
 information

Article

Dimensionality Reduction for Human Activity Recognition
Using Google Colab

Sujan Ray *, Khaldoon Alshouiliy and Dharma P. Agrawal

����������
�������

Citation: Ray, S.; Alshouiliy, K.;

Agrawal, D.P. Dimensionality

Reduction for Human Activity

Recognition Using Google Colab.

Information 2021, 12, 6.

https://dx.doi.org/10.3390/

info12010006

Received: 29 November 2020

Accepted: 20 December 2020

Published: 23 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

Center for Distributed and Mobile Computing, EECS, University of Cincinnati, Cincinnati, OH 45221, USA;
alshoukr@mail.uc.edu (K.A.); dpa@cs.uc.edu (D.P.A.)
* Correspondence: raysu@mail.uc.edu

Abstract: Human activity recognition (HAR) is a classification task that involves predicting the
movement of a person based on sensor data. As we can see, there has been a huge growth and
development of smartphones over the last 10–15 years—they could be used as a medium of mobile
sensing to recognize human activity. Nowadays, deep learning methods are in a great demand and
we could use those methods to recognize human activity. A great way is to build a convolutional
neural network (CNN). HAR using Smartphone dataset has been widely used by researchers to
develop machine learning models to recognize human activity. The dataset has two parts: training
and testing. In this paper, we propose a hybrid approach to analyze and recognize human activity on
the same dataset using deep learning method on cloud-based platform. We have applied principal
component analysis on the dataset to get the most important features. Next, we have executed the
experiment for all the features as well as the top 48, 92, 138, and 164 features. We have run all the
experiments on Google Colab. In the experiment, for the evaluation of our proposed methodology,
datasets are split into two different ratios such as 70–10–20% and 80–10–10% for training, validation,
and testing, respectively. We have set the performance of CNN (70% training–10% validation–20%
testing) with 48 features as a benchmark for our work. In this work, we have achieved maximum
accuracy of 98.70% with CNN. On the other hand, we have obtained 96.36% accuracy with the top
92 features of the dataset. We can see from the experimental results that if we could select the features
properly then not only could the accuracy be improved but also the training and testing time of
the model.

Keywords: cloud platform; convolutional neural network (CNN); deep learning; dimensionality
reduction; feature extraction; google colab; human activity recognition (HAR); principal component
analysis (PCA); smartphone

1. Introduction

Human activity recognition (HAR) is the process by which we could identify what
a person is doing based on sensor readings. Generally, activities are divided into classes.
The main goal of HAR is to identify which class of activity is being performed by the
individuals. HAR has different applications in our life. For example, a HAR system
could detect if there is any abnormal activity in a crowd of people. After that, it could
allow identification of possible threatening situations or detect that a person is in need of
assistance. Another scenario where identifying human activity could be very useful is the
monitoring of elderly people in need of care [1]. Additionally, it could be useful in the field
of interactive robotics (human–robot collaboration) and for assistive robotics [2,3].

With the daily usage of the smartphone, the embedded sensors such as accelerometer
and gyroscope typically produce a huge amount of data, which are very useful. They can
be used to predict and classify human activities automatically. Potentially, HAR can play
an important role in elderly houses [4] especially in the countries where the average old
population is on the rise. Similarly, the moves of a sports player [5] can be analyzed with

Information 2021, 12, 6. https://dx.doi.org/10.3390/info12010006 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://dx.doi.org/10.3390/info12010006
https://dx.doi.org/10.3390/info12010006
https://dx.doi.org/10.3390/info12010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/info12010006
https://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/12/1/6?type=check_update&version=2

Information 2021, 12, 6 2 of 23

its help. As a result, a player’s performance can be improved. Additionally, HAR based
on sensors can play a vital role in Internet of Things (IoT) based technologies [6]. It has
the potential to be utilized in a wide spectrum of applications, and consequently, it is an
active topic of research. Many breakthroughs have been achieved in this area in the last
few decades [7].

Additionally, HAR plays crucial role in the mental and physical wellbeing of the
population [8]. Physicians could potentially manage patients’ diseases such as obesity,
diabetes, and cardiovascular automatically by recognizing and monitoring their daily
activities [9]. As a part of the treatment, these patients are usually required to follow an
active exercise routine [10]. Patients can manage their lifestyle with the help of activity
recognition system, and it will empower their physicians to properly monitor them and
hence, offer appropriate recommendations. If the activities of the patients are monitored
continuously then it will definitely help in reducing the hospital stay, improving reliability
of diagnosis, and equally enhance patients’ quality of life [11]. Alford [12] argued that
“apart from not smoking, being physically active is the most powerful lifestyle choice an
individual can make for improved health outcomes” [8].

If we have a high dimensional dataset then it could potentially increase the learning
time as well as the processing complexity. To address the problem, several studies have
explored principal component analysis (PCA) as a preprocessing step in the deep learning
framework. Kwak et al. [13] have shown the Effect of the Principal Component Analysis in
Convolutional Neural Network for Hyperspectral Image Classification (HSIC). First, they
applied PCA to the dataset to achieve dimensionality reduction. After that, they used the
compressed dataset to train the CNN model. Additionally, they have analyzed the effect of
PCA in deep learning for HSIC. Their results show that they have got very good efficiency
by using reduced dimensions with the explained variance ratio of 99.7~99.8% [13].

In this paper, we have collected the dataset from Kaggle [14], which is a public
repository. The dataset is named University of California Irvine (UCI) human activity
recognition (HAR) using Smartphone. It is taken from J. L. Reyes-Ortiz et al. [15] and
has been used in several projects [16–18]. The size of the dataset is 64.34 MB, and it has
10,299 instances in total.

Because we have high dimensional data with 561 features for HAR, it could also
increase the learning time and processing complexity. In our work, we have transformed
the dataset through PCA and applied into the CNN model by varying the size of the
reduced dimensionality. At the same time, we have shown the impact of dimensionality
reduction using PCA in deep learning networks for HAR.

Here, we have adopted a cloud-based platform, Google Colab to recognize human
activity. We can process the dataset in real-time with the platform. We could analyze and
visualize the data. Not only that but also, we can import a dataset, train the classifier
on it, and evaluate the model. Colab notebooks run code on cloud servers from Google.
It means that regardless of our machine’s capacity, we can harness the power of Google
hardware, including graphics processing units (GPUs) and tensor processing units (TPUs).
To perform all those things, only a simple browser is needed [19].

