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Abstract: The effective detection of driver drowsiness is an important measure to prevent traffic
accidents. Most existing drowsiness detection methods only use a single facial feature to identify
fatigue status, ignoring the complex correlation between fatigue features and the time information of
fatigue features, and this reduces the recognition accuracy. To solve these problems, we propose a
driver sleepiness estimation model based on factorized bilinear feature fusion and a long- short-term
recurrent convolutional network to detect driver drowsiness efficiently and accurately. The proposed
framework includes three models: fatigue feature extraction, fatigue feature fusion, and driver
drowsiness detection. First, we used a convolutional neural network (CNN) to effectively extract the
deep representation of eye and mouth-related fatigue features from the face area detected in each
video frame. Then, based on the factorized bilinear feature fusion model, we performed a nonlinear
fusion of the deep feature representations of the eyes and mouth. Finally, we input a series of fused
frame-level features into a long-short-term memory (LSTM) unit to obtain the time information
of the features and used the softmax classifier to detect sleepiness. The proposed framework was
evaluated with the National Tsing Hua University drowsy driver detection (NTHU-DDD) video
dataset. The experimental results showed that this method had better stability and robustness
compared with other methods.

Keywords: driver drowsiness detection; convolutional neural network; feature extraction; fatigue feature
fusion; LSTM

1. Introduction

Fatigued driving is causing increased traffic accidents, and has become a serious
social problem. According to a survey published by the National Highway Transportation
Administration, 7.277 million traffic accidents occurred in the United States in 2016, causing
37,461 deaths and 3.144 million injuries, of which fatigued driving caused approximately
20-30%. Studies demonstrated that fatigued driving impairs a driver’s responsiveness and
information processing ability, thus causing the driver to lose control of the vehicle and
eventually deviate from the lane or cause a tail chase [1,2]. Therefore, it is of great practical
significance to design an effective driver fatigue identification method to improve road
traffic safety.

With the rapid development of computer vision technology, the method of detecting
the driver’s drowsiness state by analyzing the driver’s facial behavior characteristics
has attracted widespread attention of researchers. The researchers extracted different
facial fatigue features to detect the driver’s sleepiness. Zhao et al. [3] used the Deep
Belief Network (DBN) to extract different facial fatigue features from the dataset and
respectively verified the accuracy of driver drowsiness detection. Zhang et al. [4] used
the local binary pattern (LBP) and support vector machine (SVM) fatigue expression
reorganization algorithm to estimate the fatigue degree of drivers. However, this detection
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method based on a single facial feature has some limitations in robustness and reliability,
and does not consider the time change characteristics of the driver’s drowsiness, thereby
reducing the recognition accuracy.

To overcome the limitations associated with the use of a single source of informa-
tion, some methods have combined multiple sources to detect sleepiness. Wang et al. [5]
combined the eye and mouth states and proposed a method to discriminate the driver
fatigue state when wearing glasses. The Deep Drowsiness Detection (DDD) framework
proposed by Park et al. [6] used three deep convolutional neural networks (DCNN) to
extract drowsiness-related behavioral features such as facial and head movements. In addi-
tion, two fusion strategies of independent average architecture (IAA) and feature fusion
architecture (FFA) are used to perform linear fusion of fatigue features, which improved
the accuracy of driver drowsiness detection.

However, most of the above methods of combining multiple information sources for
drowsiness detection simply use a linear model to fuse the fatigue features. Since the
distribution of multimodal features may change significantly, the feature vectors obtained
by this linear fusion cannot adequately express the complex correlations between the
driver’s facial feature areas, thus limiting the final detection performance.

To solve these problems, we propose a driver drowsiness estimation model based on
factorized bilinear feature fusion and a long-short-term recurrent convolutional network
to detect driver sleepiness effectively, as shown in Figure 1. First, we designed two kinds
of DCNN, which were used to extract the deep features of the driver’s eyes and mouth
and to detect their states. Then, we used the factorized bilinear feature fusion method to
fuse the deep feature representation of the eyes and mouth. Finally, we used the recurrent
network LSTM to model the time variation of the drivers’ drowsiness to provide accurate
detection of the drivers’ drowsiness under various driving conditions.
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Figure 1. Overall architecture of the proposed framework. The red boxes denote the models, and the black boxes drawn

with dotted lines define the extracted features or outputs of each model.

