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Abstract: Laser machining has been widely used for materials processing, while the inherent
complex physical process is rather difficult to be modeled and computed with analytical formulations.
Through attending a workshop on discovering the value of laser machining data, we are profoundly
motivated by the recent work by Tani et al., who proposed in situ monitoring of laser processing
assisted by neural networks. In this paper, we propose an application of deep learning in
extracting representative features from laser processing images with a multi-task loss that consists
of cross-entropy loss and logarithmic smooth L1 loss. In the experiment, AlexNet with multi-task
learning proves to be better than deeper models. This framework of deep feature extraction also has
tremendous potential to solve more laser machining problems in the future.
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1. Introduction

The application of deep learning methods to physics is gaining increasing attention due to its
powerful ability in modeling and predicting. Laser machining has highly reformed the manufacturing
industry over recent decades, and it has also become a popular topic in the field of physical studies.
However, the complex nonlinear process inherent to laser processing is still a problem which remains.
In this paper, we demonstrate an application of deep learning in extracting representative features
from laser processing images with a multi-task learning scheme.

1.1. Laser Machining

Laser machining is a physical process of removing material via the interaction between a laser
beam and some target material. In laser machining processes, the energy of a photon is transported
to the target material in the form of thermal energy or photochemical energy, and then the target
material is removed by melting or ablation [1]. Laser machining has been characterized by a lot of
advantages such as flexibility, precision, automation, and versatility [2]. It has been widely applied to
high-precision materials processing in recent years. The global laser machining market is expected
to reach USD 5.7 billion by 2022 due to the increasing need for high-precision and automation in
manufacturing [3]. Laser machining is believed to play an important role in Society 5.0 [4].

Nevertheless, it is of great difficulty to strictly control the machining quality due to the inherent
complex physical process. Sometimes a slight change in the laser or environmental parameters could
lead to a totally different result [5].

Since it is as yet impracticable to simulate this complex process by mathematical or physical
methods, deep learning methods as pattern recognition algorithms are drawing more attention recently.
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Deep learning approaches allow stakeholders to skip obtaining complex prior physical knowledge
of laser machining. This also helps users with better mining the value of machining data from
another perspective.

1.2. Purpose and Motivation

Although there is huge potential for applying deep learning in physics, the corporation
between data science and physics is sometimes hard to achieve due to the lack of cross-disciplinary
communication. However, our work is strongly motivated by participating an IMDJ workshop [6] to
seek solutions to handle a series of problems in physics, including laser machining.

Here, IMDJ is a game-style workshop to discover the value of data and find solutions for some
practical problems, in the way of creating new ideas by combining Data Jackets (DJ) and Tool Jackets
(TJ) with negotiations. A DJ keeps the digest of a dataset in a structured format so that the dataset
could be comprehended in the discussions without showing the actual content [7]. Similarly, a TJ is
a summary of a certain technical tool that might be complicated for non-experts in data utilization.
Besides, a visualization method called KeyGraph [8] is usually used to reveal the relationships between
different DJs and TJs, which could make it easier for the participants to discuss on cross-disciplinary
data or techniques and then create new solutions with them.

Many influential data scientists and physicists from The University of Tokyo attended the IMDJ
workshop in which we participated. This workshop aimed at using methods from data science to
solve problems which were still complex in physics. The physicists proposed their datasets and the
requirements on them while data scientists introduced data utilization methods for possible solutions.
In this way, a cross-disciplinary collaboration could be built without requiring prior knowledge
of other fields for all participants. Many latent problems and applications in the fields of physics
and data science were deeply discussed in this workshop. From the discussions, we are highly
motivated by methods put forward by some physicists of using deep learning on laser machining
data. Especially, Tani, Aoyagi, and Kobayashi [9–11] recently proposed in situ process monitoring
assisted by a deep neural network, which does not require analytical formulation (see also Section 2.1).
This gave us the inspiration for this work to apply deep learning methods for the feature extraction of
laser machining data. Because it is difficult for humans to extract useful information from the laser
machining data where the speckle patterns are captured on the Fourier plane, we considered that deep
learning techniques could be fully utilized to reveal more essential in-data information [12,13].

The main contribution of this paper is that we analyze the laser machining data which is still less
studied, and then design a deep multi-task learning framework to train a feature-extracting model for
the downstream tasks with the help of some known information, such as processing power settings or
logarithmic orders of machining stages. Besides, we will demonstrate that AlexNet with multi-task
performs better than a deeper model, which could also meet the real-time requirements due to the less
computational cost.