At the beginning, we have read the dataset and analyzed it so that we can understand
all the features properly and figure out how they are related to each other [20]. Then,
we clean the dataset for the experiment. Next, we have applied local outlier function to
find out if there is any outlier in the dataset. After that, we have scaled the dataset using
Robust Scaler since it has outliers. In the next step, we have applied PCA to get the most
important features of the dataset to model our data. Additionally, we have considered
deep learning method named convolutional neural network (CNN). After that, we have
incorporated important features to our model. We have trained the model by using 70%
(80%) of the dataset, kept 10% (10%) of the dataset for the validation and then tested it with
the rest of the 20% (10%) of the dataset. We have run the experiments for all the features as
well as top features of the dataset. We also made a comparison of the performance for all

Information 2021, 12, 6 3 of 23

the features with the top features. Finally, it is shown that we could achieve good accuracy
by using the top 92 features of the dataset with our hybrid approach.

The following are some of the key contributions and findings of our work: (1) We
propose a method to analyze and recognize human activity on the same dataset using
hybrid approach on cloud-based platform. (2) We have applied Local Outlier Function on
the training part as well as the entire part of the dataset to find the outlier. After finding
outliers in the dataset, we have used Robust Scaling method to scale the dataset. (3) We
have applied PCA on the dataset to find the most important features to model our data.
(4) We have achieved good accuracy compared to others only using the top features of
the dataset. (5) Furthermore, we have improved the training time and testing time of
the model.

The following describes the organization of the paper: we talk about problem state-
ment in Section 2, Section 3 discusses the related work, Section 4 presents the proposed
methodology, Section 5 explains the data analysis, Section 6 details the experiment with
the implementation of the model, Section 7 demonstrates the implementation details with
the results, and Section 8 concludes the study.

2. Problem Statement

All features do not contribute equally to predicting a disease or classifying the activi-
ties. If we include all the features of the dataset then it will become multi-dimensional and
suffer from overfitting. Therefore, it is necessary that we apply feature selection technique
to identity the important features and avoid the overfitting problem. Additionally, it is
important that the learning algorithm only focus on the subset of features that are relevant
and ignore the irrelevant features. That particular learning algorithm will be working on
the training part of the dataset for selecting the best performing feature subset. After that,
it could be applied to the testing part of the dataset. In this study, we apply dimensionality
reduction technique to reduce the dimensions of the original feature space and achieve
good classification results [21].

We know that healthcare systems are looking forward to offering better treatments to
their patients. And they are trying to do that by monitoring the health of the patients in
real-time constantly. Therefore, it is very important to have a system that could monitor the
status of people with underlying health conditions and recognize the user activities right
at home, which in turn will reduce patient’s unnecessary visits to the clinics. In this case,
it is necessary that activities are recognized with minimal response time. Not only that but
also if there are any abnormal activities tracked, it could notify the emergency department
that the patient is in need of immediate care. In this situation, it is crucial that the right
individuals are notified without any delays.

3. Related Work

Ullah et al. [7] have proposed an approach based on stacked long short-term memory
(LSTM) network to recognize six human behaviors using smartphone data. The network
consists of five LSTM cells, which are trained on the sensor data. A single layer neural
network which preprocesses the data for the stacked LSTM network is followed by the
network. They have used an L2 regularizer in the cost function to help in generalizing the
network. After that, the network is evaluated on the UCI dataset and quantitative results
are compared. They have measured the performance of the proposed approach in terms of
precision, recall, and the average accuracy. Compared to the closest state-of-the-art method,
the proposed approach has improved the average accuracy by 0.93 percent without doing
any manual feature engineering.

Ogbuabor et al. [8] have analyzed the role of accelerometer and gyroscope sensor in
activity recognition. In this work, they have used Multi-Layer Perceptron (MLP), which
is widely used artificial neural networks for classification and prediction task. Their
experimental results on HAR dataset [14,15] indicates that each of the sensors could be
used for human activity recognition separately. However, the performance of accelerometer

Information 2021, 12, 6 4 of 23

sensor data is better than gyroscope sensor data, and it has classification accuracy of 92%.
They have concluded that the combination of accelerometer and gyroscope performed
better than using them individually with an accuracy of 95%.

Sikder et al. [22] have described a multichannel CNN-based HAR classification model.
First, they have extracted the frequency and power information from the signals. After
that, they have fed them to a multichannel CNN model. Finally, the model is tested
on the UCI HAR dataset [15], and their results show that they have achieved 95.25%
classification accuracy.

Gaur et al. [23] have presented a framework for HAR using Apache Spark. They have
used different classifiers such as logistic regression, DT, RF and logistic regression with
cross-fold validation model to recognize the activities of humans. They have observed that
the most convenient setup to deal with a variety of data is to use 70% of the dataset for
training and 30% of the dataset for testing. Their results show that logistic regression with
cross fold validated over 5-fold, have achieved better performance than other classifiers
in terms of accuracy and F1-score. They have achieved accuracy score as high as 91.02%
after testing over KAGGLE-UCI Human Activity Recognition Accelerometer-Sensor time
series data [14].

Su et al. [24] have proposed an automated human activity recognition network HDL
with smartphone motion sensor units. It is a multimodel fusion network. The proposed
network is the combination of DBLSTM (deep bidirectional long short-term memory)
model and CNN model. The experimental results show that they have obtained maximum
accuracy of 97.95% with the proposed HDL network. They have used the updated version
of the dataset, which has 10,929 instances in total [25,26]. For this reason, we will not
compare our results with this work.

4. Proposed Methodology

In this section, we introduce our methodology as shown in Figure 1. First, we down-
loaded the dataset from public repository Kaggle [14], then uploaded it to Google Colab
for our work, and cleaned it for our model. Figure 1 summarizes the steps that have been
followed in this work.

Figure 1. Proposed Methodology for human activity recognition (HAR).

4.1. Dataset Information

The dataset that has been used in this work [14,15] was collected by using a Samsung
Galaxy S2. A group of 30 volunteers have participated in the experiment and their age range

Information 2021, 12, 6 5 of 23

is 19–48 years. The smartphone was attached to the waist of each volunteer. Accelerometers
and gyroscopes were used to record the data. The subjects performed six typical daily
activities such as WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING,
STANDING, and LAYING. By using its embedded sensors, 3-axial linear acceleration and
3-axial angular velocity were captured. The sampling rate that was used is 50Hz. Noise
filters were applied to preprocess the sensor signals. After that, the acceleration signal was
separated in its gravitational and body motion component. By using a sliding window
filter, the measurements were filtered.