To fully extract the correlation characteristics between driver fatigue features, we
improved the homogeneous feature fusion method in [7] and proposed a factorized bilinear
feature fusion method suitable for multi-modal feature input. In addition, the factorized
parameterization and the adoption of the dropout layer effectively solved the problem of
excessive parameters in the fusion process.

The main contributions of this study are as follows: (1) We proposed a new multi-level
driver drowsiness estimation system. The system has three main components: (D) extraction
of deep feature representations related to the driver’s eyes and mouth in the dataset,
@ fatigue feature fusion, 3 record the time information of fatigue features through LSTM.
(2) Regarding fatigue feature fusion, we proposed a new factorized bilinear feature fusion
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model suitable for multi-modal feature input and performed bilinear fusion of the extracted
deep feature representations of eyes and mouth to solve the limitations of the feature linear
fusion process.

The rest of this paper is organized as follows. The second part summarizes the related
work. The third part introduces the overall framework of driver drowsiness detection. The
fourth part provides the details of the experiment and the experimental results to evaluate
the performance of the proposed method. The last part gives the conclusion and discusses
future work.

2. Related Work

The objective of the different techniques used in the field of driver drowsiness detec-
tion is to represent and detect the signs of the driver’s drowsiness. In the literature, driver
fatigue has been identified based on vehicle behavior as well as the driver’s physiological
state and facial expression. The technology based on the driver’s physiological signals is
mainly to detect specific electrophysiological signals generated by the driver during driv-
ing fatigue, including Electroencephalogram (EEG) [8,9], Electrocardiogram (ECG) [10,11],
etc. Khushaba et al. [12] used a wavelet packet transform model based on fuzzy mutual
information to extract information related to drowsiness from a group of EEG, electroocu-
logram (EOG), and ECG signals to detect driver drowsiness. Li et al. [10] extracted the
heart rate variability (HRV) from an ECG signal, performed a wavelet transform on it to
obtain discriminant features, and then used a classifier to identify the fatigue state. These
signals can provide stricter and more accurate discriminative information when analyzing
driver fatigue. However, drivers need to wear invasive detection devices that affect the
driver’s driving experience.

Fatigue detection methods based on vehicle behavior mainly measure the vehicle’s
speed, turning angle, and deviation from the center line of the vehicle to detect driving
fatigue [13,14]. Wang et al. [15] used a random forest classifier to study the relationship
between the vehicle steering wheel lateral acceleration, longitudinal acceleration and steer-
ing angle and the accuracy of driver fatigue recognition under different time window
sizes. This method is easily influenced by factors, such as the driver’s driving experi-
ence, vehicle condition, and road environment, thus reducing the accuracy of the driver’s
sleep awareness.

Methods based on the driver’s facial behavior mainly analyze the facial features to
detect fatigued driving, such as PERCLOS (eyelid closure rate exceeds the pupil percentage
per unit time), mouth opening, head posture, facial expression, etc. [16-18]. This method
does not interfere with driving, and is therefore more acceptable to drivers. Garcia et al. [19]
proposed a three-step system. Their system first detects and tracks faces and eyes. Then, to
analyze the performance of the eyes under different illumination conditions, the system
performs image filtering. The system uses PERCLOS measurements to assess eye closure.
Jie et al. [2] proposed an automatic yawn detection method based on extracting the geomet-
ric and appearance features of the eye and mouth regions. This method can successfully
detect hand covered and uncovered yawns, and achieve high accuracy.

At the same time, to overcome the limitation of extracting single facial cues in driver
fatigue detection, researchers combined multiple information sources to detect fatigue
in two aspects: fatigue feature extraction and fusion model construction. Du et al. [20]
proposed a multimodal fusion recurrent neural network (MFRNN) framework. They used
RGB-D cameras and infrared video to extract the driver’s eye opening degree, mouth open-
ing degree, and heart rate information, and at the same time, extracted time information
related to each fatigue feature to improve the performance of driver fatigue detection.

Sun et al. [21] proposed a two-level fusion method of context features based on a
multi-class support vector machine (MCSVM). Deng et al. [22] proposed three criteria to
judge the driver’s sleepiness, including the blinking frequency, closed time, and yawning
time, and fused the three criteria at the decision level to detect a driver’s sleepiness.
Donahue et al. [23] proposed a long short-term recurrent convolutional network (LRCN)
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model. By using the LSTM units in the convolutional neural network, the model combined
learning time dynamics and convolution perception representation, effectively improving
the recognition accuracy of the model.

