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Abstract: How to design efficient scheduling strategy for different environments is a hot topic in
cloud computing. In the private cloud of computer science labs in universities, there are several kinds
of tasks with different resource requirements, constraints, and lifecycles such as IT infrastructure
tasks, course design tasks submitted by undergraduate students, deep learning tasks and and so forth.
Taking the actual needs of our laboratory as an instance, these tasks are analyzed, and scheduled
respectively by different scheduling strategies. The Batch Scheduler is designed to process tasks
in rush time to improve system throughput. Dynamic scheduling algorithm is proposed to tackle
long-term lifecycle tasks such as deep learning tasks which are hungry for GPU resources and have
dynamically changing priorities. Experiments show that the scheduling strategies proposed in this
paper improve resource utilization and efficiency.

Keywords: cloud computing; Kubernetes; scheduling strategy; resource management

1. Introduction

In complicated computing context, cloud computing can significantly improve re-
source utilization rate. In cloud architecture, the exploitation of container technology [1],
such as Docker, is becoming more and more widespread [2]. Accordingly, there has been a
dramatic increase in the popularity of Container as a Service (CaaS) clouds. CaaS is a model
that uses containers as the unit of resource division. Cloud providers will virtualize com-
pute resources in the form of containers and deliver them to users as services [3,4]. Based on
CaaS and containerization technique, a complex monolithic application could be divided
into several microservices and these containerized services are distributed on multiple
physical hosts [5,6]. Therefore, there may be many container-based heterogeneous tasks
in a cloud platform. How to schedule these tasks is a key problem [7]. There is no ‘silver
bullet’ for schedulers. Schedulers for different clouds in different circumstances perform
diversely and it is meaningful to explore scheduling strategies for various requirements.

In our private cloud, these containerized tasks are deployed and managed by Kuber-
netes which is a lightweight and powerful orchestration tool [8]. Kubernetes provides lots
of fundamental functions, such as scheduling, monitoring, resource allocation and and so
forth. Besides, Kubernetes is an open source project and provides customized interface for
plugins, so we can replace the scheduling strategy to meet our platform’s requirements [9].

In the scenario of our computer science laboratory, the computing resources are
relatively limited, especially about GPU, and the time for resource purchase is quite long.
Moreover, there are greatly diverse requirements in tasks. For instance, there are some
basic tasks with long life cycles that require high availability, and short tasks in traffic jam
submitted by undergraduates for their class design which have relatively low reliability
and usability, and some resource-consuming and time-consuming tasks such as image
processing and deep learning which are vying for GPUs.
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During deployment, we found that the default strategy in Kubernetes treats all tasks
equally and all Pods are scheduled by the same scheduling process with default score
methods. To achieve better deployment and resource utilization rate, different scheduling
processes and constraint rules for different tasks should be employed. Moreover, in default
scheduler of Kubernetes, tasks are scheduled from the priority queue in order statically.
But the lifecycles of tasks are distributed in a wide time span. The tasks should be resched-
uled to tackle the dynamical changes of the system. The default scheduling strategy can be
improved in many ways to suit the needs of laboratory tasks much better.

In this paper, based on some case study analyses in our laboratory, we propose two
new scheduling strategies and conduct some experiments. We have built a private cloud in
our lab—Jilin Provincial Key Laboratory of Big Data Intelligent Computing. In the cloud,
we have deployed basic services such as identity authentication, storage, and knowledge
management in containers managed by Kubernetes. The users will submit tasks on web
GUI or by REST API. Then, these tasks will be scheduled by our proposed algorithms.
In this paper, our main contributions are listed below:

• Two Schedulers, Batch Scheduler and Dynamic Scheduler, are proposed and imple-
mented. These Schedulers are exploited in appropriate situation for different tasks to
improve system performance in different aspects.

• The Batch Scheduler contains two steps, greedy method step and local search step,
which can search out a better layout in rush hour.

• The Dynamic Scheduler manages tasks by priorities which will dynamically change.
These tasks are basically long-term deep learning tasks which the preemption and
migration mechanism are mandatory in our system.

• To estimate the Batch Scheduler and the Dynamic Scheduler, some experiments are
conducted in our cloud. Compared with the default strategy, the resource utilization
rate and efficiency are improved.