Finally, we have 561 features in total to use in this research with the combined data of
accelerometer and gyroscope [1,8]. It comprises the time and frequency domain features of
the sensor dataset. The dataset [14,15] contains 10,299 samples, which are separated into
two sets (i.e., a training set and a test set). The former one contains 7352 samples (71.39%),
whereas the latter one is comprised of the rest of the 2947 samples (28.61%). We have
merged the training and testing sets to make it one single dataset.

Attribute Information: For each record in the dataset, it is provided with the informa-
tion such as (1) triaxial acceleration from the accelerometer (total acceleration) and the esti-
mated body acceleration, (2) triaxial angular velocity from the gyroscope, (3) a 561-feature
vector, (4) its activity label, which is “target value”, and (5) an identifier of the subject who
carried out the experiment.

Table 1 shows the time and frequency domain features extracted from accelerometer.
Similarly, the dataset has the time and frequency features from gyroscope [8].

Table 1. Accelerometer sensor features [8].

Frequency Domain Time Domain

fBodyGyro-XYZ
fBodyGyroMag

fBodyGyroJerkMag

tBodyGyro-XYZ
tBodyGyroJerk-XYZ

tBodyGyroMag
tBodyGyroJerkMag

4.2. Data Cleaning

Datasets that are available on the internet have some weaknesses such as many missing
values and do not cover most of the aspects that the researchers are looking for. Therefore,
in this case, the first thing we have to do is to clean the dataset to be good fit for the work.
Additionally, we have deleted the unnecessary column that we do not need them such as
Subject ID.

A dataset can contain extreme values that differ significantly from other data points
and fall outside the expected range—they are known as outliers. In order to improve ML
modeling, we can understand and even remove these outlier values [27].

We have used Isolation Forest, which is an unsupervised learning algorithm, for the
outlier detection [28]. Instead of profiling normal data points, it explicitly identifies the
anomalies. It is built on the basis of decision trees. It also can be scaled up and handle
large, high-dimensional datasets [29].

We have got 368 outliers and 6984 inliers using Isolation Forest for the training part
of the original dataset. Additionally, it detected 515 outliers and 9784 inliers for the
entire dataset.

We need to scale our data, but because of the outliers, the standardization of the
input variables is not easy. It can be achieved by ignoring the outliers from the calculation
of the mean and standard deviation. Later, the calculated values could be used to scale
the variable. This procedure is known as robust data scaling. It could be achieved by
calculating the median (50th percentile) and the 25th and 75th percentiles. In the next
step, the values of each variable have their median subtracted and are divided by the
interquartile range (IQR), which is the difference between the 75th and 25th percentiles.

value = (value − median)/(p75 − p25) (1)

Information 2021, 12, 6 6 of 23

The resulting variable will not be skewed by outliers. It will have a zero mean and
median and a standard deviation of 1 [30].

For our work, we have used Robust Scaling technique to scale the numerical input
variables. Because we have categorical values in the activity column, label encoding of
python has been applied to convert those to numerical values. Finally, the scaled dataset is
split into three categories called data for training, validation, and testing.

4.3. Applying PCA

Principal component analysis (PCA) is a technique of linear dimensionality reduction
that could be used by projecting it into a lower-dimensional subspace to extract information
from a high-dimensional space. Basically, it aims to retain essential components with
more data variability and to eliminate nonessential components with less variation. Here,
dimensions are variables that describe the data. Because our dataset has 561 features,
the learning of the machine learning (ML) algorithm could be slow. By utilizing the
main idea of PCA, we can speed up the training and testing time of ML algorithms.
From the original features, we need to choose a few principal components to simplify
the problem [31].

The plot in Figure 2 shows that by selecting 50 components, we can approximately
preserve 92.82% of the total variance of the data. With this information in our hands, we can
implement the PCA for the 50 best components. Here, we project 561-dimensional data
to 50 principal components. Next, we get the transformed dataset. From the transformed
dataset, we can determine the explained variance ratio. After that, we find the most
important features from each principal component. The important features are the ones
that influence more components and thus, have a large absolute value and score on the
component. We have 50 important features and 2 of them are repeated. So, in total,
we have 48 top features to model our data. We also have implemented the PCA for
100 components where we could preserve approximately 97.40% of the total variance of
the data. In this situation, we have found the 100 most important features from each
component but few of them are repeated. So, we have the top 92 features only to model our
data. For 150 components, we have 99.16% data. From that, we have 138 most important
features. Additionally, we could preserve 99.77% of the data for 200 principal components.
Here, we have the 164 most important features to model our data.

Figure 2. HAR dataset explained variance ratio.

4.4. Dataset Analysis

The focus of the proposed methodology is how to read the HAR dataset, understand it,
and use the features. So, we have analyzed the dataset at the beginning. To do the analysis,
we have used very well-known libraries such as Seaborn, Pandas, matplotlib, and NumPy.

Information 2021, 12, 6 7 of 23

4.5. Google Colab

Colaboratory is a Google research project, and it was created to help disseminate
machine learning education and research. It is a Jupyter notebook environment, which can
be used without any setup and runs entirely on the cloud [32].

Google offers free use of GPU and it is an attractive feature to the developers. The rea-
sons for making it publicly available could be to make its software a standard in the field of
academia for teaching machine learning and data science. They may also have a long-term
plan to build a client base for Google Cloud APIs that are sold on a per-use basis [33].

By using Colab, programmers could write, edit, and execute code in python. Addi-
tionally, popular python libraries such as NumPy and Matplotlib could be used to analyze
and visualize data [19]. It also allows us to integrate open-source libraries named PyTorch,
TensorFlow, Keras, and OpenCV.

4.6. Keras

We have used Keras to implement CNN, and it is an open-source neural network
library written in python. It has the capability to run on top of TensorFlow or Theano. It is
designed for enabling fast experimentation with deep neural networks. The main model
type of Keras is a sequence of layers called Sequential, and it is a linear stack of layers [34].

The construction of deep learning models in Keras is summarized below:

1. Define our model: first, we create a Sequential model and add configured layers.
2. Compile our model: after that, we specify loss function and optimizers and call the

compile function on the model.
3. Fit our model: in the next step, we call the fit function on the model and train the

model on a sample of data.
4. Make predictions: finally, we call functions named evaluate or predict and use the

model to generate predictions on new data [34].