Parkhi et al. [24] proposed a VGG-faceNet for face recognition, and achieved a large
number of advanced experimental results using the above training dataset and a simpler
network structure. Shih and Hsu [25] proposed a multi-stage spatio-temporal network
(MSTN), in which the characteristic graph of each convolutional layer was cascaded with a
parallel connected structure, and the full connection layer used the cascaded characteristic
graph to estimate the driver’s drowsiness.

To fully model the problem of the complex correlation between two modal features in
the process of computer vision tasks, Hong et al. [26] observed that the correlation between
related features can be captured using the element-wise multiplication interaction between
the feature maps. Therefore, Yu et al. [27] fused the spatio-temporal feature representation
obtained from 3D-DCNN with the related scene annotation by element-wise multiplication
interaction, and added a set of conditional adaptive representation to effectively distinguish
driver drowsiness.

Parkd et al. [6] respectively used two fatigue feature fusion strategies, IAA and FFA,
to fuse the extracted multi-mode driver fatigue features to improve the accuracy of driver
drowsiness detection. Lin et al. [28] proposed a bilinear pooling method to calculate the
vector outer product of the feature vectors at each position in the feature mapping obtained
by convolution, and then used this for classification.

To solve the problem of higher feature dimensions after fusion, Li et al. [7] used the
method of unimodal matrix factorization and DropFactor to cut the parameters of the
model; thereby, the parameter size was reduced by dozens of times compared with the
bilinear pooling method. At the same time, they also added a factorized bilinear network
(FBN) in different convolutional layers of the concept network, which further proves that
FBNs can effectively improve the accuracy of image recognition and classification tasks.

3. Proposed Work

Figure 1 shows the proposed fatigue detection framework, which is mainly composed
of three models: fatigue feature extraction, fatigue feature fusion, and driver drowsiness
detection. In Section 3.1, we describe the established CNN network structures for the
driver’s eye and mouth state detection to extract deep feature representation of the eye
and mouth features from the input data. In Section 3.2, we introduce the factorized
bilinear feature fusion for deep feature fusion of the eyes and mouth to obtain the fusion
representation of the driver fatigue features. In Section 3.3, we input the feature fusion
representation into the LSTM according to the time series of the input data to identify the
driver’s drowsiness.

3.1. Fatigue Feature Extraction

In this section, we describe a learning model for extracting the deep feature represen-
tation of the driver’s eyes and mouth from a given consecutive frame. When the driver is
sleepy, the infrared camera in front of the driver can capture various changes in the driver’s
facial expressions (such as the eyes and mouth), which are interpreted as shape changes
or movement changes. In view of this change, we propose two separate CNN network
models for eye and mouth fatigue feature extraction and state identification.

3.1.1. Mouth State Model

To effectively extract the deep feature representation of the mouth, we have made
certain improvements to the Squeezenet network in [29], adjusting the input of the network
toa 128 x 128 pixel image, and reducing the number of Fire module blocks. The framework
of the Fire module is shown in Figure 2. We named the improved network Squeezenet-
mouth network to identify the driver’s mouth state effectively. Figure 3 shows the structure
of our proposed mouth state detection model.
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Figure 2. The organization of the convolution filters in the Fire module. The red boxes drawn with a
dotted line defines the dimension of the output characteristics of each convolution layer.
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Figure 3. Illustration of the mouth state detection model. The red boxes drawn with a dotted line define the extracted deep

features representation of the mouth. The numbers next to the boxes illustrate the dimensionality and structural detail of

the kernel in each convolutional layer.

First, the input image with a size of 128 x 128 is input into a 3 x 3 convolution layer
according to the time sequence, and the image size is initially reduced. Then, through
multiple Fire modules and max-pooling layers, the size of the detected face image is
reduced from 128 x 128 to 6 x 6. Finally, the mouth state related feature representation
is further extracted through average pooling and full connection layers and we use the
softmax layer of the model to effectively identify the mouth state. The convolutional layer
hidden unit of the network model adopts a Rectified Linear Unit (ReLU) activation function.
The layer marked “V” in Figure 3 represents the padding of “valid.”

