350
%set a container variable for results of binomial test
%set a variable to accumulate these results
cont=zeros(150,1);
container=[];
%container=zeros(150,1);
b=0;
%For each sample size: Loop from 1 up the the respective size
%and calculate a binomial test each
for i=1:ii
%Calculate test: subtract i-1 for X
a=binopdf(i-1,ii,contr);
%accumulate the results
b=b+a;
%Save the accumulated result in the container.
container=[container;1-b];
end
%Find the relevant sample size that drops below 0.05
rel=find(container<.05);
if isempty(rel)==0
rel=rel(1);
probability=container(rel);
err=ii-rel;
else
probability=container(end);
err=0;
end
%save variables of interest
errors=[errors;err];
prob=[prob; probability];
size=[size; ii];
end
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Algorithm 1 shows the Matlab code for automated calculation of error probabilities
and sample sizes for one specific level of controllability (variable “contr”). Note that the
loop for sample sizes was increased for the populations of 95 and 99%.

3. Results

Figure 1 shows the error probabilities for the four populations of interest where
the increasing sample sizes include no uncontrollable events. The plot also includes a
horizontal line that depicts the 5% error probability. The first sample size that drops below
this threshold can be considered as statistically significant. The graph also shows that the
number of required participants increases as the percentage in the population increases or
of the researchers want to find support for a higher level of controllability. Moreover, the
number does not increase in a linear pattern.
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n = 20 revealed an error probability of p = 0.0396 (see Table 1). 

Figure 1. Error probabilities for the four populations (80, 85, 90, and 95%) by sample sizes with no
uncontrollable events.

This is reflected in the increasing distances between the curves. The exact values for the
sample sizes are reported in Table 1. A closer observation of the error probabilities for the
85% population with no uncontrollable event revealed that the first sample size whose error
probability drops below the threshold of 0.05 is a sample size of n = 19 (p = 0.0454), while
the sample size of n = 18 is still above the threshold (p = 0.0510). The sample size of n = 20
revealed an error probability of p = 0.0396 (see Table 1).
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Table 1. Minimum and maximum required sample size with error probabilities for 0 up to 7 uncontrollable events for five different populations.

Percentage
Population 0 Events 1 Event 2 Events 3 Events 4 Events 5 Events 6 Events 7 Events

Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max

80% 14
(0.044)

21
(0.009)

22
(0.048)

29
(0.013)

30
(0.044)

36
(0.016)

37
(0.045)

43
(0.018)

44
(0.044)

49
(0.021)

50
(0.048)

56
(0.021)

57
(0.045)

62
(0.024)

63
(0.047)

68
(0.025)

85% 19
(0.046)

29
(0.009)

30
(0.048)

39
(0.014)

40
(0.049)

49
(0.016)

50
(0.046)

58
(0.019)

59
(0.047)

67
(0.020)

68
(0.047)

75
(0.023)

76
(0.050)

84
(0.023)

85
(0.048)

92
(0.026)

90% 29
(0.047)

45
(0.008)

46
(0.048)

60
(0.014)

61
(0.049)

75
(0.016)

76
(0.047)

88
(0.020)

89
(0.050)

102
(0.021)

103
(0.048)

115
(0.023)

116
(0.048)

128
(0.024)

129
(0.048)

141
(0.024)

95% 59
(0.049)

92
(0.009)

93
(0.050)

123
(0.014)

124
(0.050)

152
(0.017)

153
(0.049)

180
(0.019)

181
(0.049)

207
(0.021)

208
(0.049)

233
(0.023)

234
0.050)

259
(0.024)

260
(0.050)

285
(0.025)

99% 299
(0.050)

472
(0.009)

473
(0.050)

627
(0.013)

628
(0.050)

772
(0.017)

773
0.050)

912
(0.019)

913
(0.050)

1048
(0.021)

1049
(0.050)

1181
(0.022)

1182
(0.050)

1311
(0.024)

1312
(0.050)

1440
(0.025)
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Based on the binomial tests that were described prior, we calculated the error proba-
bilities for the different populations (i.e., 80, 85, 90, and 95% controllability) with increasing
steps starting from one considering up to seven observed uncontrollable events. We re-
ported both the first sample size for a respective number of observed errors and the last,
which includes the respective error probabilities. The results are shown in Table 1.