4.7. Convolutional Neural Network

A Convolutional Neural Network (CNN), a deep learning algorithm traditionally used
for image classification, is now being utilized to solve ML problems in other domains. It is
a multi-layer neural network designed to analyze visual inputs and perform different tasks.
It can also be used for deep learning applications in healthcare [35]. More importantly,
it works very well for the analysis of a time series of sensor data [36].

There are two main parts to a CNN:

1. First is a convolution tool that splits the various features of the dataset for the analysis.
2. Second is a fully connected layer that uses the output of the convolution layer to

predict the best description for the activity.

A CNN is composed of several layers:

1. Convolutional layer: in this layer, a feature map is created to predict the class proba-
bilities for each feature by applying a filter that scans the features.

2. Pooling layer: this layer scales down the amount of information the convolutional
layer generated for each feature and maintains only the most essential information.

3. Fully connected input layer: this layer “flattens” the outputs generated by previous
layers and turns them into a single vector that could be used as an input for the
next layer.

4. Fully connected layer: this layer predicts an accurate label. It does that by applying
weights over the input generated by the feature analysis.

5. Fully connected output layer: it generates the final probabilities for determining a
class for the activity [35].

Figure 3 shows an example of a simple schematic representation of a basic CNN.
This simple network consists of five different layers: an input layer, a convolution layer,
a pooling layer, a fully connected layer, and an output layer. These layers are generally
divided into two parts: feature extraction and classification [37].

Information 2021, 12, 6 8 of 23

Figure 3. Convolutional Neural Network (CNN) Architecture [37].

4.8. Training Parameters

• Number of Epochs: The number of epochs is a hyperparameter that defines the
number of times that the learning algorithm works through the entire training dataset.
One epoch means that each sample in the training dataset will have an opportunity to
update the internal model parameters. An epoch consists of one or more batches. The
number of epochs allow the learning algorithm to run until the error from the model
has been sufficiently minimized [38].

• Dense Layer: a “dense” layer that takes that vector and generates probabilities for six
target labels, using a “Softmax” activation function [39].

• Optimizer: we use the “adam” optimize, which adjusts learning rate throughout
training.

• Loss function: we use a “categorical_crossentropy” loss function, a common choice
for classification. The lower the score, the better the model is performing.

• Metrics: we use the “accuracy” metric to get an accuracy score when the model runs
on the testing set.

For our work, we have used two convolution layers, max pooling size of two, and two
fully connected layers. We have used batch size of 64. We have kernel size of two. We could
stop training our model earlier and it is supported by Keras. It is done via a callback called
EarlyStopping. We have also used it and it has stopped training as soon as the validation
loss reaches a minimum. This way, we have 25 as no. of epoch.

5. Experimental Data Analysis

Here, we have presented and explained our data analysis. In order to analyze the
dataset, we have used python. We have also implemented Pandas, Seaborn, matplotlib,
NumPy etc. to do the analysis. At first, we have counted the different types of activities in
the dataset. From Figure 4, we can see that the dataset is not imbalanced. STANDING is
the Activity that is performed maximum no. of times, and WALKING_DOWNSTAIRS is the
lowest performed Activity. Next, we can see from Figure 5 that there are six different types
of Activity performed by different Subject.

Information 2021, 12, 6 9 of 23

Figure 4. Frequency of different types of Activity.

Figure 5. Total count for activity by different Subject.

6. Experiment
6.1. Experimental Setup

For our work, we have used Central Processing Unit (CPU) of Google Colab. The
specifications of CPU runtime offered by Google Colab are Intel Xeon Processor with two
cores @ 2.30 GHz and 13 GB RAM. The installed version of Python is 3.6.9 and Keras is 2.4.3.

6.2. Implementation of the Model

In this part, we have used CNN, which has been explained earlier. Later, we have
implemented them to compare the overall accuracy and loss. Additionally, we have
calculated the confusion matrix to find out how well our model performs.

The following parameters are used for the confusion matrix:

• True Positive (TP): how often the model correctly predicts the right activity.
• True Negative (TN): indicates how the model correctly predicts a person not doing

that particular activity.
• False Positive (FP): how often the model predicts a person doing the particular activity

when he/she is not actually doing that activity.

Information 2021, 12, 6 10 of 23

• False Negative (FN): indicates how often the model predicts a person not doing the
particular activity when he/she is in fact doing that activity.

Moreover, we have also collected the results for the parameters below:

• Accuracy: accuracy is simply a proportion of observations correctly predicted to the
total observations [40].

• Loss in CNN: loss is the quantitative measure of deviation or difference between the
predicted output and the actual output. It measures the mistakes made by the network
in predicting the output.

Accuracy = (TP + TN)/(TP + FP + FN + TN), (2)

7. Implementation Details and Results

We have done the experiment with all the features of the dataset to do the CNN model.
Additionally, we have run the experiment with a hybrid approach where we use the most
important features of the dataset to do the modeling of CNN. In the experiment, for the
evaluation of our proposed methodology, datasets are split into two different ratios such as
70–10–20% and 80–10–10% for training, validation, and testing, respectively.

For our work, we have used Keras deep learning library for implementing the CNN
model. The model is defined as a Sequential Keras model. We can extract the input and
output dimensions from the given training dataset and fit them into our model. The output
for the model will be a six-element vector that contains the probability of a given window
belonging to each of the six activities. We have fit the model for 25 epochs and used a
batch size of 64 samples. The 64 windows of data will be exposed to the model before
the weights of the model are updated. Once the model is fit, it is evaluated on the test
dataset. After that, the accuracy of the fit model on the test dataset is returned along with
the validation loss. Additionally, we have the confusion matrix.

At the beginning, we have executed the experiment without extracting any features in
the preprocessing step for 70–10–20% split ratio. We have executed the trained model with
epoch size of 25. First, we have the accuracy and loss for the trained model. After that,
we have the confusion matrix where the diagonal values refer to the true positive values
for the six activities (please see Appendix A).

Next, we will be discussing each layer below for our work:

• Input Data: First, we have 7209 samples and 561 features of the dataset as an input to
the CNN model. We have got those from the training part of the dataset.

• First 1D CNN Layer: The first layer defines a filter of kernel size 2. If we define one
filter in the first layer, then it would allow the neural network to learn only one feature.
This might not be enough; therefore, we have defined 128 filters. This allows us to
train 128 different features on the first layer of the network. We get (560 × 128) neuron
matrix as an output of the first neural network layer. The individual columns of the
output matrix hold the weights of one single filter. With the defined kernel size and
length of the input matrix, each filter will be containing 560 weights.