Let x,, € REXWXC denote the face image input according to the time series, where
H, W, and C represent the height, width, and channel number of the input face image,
respectively. For a given input face image x,,, based on the proposed mouth state model,
the deep feature representation is extracted as follows:

Fm = qu(xm;GSqm)r Fm € RHWXmem (1)

where 05, is the parameter vector of the deep feature representation of the mouth state,
and F;, is the deep feature representation of mouth state. The deep representation of the
mouth state is defined as the activation value of the hidden unit in the last convolutional
layer of the mouth state detection model. Hy,, Wy,, and m denote the height, width, and
channel number, respectively, of F;,.



Information 2021,12, 3

6 of 15

S\

32 :

opeEn
/] Il "
. 7
ﬁypoo]iu"g pokiahi i
222 252
Stnde2
Stride 2
| 128 e
“ / / ey 64 global average R
L pooling

3.1.2. Eye State Model

When the driver is drowsy during driving, the eye state will change significantly,
which is mainly manifested in the faster blinking frequency or the longer duration of closed
eyes. Based on the VGG-16 [30] network structure, we propose an improved VGG-eye
network model to effectively identify the driver’s eye state. Figure 4 illustrates the structure
of the modified eye state detection model. The eye state detection model includes eight
convolution layers, three max-pooling layers, one global average pooling layer, and full
connection layers.

[ Deep feature | "
representation —p _,Il or
ofEve 5

Figure 4. Illustration of the eyes state detection model. The red boxes drawn with a dotted line define the extracted deep

features representation of the eyes. The numbers next to the boxes illustrate the dimensionality and structural detail of the

kernel in each convolutional layer.

Similar to the mouth state model, the convolutional layer hiding unit of VGG-eye
model adopts a ReLU activation function. We input the 48 x 48 eye image into the network
model in the time sequence and extract the driver’s eye state features through CNN to
effectively identify the driver’s eye state. At the same time, referring to the deep feature
representation of the mouth state, the deep feature representation of driver’s eye state is
extracted as follows:

F, = fy(xe;0ve), Fo € RExWexn @)

where x, is the input image of the given eye, 6y, is the parameter vector of the deep
representation of eye state, and F. is the deep feature representation of the eye state. The
deep representation of eye state is defined as the activation value of the hidden unit in
the last convolution layer of eye state model. H,, W,, and n denote the height, width, and
channel number, respectively, of F,.

3.2. Fatigue Feature Fusion

In the previous stage, we have trained two models to extract the deep feature rep-
resentations of the driver’s eyes and mouth. To obtain the correlation of fatigue features
between different facial regions, it is necessary to fuse the fatigue features of different facial
regions when detecting the drowsiness of drivers.

Therefore, we propose a factorized bilinear feature fusion model suitable for multi-
modal feature input to fuse the deep feature representations of the driver’s eyes and mouth.
It solves the limitation of [7] that can only perform feature fusion for homologous feature
input, and improves the versatility of the feature fusion model. For the two feature maps
of eyes and mouth on positioni, the fusion model is defined as follows:

zZ= Z fmif, eTl ®)

i€S
where f,,; € R" is the feature mapping of the deep mouth features at position /, f,; € R" is
the feature mapping of deep eye features at position /, and S represents the location set in
the feature mapping. S is equivalent to the acquired deep features of the eyes and mouth
models. m and n denotes the feature vector dimension of the deep feature representation
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of the mouth and eyes at position /, respectively, z € R"*" denotes the global feature
descriptor. Then, the full connection layer of the feature fusion model can be expressed as:

y = b+ WToec(z) 4)

where vec(.) is the vectorization operator that converts a matrix into a column vector,
WT € RO and b € R° are the weight and bias of the full connection layer, respectively.
y € R? is the output of the feature fusion model, o is the dimension of the output of the
feature fusion model. For feature fusion model, an output unit y; can be expressed as:

Y :bj+vaec<meif(§>:bj+anj;iwﬁfei ®)

ieS ieS

where W]R € R™*" is a matrix reshaped from WT,W]-_is the j-th row of W.