The number of required participants also increases for each observation that does not
meet a criterion. In the 85% population, for almost every ten participants that are included
starting from 20, there can be one additional uncontrollable event. While a sample size of
20/20 is sufficient for a controllability verification of 85%, one observation with an error
increases the sample size to n = 30, and another event increases it to n = 40. In comparison,
the intervals of the 80% population are smaller, with a range of about seven participants
per uncontrollable event. The intervals for the 90% population have an average range of
15, and the 95% population has a range between 25 and 30 participants per uncontrollable
event, both of which are larger. In addition, Table 1 reports the results of the 99% (c1)
population. The number of required participants in the 99% case without an error turned
out to be even higher than the seven events in the 95% population. The intervals showed
that approximately 150 additional participants would be necessary for each uncontrollable
event observed in the sample.

4. Discussion

When setting up validation and verification studies for human–machine interfaces in
automated driving, researchers need to determine the appropriate sample size in advance.
Additionally, they have to define certain criteria that need to be met and to define the
number of participants that have to meet each criterion in the user test. Based on the
observations obtained in the study, they can draw inferences about for example levels of
controllability in a population. However, to date, there is no comprehensive overview
of the required number of participants and inferential assumptions from a sample to a
population. To provide a recommendation to researchers and practitioners in the validation
and verification of automated vehicle HMIs for appropriate sampling and interpretation of
the obtained results, the present paper applied binomial tests with different populations,
numbers of uncontrollable events, and sample sizes.

The first goal of this work was to transparently derive the 20/20 criterion. The investi-
gation of the currently available sources for validation and verification [6,14] revealed that a
sample size of 19 is already sufficient to infer a controllability level of 85%. The error proba-
bility of a sample size of 19 fell just below the threshold of statistical significance, while the
sample size of 20 yielded an even smaller error probability. Nevertheless, this work suggests
that experimental procedures for validation and verification might collect n = 19 participants
and infer a controllability level of 85% if there are no uncontrollable events.

The second goal was to investigate the required sample size depending on different
controllability levels and numbers of uncontrollable events that may occur in a study. Regard-
ing the controllability level, the results showed that the required number of participants for
populations with lower levels of controllability (e.g., 80, 85%) require a reasonable sample
size of less than 50 participants, even if up to two uncontrollable events occur in the sample.
Therefore, empirical tests for these instances can be performed well in validation procedures.
However, to verify higher levels of controllability (e.g., above 90%), empirical studies would
require an enormous number of participants. This becomes even more obvious with the addi-
tional example of the 99% population. In experimental procedures, samples with more than
60 participants require a high amount of effort to recruit participants to and to complete the
study. With numbers of more than 100 participants, which is still much less 1000, validation
and verification studies are impossible to conduct. Therefore, different methodological ap-
proaches such as heuristic expert assessments are necessary in these instances. Such heuristic
evaluations should be based on the guidelines that are available for the topic of interest [17,18].
Regarding observations of uncontrollable events in a user study, the respective size of the
sample for a verification of a certain population also increases. While the increase is quite
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moderate in the 80% and 85% population, the additional number of required participants per
observed event at higher levels ranges between 15 and 30. Thus, if one aims to verify a high
degree of controllability and plans to do so with a small number of uncontrollable events, the
sample size would be unreasonably large.

Applying these obtained results to empirical experiments, we refer to Naujoks and
colleagues [12]. In these studies, sample sizes were 21 or 22, respectively. At this point we
can treat the data as if the results had been obtained in independent validation studies,
while in fact the study employed a within-subject design. One might define a criterion that
no driver may put his/her hands to the steering wheel later than 7 s after the take-over
request has been issued. The data in the publication shows that when the take-over request
was accompanied by an auditory warning, all of the participants passed the criterion, and
evidence for 85% controllability was provided. In contrast, with mere visual warnings, a
significant portion of the sample failed this criterion with a 95% percentile, even beyond
20 s. Thus, there is no support for 85% controllability nor for 80% (see Table 1), but there is
support for a considerably lower controllability level that we have not calculated here.