• Second 1D CNN Layer: The result we get from the first CNN will get fed into the
second CNN layer. We will define 64 different filters to be trained on this level. The
logic of the first layer applies here as well, so the output matrix will have a size of
(559 × 64).

• Max Pooling Layer: Because we need to reduce the complexity of the output and
prevent overfitting of the data, a pooling layer is often used after a CNN layer. In our
work, we have chosen two as a pooling size. This means that the size of the output
matrix is only half of the input matrix. The size of the matrix is (279 × 64).

• Flatten Layer: There is a ‘flatten’ layer in between the convolutional layer and the fully
connected layer. A two-dimensional matrix (279 × 64) of features is transformed into a
vector (17,856) by flattening. After that, the vector could be fed into a fully connected
neural network classifier.

Information 2021, 12, 6 11 of 23

• Dense Layer: In this layer, the results of the convolutional layers are generally fed
through one or more neural layers to generate a prediction.

• Fully Connected Layer with “Softmax” Activation: The final layer reduces the vector
of height 64 to a vector of six since we have six classes that we want to predict.
This reduction process is achieved by another matrix multiplication. We have used
“Softmax” as the activation function and it enforces all six outputs of the neural
network to sum up to one. Therefore, the output value will be representing the
probability for each of the six classes [41].

Then, we have the results for our hybrid approach where we have used PCA as a
preprocessing step to extract the most important features and then fed those features to
train the CNN models. By using principal components 200, 150, 100, and 50, we have got
164, 138, 92, and 48 important features.

Here, we discuss the CNN model with 200 principal components, where we have
164 important features. We have executed the trained model with epoch size of 25. First, we
have the accuracy and loss for the trained model. After that, we have the confusion matrix.

The details of the layers are discussed below for this case:

• Input Data: First, we have 7209 samples and 164 features of the dataset as an input to
the CNN model. We have got those from the training part of the dataset.

• First 1D CNN Layer: The first layer defines a filter of kernel size two. Here, we have
defined 128 filters. This allows us to train 128 different features on the first layer of the
network. We get (199 × 128) neuron matrix as an output of the first neural network
layer. The individual columns of the output matrix hold the weights of one single filter.
With the defined kernel size and length of the input matrix, each filter will contain
199 weights.

• Second 1D CNN layer: The result we get from the first CNN will be fed into the second
CNN layer. We will define 64 different filters to be trained on this level. The logic of
the first layer applies here as well, so the output matrix will have a size of (198 × 64).

• Max pooling layer: In this case, we have chosen two as a pooling size. This means that
the size of the output matrix of this layer is only half of the input matrix. The size of
the matrix is (99 × 64).

• Flatten Layer: A two-dimensional matrix (99 × 64) of features is transformed into a
vector (6336) by flattening. After that, the vector could be fed into a fully connected
neural network classifier.

• Dense Layer: In this layer, the results of the convolutional layers are generally fed
through one or more neural layers to generate a prediction.

• Fully Connected Layer with “Softmax” Activation: The final layer reduces the vector of
height 64 to a vector of 6 since we have 6 classes that we want to predict. This reduction
process is achieved by another matrix multiplication. We have used “Softmax” as
the activation function and it enforces all six outputs of the neural network to sum
up to one. Therefore, the output value will represent the probability for each of the
six classes [41].

For the other cases, we have done the experiments where we have the corresponding
input data for the other principal components. In general, the procedure remains the same.
For the other split ratio, we have the same kind of set up for the experiments.

7.1. 70%–Training, 10%–Validation, 20%–Testing
7.1.1. All Features

Here, we have executed the experiment with all the features of the dataset to do the
CNN model and could see the experimental results in Figure 6. We can see from the figure
that the loss is minimum from epoch 18 to 25 for our model.

Information 2021, 12, 6 12 of 23

Figure 6. Experimental results for all the features: (a) epoch vs. accuracy and (b) epoch vs. loss.

7.1.2. Hybrid Approach

Here, we have executed the experiment for CNN with 50 principal components, where
we have the 48 most important features of the dataset for the model and shown the results
in Figure 7.

Figure 7. Experimental results for 48 features: (a) epoch vs. accuracy and (b) epoch vs. loss.

Next, we have executed the experiment for CNN with 100 principal components,
where we have the 92 most important features of the dataset for the model. We could see
the results in Figure 8.

Figure 8. Experimental results for 92 features: (a) epoch vs. accuracy and (b) epoch vs. loss.

After that, we have done the experiment for CNN with 150 principal components,
where we have obtained the 138 most important features of the dataset for the model and
results are shown in Figure 9.

Information 2021, 12, 6 13 of 23

Figure 9. Experimental results for 138 features: (a) epoch vs. accuracy and (b) epoch vs. loss.

Next, we have done the experiment for CNN with 200 principal components, where
we have obtained 164 most important features of the dataset for the model. We could see
the results in Figure 10. Here, the loss is minimum from epoch 17 to 25 for our model.

Figure 10. Experimental results for 164 features: (a) epoch vs. accuracy and (b) epoch vs. loss.

Figure 11 shows the effect of number of features on accuracy for the current split ratio.

Figure 11. Accuracy by number of features for 70–10–20%.

Figure 12 shows the time taken to train the model by using the top features as well as
all the features.

Information 2021, 12, 6 14 of 23

Figure 12. Training time by number of features for 70–10–20%.

We can then see the effect of number of features on testing time in Figure 13.

Figure 13. Testing time by number of features for 70–10–20%.

We have run the testing part 1000 times. For all features, the average computation
time was 1.33 s. On the other hand, it took 0.23 s with 48 features. This way, we could
save around 83% testing time. With 92 features, we are able to save 74.44% time. The time
taken to test with 138 features is 0.46 s. In this case, we could save around 65.5% testing
time. Finally, with 164 features the testing time is 0.55 s. For this case, we are able to save
around 59.65% testing time. It could be said that the average computation time is improved
significantly as we are reducing the number of features.

7.2. 80%–Training, 10%–Validation, 10%–Testing
7.2.1. All Features

Here, we have executed the experiment with all the features of the dataset to do the
CNN model. The results are shown in Figure 14.

Information 2021, 12, 6 15 of 23

Figure 14. Experimental results for all the features: (a) epoch vs. accuracy and (b) epoch vs. loss.