It is easy to see that the size of the global feature descriptor can become large, which
introduces a large number of parameters, which may lead to a high computational cost
and the risk of overfitting. Inspired by the matrix decomposition technique of unimodal
data, we can decompose the matrix in Equation (5) into two low rank matrices:

v = by L iUV foi= b+ Y 1T (U frio VT i) (6)
ieS ieS

where U € R™** and V € R"*F represent the two low-rank factorized matrices. k € N
is the factor or the latent dimensionality, and 1 € R is an all-one vector. To obtain
the output features y € R’ through Equation (6), the weights to be learned are two
three-order tensors U € R"™***? and V € R"™¥*¢ accordingly. At the same time, to
further prevent the model from overfitting, a dropout layer is added after the element-wise
multiplication interaction. The purpose of the dropout layer is to avoid overfitting of the
model by randomly discarding some neurons in the feature fusion and output layer. Finally,
an average pooling layer is used to gather the scores around the spatial position. Therefore,
Equation (6) can be reformulated as follows:

1
yj="bj+ MZlT(”TﬁW‘ oV fu) @

ieS

We named our feature fusion model factorized bilinear feature fusion (FBFF). Figure 5
shows the detailed program of the FBFF model. Then, we used the output of the feature
fusion model as input for the LSTM model to identify the driver’s drowsiness, which will
be explained in the next section.

fmeR" f,eR"
l ) 000
U e R™%0 ! v e R0

( ) 000000

ke
fml € Rkwfel - R

Average pooling .

000 -~

Figure 5. The flowchart of factorized bilinear feature fusion (FBFF).
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3.3. Driver Drowsiness Detection

In the previous sections, we extracted the feature representation of different facial
regions by the established network model. At the same time, we used the factorized bilinear
feature fusion model to fuse the sleepiness features of the eyes and mouth. However, to
detect the drowsiness of drivers, the spatial information (facial feature state) and temporal
information of the drivers’ facial features must be considered at the same time.

It is not possible to estimate the driver’s drowsiness through a single frame, because a
single frame cannot contain the temporal sequence of a driver’s facial state. Therefore, to
obtain the temporal relationship of feature mapping in the proposed drowsiness detection
model, we first used the LSTM unit to obtain the time change of the sleeping state from the
frame level fusion feature sequence. The time network we used was a one-way single-layer
LSTM architecture with 128 hidden units. Then, we input the output of the LSTM unit into
a softmax layer to accurately predict the drowsiness of the driver in each frame.

4. Experiment
4.1. Dataset

We used the National Tsing Hua University drowsy driver detection (NTHU-DDD)
dataset [31] collected by the NTHU computer laboratory to train and evaluate the proposed
driver drowsiness detection framework. The dataset recorded the driver’s face state
changes (including normal driving, yawning, and slow blinking) through the use of
visual sensors in a simulated driving environment. The whole dataset (including training,
validation, and the test dataset) contains 36 subjects. Each subject recorded video data in
five different scenes (no glasses, glasses, night (no glasses), night (glasses), and sunglasses).
The training dataset includes 360 video clips of 18 subjects, the evaluation dataset includes
20 video clips of 4 subjects, and the test dataset includes 70 video clips of 14 subjects.

For the training and evaluation datasets, frame level annotation of the sleepiness state,
eye state, mouth state, and head posture were provided. As the basic authenticity label of
the test dataset has not been disclosed, we only used the training and evaluation dataset in
this work. The data video of night (glasses) and night (no glasses) were shot at the speed
of 15 frames per second, and the video data of other scenes were shot at the speed of 30
frames per second. All video frames are grayscale images with a resolution of 640 x 480
and do not contain audio information. Figure 6 shows various examples of facial state
changes in the NTHU-DDD dataset.

1212
ST I W)

Figure 6. Example frames of the National Tsing Hua University drowsy driver detection (NTHU-DDD) video dataset with

different situations. (a) Examples of changes in different facial states in the same scenario; (b) Examples of state changes

under different scenarios.
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4.2. Experimental Details
4.2.1. Dataset Preprocessing

We divided the training dataset and evaluation dataset of NTHU-DDD into three
subsets: sleepiness state detection, eye state detection, and mouth state detection. Each
subset contains video data collected from five different scenes and the corresponding
frame level annotations. For the collected video data, we first used the Viola and Jones
algorithm [32] to detect the driver’s face area, and then used the bilinear interpolation
method in OpenCV to adjust the cropped face image to a uniform size of 128 x 128 pixels to
improve the operation efficiency of the model. At the same time, we used one-hot vectors
to redefine the frame level annotation of the facial element state. A detailed description of
the redefined frame level annotation is shown in Table 1. To increase the data capacity of
each subset, we enhanced the processed facial images by random cropping and horizontal
flipping to prevent overfitting in the process of model training.

Table 1. A detailed explanation of transforming the NTHU-DDD dataset frame level annotation into
one-hot vectors.