From these observations, we suggest that a sample size of 59 could be a suitable and
reasonable sample size for the verification and validation of automated vehicle HMIs. The
advantage compared to a sample size of n = 30, where only one participant can fail a crite-
rion, is that with twice the number of participants, four times the number of participants
can fail a criterion. On average, for every ten participants that are included in a sample,
one of these might fail a criterion, still permitting an inference to the 85% controllability
level. This is especially important since there might be participants in a sample that fail a
criterion due to a variety of reasons that are not directly obvious; thus, the researcher cannot
exclude him/her from the sample. One example for this might be that the participant mis-
understands certain questions that are relevant to the criterion of interest in the validation
study [8]. Another possibility is that he/she cannot articulate the relevant aspect during
the interview specifically enough even though he/she has the correct understanding of the
HMI. This could be the naming and interaction of one sub-function (e.g., longitudinal vehi-
cle control) in combination with another sub-function (e.g., traffic-sign detection). These
examples would not permit the exclusion of the participant from the obtained sample but
would lead to a rejection of the validation procedure regarding the 85% controllability
level. Therefore, a larger sample size would provide a certain buffer against these rare but
still possible events. At this point, we want to explicitly address the issue of additional
sampling during the experimental procedure. The present work suggests not adding an
additional ten participants to the sample if the intermediate results showed that the test
did not meet the a priori defined criteria. We want to highlight that these numbers are
meant to be considered by researchers in the design process of a study where they decide
upon the sample size and the acceptable number of observed uncontrollable events.

Regarding the procedure for the distraction verification of HMIs, NHTSA [4] describes
that 21 out of 24 participants must meet their criteria for glance behavior. This implies
that three participants do not have to meet the test criteria. Table 1 shows that not even a
verification of 80% controllability in the population is ensured here since the interval for
three events ranges from 37 to 43. Thus, the assumptions about the population must be
decreased by a significant amount, most likely to around 70%. Therefore, the distraction
guidelines permit a sample percentage of 15% to fail their criteria, which translates to at
least twice the amount in the population.

The present work also comes with certain limitations. One shortcoming of the present
work is that it treats each participant as a controllable or uncontrollable event. However, it
might be the case that the validation and verification procedures as described in NHTSA [4]
(driver distraction) or [9] (automated vehicles) include multiple criteria per participant
(i.e., 3 and 5). A conservative approach would be that if a participant does not meet one
criterion, this specific participant is counted as a failure on the participant level. However,
since this particular participant actually meets all of the other criteria, another option is to
regard all of the criteria as separate and independent observations. Thus, the necessary
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sample size is higher (due to the observed event) and provides the opportunity to observe
a certain number of errors while still permitting a valid inference to the population of
interest, such as the 85% population (see Table 1). In other words, we suggest that each of
the five criteria in NHTSA [9] is treated as a separate test and is investigated whether a
sufficiently high number of participants meet the test criteria (and none or only a small
number fail the criteria). In case of a sample size of N = 45 participants, each criterion
might include two participants that fail in each criterion. However, the system or HMI still
passes the test in this example.

Furthermore, the present binomial tests assumed single-tailed testing since the hy-
potheses in validation and verification testing only make sense if they are directed. Under
the premise of single-tailed testing, the 85% population inference would require a ratio of
19/19, as described above. However, under a two-tailed premise, a ratio of 19/19 would
not be sufficient to infer to this population but rather 20/20. Therefore, the ISO most
likely assumed a two-tailed binomial test in their suggestion for the 20/20 criterion. In the
end, researchers must decide by themselves whether to adhere to a one- or two-tailed test.
However, in verification and validation, the procedures of directed hypotheses certainly
make more sense compared to undirected hypotheses.

5. Conclusions

This work provides a transparent derivation of the common 20/20 criterion for valida-
tion and verification. It provides recommendations for researchers and practitioners when
planning and interpreting their empirical studies. It also shows that empirical evidence
for verification procedures quickly approaches its limits when inferring from the obtained
results of the population. Thus, studies including 60 participants or less yield the possibility
of verifying controllability levels of up to 90%, depending on the number of uncontrollable
events that occur in the sample.
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