7.2.2. Hybrid Approach

Here, we have done the experiment for CNN with 50 principal components, where we
have obtained the 48 most important features of the dataset for the model. The experimental
results are shown in Figure 15.

Figure 15. Experimental results for 48 features: (a) epoch vs. accuracy and (b) epoch vs. loss.

Next, we have done the experiment for CNN with 100 principal components, where
we have obtained the 92 most important features of the dataset for the model and shown
the results in Figure 16.

Figure 16. Experimental results for 92 features: (a) epoch vs. accuracy and (b) epoch vs. loss.

After that, we have done the experiment for CNN with 150 principal components,
where we have obtained the 138 most important features of the dataset for the model.
The experimental results could be seen in Figure 17.

Information 2021, 12, 6 16 of 23

Figure 17. Experimental results for 138 features: (a) epoch vs. accuracy and (b) epoch vs. loss.

Finally, we have done the experiment for CNN with 200 principal components, where
we have obtained the 164 most important features of the dataset for the model. The experi-
mental results are shown in Figure 18.

Figure 18. Experimental results for 164 features: (a) epoch vs. accuracy and (b) epoch vs. loss.

Figure 19 shows the effect of number of features on accuracy for the current split ratio.

Figure 19. Accuracy by number of features for 80–10–10%.

Here, Figure 20 shows the time taken to train the model by using the top features as
well as all the features.

Information 2021, 12, 6 17 of 23

Figure 20. Training time by number of features for 80–10–10%.

We can then see the effect of number of features on testing time in Figure 21.

Figure 21. Testing time by number of features for 80–10–10%.

Furthermore, for 80–10–10% split ratio, we have executed the testing part 1000 times.
For all the features, the average computation time was 0.68 s. On the other hand, it took
0.15 s with 48 features. This way, we could save around 78% testing time. With 92 features,
we are able to save 69.6% time. The time taken to test with 138 features is 0.26 s. In this case,
we could save around 61.76% testing time. Finally, with 164 features the testing time is
0.30 s. For this case, we are able to save around 56% testing time. Here, we have improved
the average calculation time by using the top features of the dataset.

We have set the performance of CNN (70% training–10% validation–20% testing)
with 48 features as a benchmark for our work. For 70–10–20% ratio, we have achieved
maximum accuracy of 97.91% with all the features. As we are increasing the number of

Information 2021, 12, 6 18 of 23

features from 48 to 92, we have achieved better accuracy (96.36%). It could be observed
from Figure 11 that there is a slight increase in the accuracy for 138 features compared to
the accuracy of 92 features. With 164 features, we have achieved an accuracy of 97.33%.
For the training time with the same ratio, it took 441.97 s to train the model with all the
features. We have then trained the model with 48 features of the dataset and the training
time was improved. After that, we have trained the model with 92, 138, and 164 features,
respectively. We can see that it is taking more time to train the model as we increase the
number of features. On the other hand, we have improved the training time a lot by only
using the top features. Additionally, we have improved the testing time compared to the
time taken for all the features.

For the ratio of 80–10–10%, we have achieved maximum accuracy of 98.70% with all
the features of the dataset. With 164 features, we have achieved the second maximum
accuracy with the same ratio. In this case, the training time and testing time have also
improved significantly because of using the top features of the dataset.

We have also reduced the training time from 506.86 s to 84.87 s by using 92 features of
the dataset. This way, we could save 83.26% time to train our model.

It could be observed that we have improved not only the training time but also the
testing time from 0.77 s to 0.41 s.

Figure 22 shows the accuracy by number of features for different split ratio. We could
see that we have got better accuracy with all the features for 80–10–10% split ratio compared
to the accuracy of the other split ratio. On the other hand, we have obtained higher accuracy
with 92 features for 70–10–20% ratio than the other split ratio.

Figure 22. Accuracy by number of features for different split ratio.

If we compare our accuracy with Sikder et al. [22], we have achieved better accuracy
using hybrid approach with 92 features of the dataset.

8. Conclusions and Future Work

In this paper, we have proposed a method that utilizes a cloud-based platform for
HAR. The results show that by using our method, we have achieved 96.36% accuracy for
the top 92 features. By reducing the number of features to 92, we have sped up the training
and testing time of ML algorithms. It can be noted that we have achieved better results as
compared to the results obtained by Sikder et al. [22] with the same dataset but using only
92 features for the model.

Information 2021, 12, 6 19 of 23

To conclude, the importance of dimensionality reduction for HAR has been discussed
in this work. The experimental results have shown that reduction of the data allows us
to achieve good accuracy compared to other researchers. Furthermore, training time and
testing time of the model have been improved significantly than the time required for the
original dimension of the input space.

We can extend our work in the future by adding more layers to the CNN model.
We can also extend our work by using other deep learning algorithms. There are different
types of algorithms used nowadays: Multilayer Perceptron Neural Network (MLPNN),
Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Generative
Adversarial Network (GAN). Among all the algorithms, we can use LSTM. The advantage
of using LSTM is that the input values fed to the network not only go through several
LSTM layers but also propagate through time within one LSTM cell. Hence, parameters
are well distributed within multiple layers. This results in a thorough process of inputs in
each time step [42].

Because it is common to use CNN nowadays for time series data, the proposed
method should work for HAR other than the data collected by only using accelerometer
and gyroscope of a smartphone. We could make sure of that by using other datasets
such as smart home, where we have different types of sensors generate data continuously.
Furthermore, if we feed our model with more data then it will be stronger and achieve
better performance. On the other hand, if we have a small dataset then it might perform
poorly because we will be feeding CNN with less data. It would run into an overfitting
problem. But if we have a huge dataset with a size of a gigabyte, then the model might take
a lot of time to train the data. In this situation, we might need to use GPUs to improve it.

Author Contributions: Conceptualization, S.R.; methodology, S.R.; experiment, S.R.; resources, S.R.;
dataset collection, S.R.; dataset analysis, K.A.; writing—original draft preparation, S.R. and K.A.;
writing—review and editing, D.P.A. and S.R.; supervision, D.P.A.; project administration, D.P.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2021, 12, 6 20 of 23

Appendix A

Figure A1. Confusion matrix for 70–10–20% split ratio: (a) all the features; (b) 48 features; (c) 92 features; (d) 138 features;
and (e) 164 features.

Information 2021, 12, 6 21 of 23

Figure A2. Confusion matrix for 80–10–10% split ratio: (a) all the features; (b) 48 features; (c) 92 features; (d) 138 features;
and (e) 164 features.