The rest of the paper is organized as follows—Section 2 presents some related works.
Section 3 introduces the private cloud platform and services of our laboratory. Then,
Section 4 will describe the default scheduling strategy in Kubernetes and proposed im-
provements. In Section 5, we present the implementation details of our strategy. At last,
Section 6 describes the results and analysis of the experiment and the paper is concluded
in Section 7.

2. Related Work

The purpose of the scheduling is to place the Pod on a particular node. A lot of
strategies have been proposed by scholars in recent years.

The default scheduling strategy in Kubernetes keeps updating new features such as
Node affinity, Taints, Tolerations, Preemption and Eviction. Node affinity is a property
of Pods, including Required and Preferred affinity. This property attracts Pods to a set
of nodes. Taints are opposite to Node affinity and they allow a node to repel a set of
pods. A Pod will be allowed to accept nodes with matching Taints according to Tolerations.
Pods can also have static priority and that allows Pods to preempt or evict lower priority
Pods [10].

There are some well-known schedulers in other orchestration tools. A fair algorithm
called Dominant Resources Fairness (DRF) is exploited in Mesos [11,12] to solve the prob-
lem that each user may have different demands for resources. Binpack [13] applied in
Swarm aims to achieve compression of nodes, but that will lead to instability of cluster.
These algorithms are easy to implement and perform well in simple cases.

In addition, many complicated algorithms have been proposed to be combined with
Kubernetes. For example, in Reference [14], the author proposes a strategy which based on
a multi-criteria decision analysis algorithm. In Reference [15], a scheduling algorithm called
Balanced-CPU-Disk-IO-Priority (BCDI) is mainly applied to improve the resource balance
between IO and disk. In Reference [16], ant colony algorithm and particle swarm optimiza-
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tion algorithm are used to improve the balance of the resource allocation. Reinforcement
learning algorithm is applied to the scheduling strategy in References [17,18].

However, the existing algorithms are not suitable for our cases. Lots of them do not
concern batch tasks scheduler in which there is a tradeoff between throughput and waiting
time. Some keep eyes on I/O and CPU resources which are not key points in deep learning
tasks. In deep learning tasks, GPU cards are scarce resources and they are exclusive by
a particular task at a time which leads to a different scheduling demand. Algorithms
proposed in this paper improve performance in these areas and achieve good results.

3. Our Private Cloud Platform and Services

The architecture of our private cloud is shown in Figure 1. There are four layers
which are the resource layer, management layer, application layer and presentation layer
from bottom to top respectively [19]. The resource layer includes physical servers, storage,
computing, and network resources [20]. In order to manage and monitor the use of
resources, Kubernetes is deployed in management layer. The application layer consists of
many services of the platform. Moreover, users can manage and monitor their own tasks
and services through presentation layer [21,22].

Figure 1. Architecture of the platform.

In the application layer, we have deployed some tasks which are adapted open source
software to service our members in research and education, including Wiki, Gitlab, and
so forth. And a unified identity authentication system is deployed to authenticate and
authorize computing and data resources [23–25]. These tasks should be scheduled at the
initial stage and always keep alive.

There are also lots of tasks created by users which include researchers and under-
graduate students in our lab course. These tasks such as deep learning training and some
short-term coursework have widely distributed lifecycle. For coursework tasks, they will
be submitted in batches and their response time can be relatively longer and unstable in
busy hour. For deep learning training tasks, some tasks may be starved because GPU
resource was occupied by some long running tasks if the Scheduler has not deal with these.

4. The Default Scheduling Strategy and Improvements

There is a default scheduler in Kubernetes to find node for a newly created Pod.
The scheduler exploits a priority queue in which head Pod will be scheduled firstly to a
selected node. The default scheduling strategy includes three steps: Predicate, Priority and
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Select. In the Predicate step, the Scheduler checks all available nodes, and filters out nodes
that meet the Pod requirements according to some Predicates, such as CheckNodeCon-
ditionPred and PodFitsResources; then the default Scheduler will calculate score of each
available node in the second step; LeastRequestedPriority described in Formula (1) is used
to pick the host with the most free resources, and BalancedResourceAllocation described in
Formula (2) targets to allocate resources in more balanced way. Finally, the node with the
highest score is selected to run the Pod [10,26].

score = ∑(type((capacity−∑ requested) ∗ 10)/capacity)/3, type ∈ {gpu, cpu, mem} (1)

score = 10− sub( f ractiongpu, f ractioncpu, f ractionmem) ∗ 10. (2)

The default Scheduler uses priority queues to schedule containers in order. It cannot
forecast the resource requested by the subsequent containers, so there is some space to
improve the scheduling method. As depicted in Figure 2, there are four Pods A, B, C,
and D in the priority queue and two 4-core hosts E and F. The colored boxes indicate the
number of CPU cores they require respectively, which are 2, 1, 2, and 3. The Pods in the
priority queue are scheduled in order one by one, and we can find that container D cannot
be scheduled in this situation. However, there is an available way to schedule all containers
if we had a good strategy depicted in desired result.