Category Original Dataset Annotation = One-Hot Vectors
Drowsiness Stillness 0 10
status Drowsy 1 01
Stillness 0 100
Mouth status Yawning 1 010
Talking and laughing 2 001
Stillness 0 10
Eye status Sleepy-eyes 1 01

4.2.2. Model Training

Eye state detection model: We first used FER2013 [33] to pre-train the VGG-eye model.
Then, we selected the eye state detection subset of the NTHU-DDD dataset to fine-tune the
pre-trained network model, and the weight of the new layer was randomly initialized by
a Gaussian function. To ensure that the model can fully learn the features related to the
eye state, we studied the method in [23], which located and cuts the eye region of the face
image in the dataset, and adjusted the cropped eye image to 48 x 48 pixels. We chose the
RMSProp [34] optimization algorithm to train the eye state detection model, and carried
out 40,000 iterations on the VGG-eye model. The mini-batch size was 48. The learning rate
was updated by exponential decay. The initial learning rate was set as 0.0005, and the decay
rate was 0.9. At the same time, batch normalization was added after the convolutional
layer of the model to further accelerate the operation speed of the model.

Mouth state detection model: We used the mouth state detection subset to train the
proposed network model. To fully consider the influence of the eyes, mouth, nose, and
other facial features on yawning behavior, we took the whole face image of the driver as
input. We input a 128 x 128 pixel face image into the mouth state detection model. Similar
to the eye state detection model, we choose the RMSProp optimization algorithm to train
and optimize the Squeezenet-mouth model. The model was iterated 10,000 times, and the
mini-batch size was 48. The learning rate was also updated by exponential decay. Apart
from the initial learning rate that was changed to 0.001, the other parameter settings were
the same as the eye state detection model.

Drowsiness detection model: We clipped the video data from the sleepiness detection
subset into a fixed 30 frame video clip, which was used as the input of the drowsiness
detection model to train the model. The video segments were input into the eye state
detection model and the mouth state detection model according to the time series to obtain
the related deep feature representation. After that, the FBFF feature fusion model was
used to fuse the deep features related to the mouth and eyes. The feature fusion results
were input into the LSTM unit to record the time information of the video sequence.
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Finally, the softmax layer was used to record the time information of the video sequence to
accurately predict the drowsiness score of the drivers in each frame. We choose Adam’s [35]
optimization algorithm to train and optimize the drowsiness detection model, with ; and
B2 of 0.9 and 0.999, respectively, e was 1 x 1078, the initial learning rate was set at 0.001,
and the learning rate was updated by exponential decay. We used the cross entropy loss to
optimize the prediction effect of the model.

4.2.3. Environment

The computer running the network model was configured with a NVIDIA GTX
1080Ti graphics card, Intel Core i7-7700 CPU processor with 3.6 GHz and 16 GB RAM.
The software used was tensorflow under a Spyder environment, and the computer was a
Windows7 system.

4.3. Performance of Proposed Method

We used the evaluation dataset of the NTHU-DDD dataset to verify the effectiveness
of our framework. The evaluation dataset consisted of 20 videos collected by four subjects
in five different scenes. At the same time, the evaluation dataset also included a number of
one-hot vector frame level annotations related to the scene conditions and drowsiness. We
evaluated the performance of the state detection model and drowsiness detection model.

First, we used the evaluation dataset and the frame level annotation for eye state
and mouth state to evaluate and verify the trained eye state detection model and mouth
state detection model. The results of the evaluation and validation are shown in Table
2. For the verification accuracy of the two models in different scenarios, the ratio of the
number of correct classifications of each state detection model on the evaluation dataset to
the total number of evaluation samples was obtained. Finally, the arithmetic mean of the
verification accuracy of each scene was calculated as the average accuracy of the training
state detection model on the evaluation dataset.

Table 2. The evaluation dataset of the NTHU-DDD dataset was used to verify the average accuracy of the eye and mouth state

detection model in different scenes.

No Glasses Glasses Sunglasses Night (No Glasses) Night (Glasses) Average
Mouth 0.973 0.954 0.887 0.932 0.919 0.933
Eye 0.934 0.847 0.773 0.891 0.802 0.849

The experimental results in Table 2 show that the proposed mouth state detection
model achieved good classification results in different scenarios, and the average verifica-
tion accuracy reached 93.3%. However, the classification results of the eye state detection
model were relatively low, especially in the two scenes of sunglasses and night (glasses), the
verification accuracy was only close to 80%. Considering that the model’s understanding
of the scene will be affected by the size of the object’s feature area and the problem of light,
in the evaluation dataset, the eyes in the above two scenes were blocked to a certain extent
and the light was insufficient, which affects the extraction of eye state features from the
VGG-eye model, and further affects the accuracy of the model verification.