References
1. Brastein, O.M.; Olsson, R.; Skeie, N.O.; Lindblad, T. Human Activity Recognition by machine learning methods. In Proceedings

of the Norsk IKT-Konferanse for Forskning Og Utdanning, Oslo, Norway, 27–29 November 2017.
2. Roy, S.; Edan, Y. Investigating joint-action in short-cycle repetitive handover tasks: The role of giver versus receiver and its

implications for human-robot collaborative system design. Int. J. Soc. Robot. 2018, 12, 973–988. [CrossRef]

http://dx.doi.org/10.1007/s12369-017-0424-9

Information 2021, 12, 6 22 of 23

3. Wang, L.; Gao, R.; Váncza, J.; Krüger, J.; Wang, X.V.; Makris, S.; Chryssolouris, G. Symbiotic human-robot collaborative assembly.
CIRP Ann. 2019, 68, 701–726. [CrossRef]

4. Chen, Y.H.; Tsai, M.J.; Fu, L.C.; Chen, C.H.; Wu, C.L.; Zeng, Y.C. Monitoring elder’s living activity using ambient and body sensor
network in smart home. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon,
Hong Kong, China, 9–12 October 2015; pp. 2962–2967.

5. Spörri, J.; Kröll, J.; Fasel, B.; Aminian, K.; Müller, E. The Use of Body Worn Sensors for Detecting the Vibrations Acting on the
Lower Back in Alpine Ski Racing. Front. Physiol. 2017, 8, 522. [CrossRef] [PubMed]

6. Lee, W.; Cho, S.; Chu, P.; Vu, H.; Helal, S.; Song, W.; Jeong, Y.S.; Cho, K. Automatic agent generation for IoT-based smart house
simulator. Neurocomputing 2016, 209, 14–24. [CrossRef]

7. Ullah, M.; Ullah, H.; Khan, S.D.; Cheikh, F.A. Stacked Lstm Network for Human Activity Recognition Using Smartphone Data.
In Proceedings of the 2019 8th European Workshop on Visual Information Processing (EUVIP), Roma, Italy, 28–31 October 2019;
pp. 175–180.

8. Ogbuabor, G.; La, R. Human activity recognition for healthcare using smartphones. In Proceedings of the 2018 10th International
Conference on Machine Learning and Computing (ICMLC), Macau, China, 26–28 February 2018; pp. 41–46.

9. Gjoreski, M.; Gjoreski, H.; Luštrek, M.; Gams, M. How accurately can your wrist device recognize daily activities and detect falls?
Sensors 2016, 16, 800. [CrossRef] [PubMed]

10. Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor.
2012, 15, 1192–1209. [CrossRef]

11. Avci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity recognition using inertial sensing for healthcare,
wellbeing and sports applications: A survey. In Proceedings of the 23rd International Conference on Architecture of Computing
Systems, Hannover, Germany, 22–25 February 2010; pp. 1–10.

12. Alford, L. What men should know about the impact of physical activity on their health. Int. J. Clin. Pract. 2010, 64, 1731.
[CrossRef] [PubMed]

13. Kwak, T.; Song, A.; Kim, Y. The Impact of the PCA Dimensionality Reduction for CNN based Hyperspectral Image Classification.
Korean J. Remote Sens. 2019, 35, 959–971.

14. HAR Dataset. Available online: https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones (accessed on
12 March 2020).

15. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A Public Domain Dataset for Human Activity Recognition Using
Smartphones. In Proceedings of the 21st European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning (ESANN), Bruges, Belgium, 24–26 April 2013.

16. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. Human activity recognition on smartphones using a multiclass
hardware-friendly support vector machine. In 4th International Workshop on Ambient Assisted Living; Springer: Vitoria-Gasteiz,
Spain, 2012; pp. 216–223.

17. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. Energy Efficient Smartphone-Based Activity Recognition using
Fixed-Point Arithmetic. J. UCS 2013, 19, 1295–1314.

18. Reyes-Ortiz, J.L.; Ghio, A.; Parra, X.; Anguita, D.; Cabestany, J.; Catala, A. Human Activity and Motion Disorder Recognition:
Towards smarter Interactive Cognitive Environments. In Proceedings of the 21st European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, 24–26 April 2013.

19. Google. What is Colaboratory. Available online: https://colab.research.google.com/notebooks/intro.ipynb (accessed on
15 March 2020).

20. Ray, S.; AlGhamdi, A.; Alshouiliy, K.; Agrawal, D.P. Selecting Features for Breast Cancer Analysis and Prediction. In Proceedings
of the 6th International Conference on Advances in Computing and Communication Engineering (ICACCE), Las Vegas, NV, USA,
22–24 June 2020; pp. 1–6.

21. Ahmed, N.; Rafiq, J.I.; Islam, M.R. Enhanced human activity recognition based on smartphone sensor data using hybrid feature
selection model. Sensors 2020, 20, 317. [CrossRef] [PubMed]

22. Sikder, N.; Chowdhury, M.S.; Arif, A.S.; Nahid, A.A. Human Activity Recognition Using Multichannel Convolutional Neural Net-
work. In Proceedings of the 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh,
26–28 September 2019; pp. 560–565.

23. Gaur, S.; Gupta, G.P. Framework for Monitoring and Recognition of the Activities for Elderly People from Accelerometer Sensor
Data Using Apache Spark. In ICDSMLA 2019; Springer: Singapore, 2020; pp. 734–744.

24. Su, T.; Sun, H.; Ma, C.; Jiang, L.; Xu, T. HDL: Hierarchical Deep Learning Model based Human Activity Recognition using
Smartphone Sensors. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary,
14–19 July 2019; pp. 1–8.