Figure 2. A case of schedule.

In addition, if there were fierce competition for resources, dynamic migration is more
effective. There is a case depicted in Figure 3 containing five Pods A, B, C, D, and E and
two 4-core hosts G and H. These Pods require 3, 1, 2, 1, 1 CPU cores respectively and they
have been ordered in the queue according to the required resources. After scheduling,
the resource utilization rate of our current layout is 100%, and there are no Pods waiting
to be scheduled. However, when the Pod B and E finished and released the resources,
a new Pod F which requires two cores is submitted. In this situation, the Pod F cannot be
scheduled. In fact, if Pod D was migrated to host G dynamically, Pod F can be scheduled
on host H.

To tackle these problems, a Batch Scheduler and Dynamic Scheduler are proposed and
implemented. The Batch Scheduler will schedule tasks all together which are collected in a
time span. For these batch tasks, initial deployment is calculated by greedy algorithm after
they were sorted firstly. Then, we will adjust the previous deployment to get a better layout.

The Dynamic Scheduler will keep track of all tasks scheduled by itself through all
their lifecycle. For these tasks, active tasks are stored in a task buffer where the Dynamic
Scheduler will dispatch tasks dynamically. For tasks supporting the dynamic migration,
there are some prerequisites. First, an estimated running time which will be contained in
scheduling decision must be submitted in Pod. In our private cloud, every user is regarded
as an honest user who will submit approximate estimated running time. A regular audit
will be taken on the submitted running time by managers in hand to ensure this mechanism
is work. Second, these tasks should support Pause and Resume operations. The pausing
tasks has 10 min to store their states in our distributed file system. In this way, dynamic
strategy is proposed to schedule tasks. The implementation details are presented in
next section.
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Figure 3. The layout changes, and the platform needs to be dynamically adjusted.

5. The Implementation of Our Strategy

There are three scheduling strategies exploited in different situation. The first one is
Default Scheduler provided by Kubernetes, the second is Batch Scheduler used in busy
hour and the third one is Dynamic Scheduler for GPU tasks. The last two scheduler are
proposed and implemented by our team. First of all, if there were enough resources,
the default Scheduler will be employed and it will work very well. So, Batch Scheduler
and Dynamic Scheduler will only be brought online by hand or a system monitor when
fierce competition for resources was detected.

When Batch Scheduler is employed, the submitted task in a given period will gather
in a Candidate Queue firstly. The Pods in this queue will be sorted according to different
indicators. Then two optimizing steps called initialSchedule and Swap will be made to get
a better deploy info. Based on these data, the batch tasks are scheduled. So, there will be
more delay but more throughputs comparing with Default Scheduler.

GPU resources are always scarce in our private cloud, and some tasks which are
occupying GPU will last a long time. It is necessary to support a preemptive scheduler
in this situation. In our cloud, every GPU task should support pause and resume action.
Based on these prerequisites, a Dynamic Scheduler is implemented to manager GPU related
tasks. The scheduling process is depicted in Figure 4.

Figure 4. Flow chart of the strategy.
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5.1. Batch Scheduler

In general, course design tasks submitted in one minute are treated as a set of batch
tasks. These batch tasks are gathered in a Candidate Queue. In order to tackle issues listed
in Figures 2 and 3, two improved algorithms are proposed. Firstly, these tasks in queue
will be sorted by Algorithm 1. The sorted queue is depicted as podsSorted. A predicate
function PREDICATE1 is used as a parameter of Golang function SliceStable() to sort
Pods. In the algorithm, I/O is the most important resource for comparator and the function
PREDICATE1 implements the comparison (Lines 6–16). Then, the tasks are drained out
of the queue one by one to an initial deploy step in which greedy algorithm is exploited.
The greedy algorithm is composed of double loops. In inner loop, every node is predicated
whether the node can place the Pod selected in outer loop according to the constraints. If a
node was selected, the inner loop will be broken. If there were not nodes available, the Pod
will be deployed on a special dummy node.