We evaluated and verified the proposed drowsiness detection model using the evalua-
tion dataset and the frame level annotation of the sleepiness state. In [36], the convolutional
neural network structure at a lower level typically responded to simple low-level features;
therefore, linear transformation was enough to abstract the concepts in the image. There-
fore, as shown in Figure 7, we studied the influence of different high-level CNN feature
fusion structures on the accuracy of sleepiness detection. The last convolutional layer of
the state detection model and the convolutional layer after global average pooling were
fused using FBFE. At the same time, in the process of training the sleepiness detection
model, we clipped the video data from the sleepiness detection subset into a fixed length



Information 2021,12, 3

11 of 15

of 30 frames. To test the accuracy of the drowsiness detection model, we used the data of
different frames (frames = 30, 40, and 50) as the input of the LSTM in the test.

(a) (b)

Figure 7. Structure chart of the feature fusion of different convolution layers. (a) The feature fusion

of the convolutional layer before global average pooling. (b) The feature fusion of the convolutional
layer after global average pooling.

We used the F-score to quantitatively evaluate the proposed drowsiness detection
framework. The F;-score is the harmonic average of Precision and Recall; therefore, the
definition of the F1-score is as follows:

2 X Precision x Recall
Precision + Recall

Fq — score = (8)
where Precision represents the proportion of the real sleepy samples judged by the classifier,
and Recall represents the proportion of the predicted sleepy samples to the total sleepy
samples in the evaluation dataset. Table 3 shows the average detection accuracy of the
training sleepiness detection model on the evaluation dataset under the condition of feature
fusion for different high-level neural networks and the selection of different frame length
sequence data segments. The results show that, under the premise of selecting the same
high-level convolutional neural network for feature fusion, the accuracy of sleepiness
detection model in the evaluation dataset was gradually improved with the increase in the
number of input sequence frames.

Table 3. The evaluation dataset of the NTHU-DDD dataset was used to compare the average accuracy of the drowsiness

and non-drowsiness state.

Frames Drowsiness (F;-Score) Non-Drowsiness (F;-Score) Average
30 0.774 0.742 0.758
Conv 40 0.781 0.745 0.763
50 0.786 0.750 0.768
30 0.729 0.659 0.694
fc 40 0.734 0.668 0.701
50 0.740 0.674 0.707

This indicates that the ability of the network LSTM to simulate the time change of the
drowsiness state was related to the length of the input sequence to a certain extent. With
more frames of the input sequence, the detection accuracy of the model improved corre-
spondingly, but the operation time and cost of the model also increased correspondingly.
However, when the number of input frames were all 30 frames, the drowsiness detection
accuracy of feature fusion in the last convolutional layer was 0.758, which was significantly
higher than the average accuracy of the feature fusion after global average pooling.
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Considering that texture attributes are usually translation invariant, most texture
representations were based on the unordered aggregation of local image features, such as
global average pooling. Therefore, compared with the feature fusion of the convolutional
layer after global average pooling, feature fusion in the last layer of the model retained
the texture attributes of the image and improved the robustness and accuracy of driver
drowsiness predictions.

Due to the lack of available public datasets to compare the performance of drowsiness
detection, we used the NTHU-DDD dataset to compare the performance of the proposed
drowsiness detection model with several sleepiness detection models. We used the same
training dataset and frame level annotation to fine-tune the training of five network models:
DBN [3], MSTN [25], VGG-faceNet [24], LRCN [23] and DDD [6]. At the same time, we
evaluated and tested the performance of the network model drowsiness detection on the
evaluation dataset.

These methods use the same training and evaluation procedures as our proposed
framework. Table 4 shows the comparison results of using NTHU-DDD to detect drivers’
drowsiness. Among them, the two network models of DBN and VGG-faceNet only ex-
tracted a single facial feature to detect the driver’s drowsiness, and did not consider the
time change characteristics of the driver’s drowsiness, so the detection accuracy of the
driver’s drowsiness is low.