25. Reyes-Ortiz, J.L.; Oneto, L.; Samà, A.; Parra, X.; Anguita, D. Transition-aware human activity recognition using smartphones.
Neurocomputing 2016, 171, 754–767. [CrossRef]

26. UCI Machine Learning Repository. Smartphone-Based Recognition of Human Activities and Postural Transitions Data
Set. Available online: http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+
Postural+Transitions (accessed on 10 March 2020).

http://dx.doi.org/10.1016/j.cirp.2019.05.002
http://dx.doi.org/10.3389/fphys.2017.00522
http://www.ncbi.nlm.nih.gov/pubmed/28775695
http://dx.doi.org/10.1016/j.neucom.2015.04.130
http://dx.doi.org/10.3390/s16060800
http://www.ncbi.nlm.nih.gov/pubmed/27258282
http://dx.doi.org/10.1109/SURV.2012.110112.00192
http://dx.doi.org/10.1111/j.1742-1241.2010.02478.x
http://www.ncbi.nlm.nih.gov/pubmed/21070522
https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
https://colab.research.google.com/notebooks/intro.ipynb
http://dx.doi.org/10.3390/s20010317
http://www.ncbi.nlm.nih.gov/pubmed/31935943
http://dx.doi.org/10.1016/j.neucom.2015.07.085
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions

Information 2021, 12, 6 23 of 23

27. Brownlee, J. How to Remove Outliers for Machine Learning. Available online: https://machinelearningmastery.com/how-to-
use-statistics-to-identify-outliers-in-data/ (accessed on 10 April 2020).

28. Dhiraj, K. Anomaly Detection Using Isolation Forest in Python. Available online: https://blog.paperspace.com/anomaly-
detection-isolation-forest/ (accessed on 10 April 2020).

29. Lewinson, E. Outlier Detection with Isolation Forest. Available online: https://towardsdatascience.com/outlier-detection-with-
isolation-forest-3d190448d45e (accessed on 10 April 2020).

30. Brownlee, J. Scale Data with Outliers for ML. Available online: https://machinelearningmastery.com/robust-scaler-transforms-
for-machine-learning/ (accessed on 15 May 2020).

31. Sharma, A. Principal Component Analysis (PCA) in Python. Available online: https://www.datacamp.com/community/
tutorials/principal-component-analysis-in-python (accessed on 21 May 2020).

32. Magenta. Colab Notebooks. Available online: https://magenta.tensorflow.org/demos/colab/ (accessed on 25 May 2020).
33. Tutorialspoint. Google Colab Introduction. Available online: http://www.tutorialspoint.com/google_colab/google_colab_

introduction.htm (accessed on 25 May 2020).
34. Google. Introduction to Keras. Available online: https://colab.research.google.com/drive/1R44RA5BRDEaNxQIJhTJzH_ekmV3

Vb1yI#scrollTo=vAzCBQJn6E13 (accessed on 18 June 2020).
35. MissingLink AI. CNN Architecture. Available online: https://missinglink.ai/guides/convolutional-neural-networks/

convolutional-neural-network-architecture-forging-pathways-future/ (accessed on 10 June 2020).
36. MissingLink AI. CNN in Keras. Available online: https://missinglink.ai/guides/keras/keras-conv1d-working-1d-convolutional-

neural-networks-keras/ (accessed on 21 June 2020).
37. Phung, V.H.; Rhee, E.J. A High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification of Cloud

Image Patches on Small Datasets. Appl. Sci. 2019, 9, 4500. [CrossRef]
38. Brownlee, J. Epoch in Neural Network. Available online: https://machinelearningmastery.com/difference-between-a-batch-

and-an-epoch/ (accessed on 12 July 2020).
39. MissingLink AI. CNN in Keras. Available online: https://missinglink.ai/guides/convolutional-neural-networks/python-

convolutional-neural-network-creating-cnn-keras-tensorflow-plain-python/ (accessed on 21 June 2020).
40. Mtetwa, N.; Awukam, A.O.; Yousefi, M. Feature extraction and classification of movie reviews. In Proceedings of the 5th

International Conference on Soft Computing & Machine Intelligence (ISCMI), Nairobi, Kenya, 21–22 November 2018.
41. Ackermann, N. Introduction to 1D Convolutional Neural Networks. Available online: https://blog.goodaudience.com/

introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf (accessed on 12 June 2020).
42. Sinha, A. LSTM Networks. Available online: https://www.geeksforgeeks.org/understanding-of-lstm-networks/ (accessed on

21 March 2020).

https://machinelearningmastery.com/how-to-use-statistics-to-identify-outliers-in-data/
https://machinelearningmastery.com/how-to-use-statistics-to-identify-outliers-in-data/
https://blog.paperspace.com/anomaly-detection-isolation-forest/
https://blog.paperspace.com/anomaly-detection-isolation-forest/
https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45e
https://towardsdatascience.com/outlier-detection-with-isolation-forest-3d190448d45e
https://machinelearningmastery.com/robust-scaler-transforms-for-machine-learning/
https://machinelearningmastery.com/robust-scaler-transforms-for-machine-learning/
https://www.datacamp.com/community/tutorials/principal-component-analysis-in-python
https://www.datacamp.com/community/tutorials/principal-component-analysis-in-python
https://magenta.tensorflow.org/demos/colab/
http://www.tutorialspoint.com/google_colab/google_colab_introduction.htm
http://www.tutorialspoint.com/google_colab/google_colab_introduction.htm
https://colab.research.google.com/drive/1R44RA5BRDEaNxQIJhTJzH_ekmV3Vb1yI#scrollTo=vAzCBQJn6E13
https://colab.research.google.com/drive/1R44RA5BRDEaNxQIJhTJzH_ekmV3Vb1yI#scrollTo=vAzCBQJn6E13
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-architecture-forging-pathways-future/
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-architecture-forging-pathways-future/
https://missinglink.ai/guides/keras/keras-conv1d-working-1d-convolutional-neural-networks-keras/
https://missinglink.ai/guides/keras/keras-conv1d-working-1d-convolutional-neural-networks-keras/
http://dx.doi.org/10.3390/app9214500
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://missinglink.ai/guides/convolutional-neural-networks/python-convolutional-neural-network-creating-cnn-keras-tensorflow-plain-python/
https://missinglink.ai/guides/convolutional-neural-networks/python-convolutional-neural-network-creating-cnn-keras-tensorflow-plain-python/
https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf
https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf
https://www.geeksforgeeks.org/understanding-of-lstm-networks/

	Introduction
	Problem Statement
	Related Work
	Proposed Methodology
	Dataset Information
	Data Cleaning
	Applying PCA
	Dataset Analysis
	Google Colab
	Keras
	Convolutional Neural Network
	Training Parameters

	Experimental Data Analysis
	Experiment
	Experimental Setup
	Implementation of the Model

	Implementation Details and Results
	70%–Training, 10%–Validation, 20%–Testing
	All Features
	Hybrid Approach

	80%–Training, 10%–Validation, 10%–Testing
	All Features
	Hybrid Approach

	Conclusions and Future Work
	
	References