Algorithm 1 Sorting in Candidate Queue Algorithm

Input: pods
Output: podsSorted
1: function SORTCANDIDATEQUEUE(pods)
2: Predicate Sort such as sort.SliceStable(pods, PREDICATE1())
3: return pods
4: end function
5:
6: function PREDICATE1(pods[i], pods[j])
7: if pods[i].io == pods[j].io then
8: if pods[i].cpu == pods[j].cpu then
9: return pods[i].mem >= pods[j].mem;

10: else
11: return pods[i].cpu >= pods[j].cpu;
12: end if
13: else
14: return pods[i].io >= pods[j].io;
15: end if
16: end function

The initial deployment can be optimized in most cases. So, the Swap step is em-
ployed which is described in Algorithm 2. It takes nodeAndPods and rule as parameters.
The nodeAndPods is deployment relationship from node to Pods in initial deployment.
The rule is constraints of the deployment. Firstly, the nodes are sorted from small to
large according to their occupied resources and the result is stored in nodeAndPodsSorted
(Line 2). nodePodsMap represents the mapping of node and Pods on it. Then, a ReDeploy
function where uses f lag and FailedPods as signals is employed to decide for each node
whether all Pods on it can be migrated to other nodes (Lines 17–33). If reFlag is true, that
means all pods on this node can be migrated (Lines 10–11). In order to reduce resource
fragmentation, Pods on the node should be sorted according to resources in advance
(Line 8). After these steps, we finally get the deployment info for input tasks. If there still
were Pods in the dummy node, the scheduling algorithm will just leave these Pods for next
scheduling process.
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Algorithm 2 Swap Algorithm

Input: nodeAndPods, rule
Output: nodeAndPods
1: function ALGORITHM2(nodeAndPods, rule)
2: nodeAndPodsSorted← SORTNODESBYRESOURCE(nodeWithPods)
3: nodePodsMap← ToNodePods(nodeWithPodsSorted)
4: for node ∈ nodeList do
5: if nodePodsMap[node] == null then
6: Continue
7: end if
8: pods← sortPodsByResource(nodePodsMap[node])
9: reFlag← REDEPLOY(nodeAndPodsSorted, pods, rule)

10: if reFlag == true, that is all pods on this node can be migrated then
11: Migrate pods, update nodeAndPods and nodePodsMap
12: end if
13: end for
14: return nodeAndPods
15: end function
16:
17: function REDEPLOY(nodeAndPodsSorted, pods, rule)
18: for pod ∈ pods do f lag← true
19: for node ∈ nodeList do
20: if the pod can be put on the node then
21: f lag← f alse
22: Break
23: end if
24: end for
25: if f lag == true then
26: this pod needs to be put in FailedPods
27: end if
28: end for
29: if FailedPods.empty, that is all pods on the node can be migrated then
30: return true
31: end if
32: return f alse
33: end function

5.2. Dynamic Scheduler

In our cloud, Dynamic Scheduler is a preemptive scheduler for some tasks which
are occupying GPU. The TaskPool is its core data structure. Tasks in the TaskPool have
priorities which will change dynamically. Formulas (3)–(5) describe how to calculate the
priority. There are estimated runtime Qtime and required GPU resources Qres submitted
by users. Dishonest users who submit cheat info will be punished in post-audit. In this
way, every Pod gets a default priority called Pde f ault following the Formulas (3) and (4).
In Formula (4), wi is the resource weight, and Ci is the number of this resource that users
request. In runtime, tasks priorities Ptask are dynamically adjusted every 10 min following
Formula (5) in which Wt is the waiting time, and Rt is the running time. The pause and
resume costs for GPU tasks are expensive, so a task will keep running at least an hour
before its pause even if its priority was lower than others. The formula shows that when a
task waits longer, its priority is higher. The longer the running time, the lower the priority.

Pde f ault =
1

Qtime ∗Qres
(3)

Qres = ∑ wi ∗ Ci, i ∈ resourcelist (4)
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Ptask = Pde f ault ∗ (1 +
Wt

max(Rt, 1)
). (5)

All active tasks are stored in the TaskPool and these tasks are sorted by priority.
Dynamic Scheduler will try to pause a set of tasks whose priorities are lower than paused
tasks from high priority to low priority. In the ideal situation, the tasks can be deployed
directly to those released resources. But in a very few cases, resource constraints of some
tasks cannot be satisfied and that will lead to a migration of some tasks. When a task is
going to pause, it has 10 min to store its states in a distributed file (Swift + NFS) after
receiving a pause signal.