Although the two network models of MSTN and LRCN consider the time change
of driver’s drowsiness, the detection accuracy of driver’s drowsiness is low due to the
depth of the network model and the limitations of single facial features. The DDD network
model proposed by Park et al. [6] used two fusion strategies of IAA and FFA to perform
the linear fusion of fatigue features, which improves the accuracy of driver drowsiness
detection. However, the drowsiness detection framework does not consider the time
change characteristics of driver drowsiness, and the feature fusion stage is simply linear
fusion, which has certain limitations.

Our multi-level driver drowsiness estimation system uses two DCNNSs to extract
the deep features of the eyes and mouth, and uses the FBFF model to fuse the fatigue
features, and finally uses the LSTM unit to capture the time variation of drowsiness
features, which improves the driver Drowsiness detection accuracy. It can be seen from the
results in Table 4, compared with other drowsiness detection methods that this framework
can provide an accurate and effective driver drowsiness detection method in most cases.

To further verify the robustness of the proposed driver drowsiness detection frame-
work, we have made the receiver operating characteristic (ROC) curves of several network
models on the evaluation dataset, as shown in Figure 8. The ordinate True Positive Rate
represents the proportion of truly sleepy samples in the classifier judged as sleepy, and the
abscissa False Positive Rate represents the proportion of all non-drowsy samples predicted
to be sleepy. It can be seen from the ROC graph that compared with other network models,
the proposed driver drowsiness detection framework has a larger the area under curve
(AUC) on the evaluation dataset, which indicates that the proposed driver drowsiness
detection system has a stronger ability to judge whether the driver is drowsy. The classifi-
cation effect further proves the superiority and robustness of the proposed framework.

The experimental results show that the proposed factorized bilinear feature fusion
method is helpful to find driver drowsiness features with strong recognition and rich
content. At the same time, when combined with the LSTM unit, the method can effectively
capture the time information of the input image sequence, which plays an important role
in providing high-quality drowsiness detection in various situations.
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Table 4. The average accuracy of the drowsiness detection methods under different conditions was compared with the evaluation dataset of the NTHU-DDD dataset.

Multi-Stage Long short-Term Deep Drowsiness
Scenario Deep Belief Spatio-Temporal VGG- Recurrc?nt DDD-FFA Detection -Indc?pendent Proposed Work
Network (DBN) Network (MSTN) faceNet Convolutional Average Architecture
Network (LRCN) (DDD-IAA)
No glasses 0.652 0.703 0.638 0.687 0.794 0.698 0.802
Glasses 0.623 0.635 0.705 0.617 0.741 0.759 0.774
Sunglasses 0.587 0.604 0.570 0.714 0.618 0.698 0.709
Night (no glasses) 0.630 0.676 0.737 0.573 0.702 0.749 0.785
Night (glasses) 0.602 0.613 0.741 0.556 0.683 0.747 0.721
Average 0.619 0.646 0.678 0.629 0.708 0.730 0.758
1.0
0.9 -
0.8 A
0.7 A

True Positive Rate
o
(6]
1

0.4 -
0.3 A 17
i —— DBN(0. 625)
0.24 _/'/,"I ------ VGG-facenet (0. 683)
: / e LRON (0. 652)
# ~ MSTN(0. 661)

—— DDD-FFA(0. 702)
—— proposed work (0. 774)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

False Positive Rate

Figure 8. The receiver operating characteristics (ROCs) for the driver drowsiness detection. Figures in parentheses indicate the area under curves (AUCs).
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5. Conclusions and Future Work

In this paper, we proposed a driver drowsiness estimation model based on factorized
bilinear feature fusion and a long-short-term recurrent convolutional network to effectively
detect driver drowsiness. First, we designed two kinds of CNN, which were used to extract
the deep features of the driver’s eyes and mouth and to detect their states. Then, we used
the FBFF method to fuse the deep feature representation of the eyes and mouth. Finally, we
used the recurrent network LSTM to model the time variation of the drivers” drowsiness to
provide accurate detection of the drivers’ drowsiness under various driving conditions.
The experimental results showed that the proposed drowsiness detection framework had
good reliability, robustness, and accuracy under various driving conditions.

In future research, we will further optimize the network structure in the proposed
framework to improve the operational efficiency of the model without reducing the detec-
tion performance. At the same time, we will study a combination of drivers’ facial fatigue
features and physiological signals, such as the heart rate, to further improve the accuracy
of driver drowsiness detection.
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