6. Experiments and Results

Experiments of Batch Scheduler are made in Alibaba scheduling dataset [27]. The
dataset is composed of three files, which are used to describe the information of apps,
nodes, and constraint rules. The results are listed below.

Table 1 shows the comparison between our algorithm and the default Scheduler
for batch tasks. Resource utilization and layout score are important indicators. Resource
utilization is formulated as Costused

Costtotal
. During this experiment, the weights of I/O, CPU,

and MEM resources are set as 10, 4, and 2, respectively. Based on these data, the value of
Costtotal can be calculated. Besides, there is a soft constraint to make tasks more robust,
that the pods in a task were supposed to deploy on different machines, so the layout
score formula is ∑ a ∑ A(cAa − 1) ∗ costa(cAa > 1). cAa is the total number of containers of
application a on machine A and costa is the cost of the container of application a on the
same machine. The costa is a const with value 1 in Alibaba dataset which will be improved
in the future research to fulfill different application requirements. Accordingly, the smaller
the value of the layout score, the better the layout.

Table 1. Batch tasks.

Default Scheduler Our Algorithm

Nodes 776 815 847 945 776 815 847 945
Apps 382 402 420 413 382 402 420 413
Pods 7423 8021 8210 9241 7423 8021 8210 9241

Resource utilization 69.20% 57.30% 67.40% 59.70% 91.90% 84.20% 89.60% 87.40%
Layout score 1158 1317 1295 1272 1065 1174 1168 1253

The Dynamic Scheduler is tested in a dataset generated by our team. This dataset
is based on the deep learning tasks running in our laboratory. To compute the value of
Pde f ault, users should submit approximate estimated running time. In general, the running
time is estimated by tasks FLOPS. These tasks shall be tested in submitters’ local GPU with
a small dataset to estimate whole FLOPS. For instance, the Network Architecture Search
(NAS) task trained by small dataset which consumed 600T FLOPS is running 20 min in a
local GTX960 card produced by Colorful, ShenZhen, China, so the task’s running time for
whole dataset which will consume 3E FLOPS is estimated as 40 h in a cloud GTX2080 card
by submitter. When we calculate Qres, GPU is the most important resource, so the weights
of GPU, CPU, MEM resources are set as 10, 2, 1, respectively.

The results are listed in Table 2. For GPU tasks, we compare the algorithms from the
resource utilization and the average task waiting time, as shown in Table 2. The average

waiting time is formulated as ∑i∈apps ti
c(apps) , which means the ratio of the sum of the waiting

time of all tasks to the number of tasks. Because of the priority and preemption mechanism,
we can schedule more tasks per unit time. So, the average waiting time of our algorithm is
better than the default Scheduler.

Experiments show that these two scheduling strategies proposed in this article im-
prove resource utilization and increase task throughput.
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Table 2. GPU tasks.

Default Scheduler Our Algorithm

Nodes 46 49 53 60 46 49 53 60
Apps 102 106 122 152 102 106 122 152
Pods 311 305 364 339 311 305 364 339

Resource utilization 60.70% 57.50% 65.30% 61.20% 85.40% 79.30% 81.20% 83.60%
Waiting time 7.5 h 6.1 h 6.3 h 7.1 h 2.3 h 1.6 h 1.7 h 2.2 h

7. Conclusions

With the rapid development of the containerization technique, CaaS is becoming
more and more popular in cloud computing services. For computer science laboratories in
universities, the resource is relatively limited and the types of services are diverse. To fulfill
the actual needs of our labs, we have proposed scheduling algorithms which are exploited
in appropriate situation for different tasks and achieved good results in terms of resource
utilization and waiting time. Despite all this, there is additional work to improve our
algorithms. For example, we currently need users to provide an approximate running time,
but we hope that the system can be independent on this variable. Further, our system
should better detect different scenarios to switch the scheduling algorithm instead of
relying heavily on manual operations. In the future, we will improve and extend our work
in several directions. Firstly, we will make the scheduling algorithms more automated
and stable by repairing the above defects. In addition, we will continue to research on
scheduling strategies and keep track on new technologies, such as applying deep learning
with scheduling.
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