2. Related Work

2.1. Laser Machining and Deep Learning

Recently there has been some research for applying deep learning methods on laser machining
data. The pioneering work proposed by Tani et al. [11] introduced a method to monitor the progress of
laser processing using laser speckle patterns without a need for analytical formulation. Deep learning
methods were used to extract multiple information such as ablation depth and material type under
processing, which could be useful for composite material processing. Their work proved the simplicity,
versatility and accuracy of applying deep learning in laser processing. Another deep learning-based
method was proposed by Mills et al. [14] as image-based monitoring of femtosecond laser machining.
This paper aimed to build a real-time feedback system in laser machining by predicting the type of
material, the laser fluence, and the number of pulses at the same time as a classification problem.
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The disadvantage of this method is that the environmental parameters were strictly limited since the
training set only contains a small number of all possible combinations.

Existing work focuses less on the aspect of feature extraction than just taking deep learning as
pattern recognition or regression algorithms. With feature extraction, our results could be extended
and used in more potential physical problems of laser machining.

2.2. Multi-Task Learning

The traditional solution to obtain machine learning models for different tasks on the same dataset,
or the same task on a different dataset is to train different new models from scratch each time.
However, in some real-world applications such as medical image analysis or high precision physical
experiments, enough data samples in good quality are often difficult to collect. In this case, training
models separately with limited data may lead to a result of several low-accuracy shallow models,
which is not desirable in real applications.

Multi-task learning (MTL) [15] is inspired by human learning activities when people often tend
to apply the knowledge obtained from previous tasks to help with working on a new but related
task. It is considered a good solution when there are multiple related tasks and each of which only
has limited training samples. Among these learning tasks, all of them are assumed to be related to
each other. In this case, it can be found that learning these tasks jointly could lead to a performance
improvement compared with learning them separately. MTL has seen a lot of success across many
applications of machine learning, such as natural language processing [16], speech recognition [17]
and computer vision [18].

Deep MTL [19,20] combines deep learning and MTL where multiple learning tasks will be solved
simultaneously by exploring commonalities and differences among all the tasks by leveraging deep
neural networks. Recently, deep MTL has started to draw scholars’ attention due to its capacity of
learning hierarchical features and sharing knowledge from different domains. One of the reasons for
the success of deep MTL could be attributed to the inbuilt sharing system, which allows a network to
extract features shared across different tasks [21,22].

In this paper, a deep multi-task learning framework will be applied for better mining latent
information in the laser machining data through a composed loss function.

3. Dataset

In this section, we describe the laser machining image dataset we obtained by negotiating with
the physicists in the IMDJ workshop. We introduce the data details and then report an exploratory
analysis on a part of the dataset.

3.1. Details

The laser machining dataset adopted in this paper is kindly provided by one of the workshop
participants, Kobayashi Lab., Institute for Solid State Physics (ISSP), The University of Tokyo.
There are 10 different laser power settings, 105 independent experiments in each power setting,
and 250 sequential stages within each experiment so that there are a total of 262,500 images in the
dataset. Each image records speckle patterns in the Fourier transform plane with a resolution of
400 × 4080 pixels in grayscale, and all the images have already been labeled with laser powers
and stage numbers. For the aim of utilizing machine learning methods and the consideration of
experimental reproduction, the total dataset is further divided into three subsets shown in Table 1.
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Table 1. The data subsets for our tasks.

Subset Name Range of Experiment IDs Total Number of Samples

Training 1–70 175,000
Validation 71–85 37,500

Test 86–105 50,000

Nevertheless, the size of the original images is too large that they exceed the memory limitation
of our device, so we use bilinear interpolation to resize the input images from the original
400× 4080 pixels to a smaller size. We choose 224× 224 as the new size because it is mostly used by
existing CNN models. This preprocessing step also accelerates the training speed. Moreover, each data
value in the three sets is normalized by the empirical mean 0.109251 and standard deviation 0.033309
which are observed over the training set.

3.2. Analysis

To understand the laser processing image data, we give a study looking at the training set by using
principal component analysis (PCA) [23]. PCA is one of the methods that explore the characteristics of
data sets by finding orthogonal components, on which the projection of the data has the most variance.
Before performing PCA, the original data is usually processed with mean centering that subtracts each
data value from the empirical mean along each variable.

Consider a centered real matrix X of N × M size, where N is the number of samples, M is
the number of variables of the data and N ≥ M. PCA performs eigenvalue decomposition
on the covariance matrix C = X>X/(N − 1) to find eigenvectors as the components with the
largest-to-smallest sorted eigenvalues λ[M](λ1 ≥ λ2 ≥ · · · ≥ λM). The eigenvectors and the
corresponding eigenvalues are used to explain the variance in the data with explained variance
ratio ri = λi/ ∑M

j=1 λj. However, it is hard for us to operate eigenvalue decomposition on our training
set directly where N = 175,000 and M = 224× 224 = 50,176. Therefore, we apply singular value
decomposition (SVD) on the centered training set alternatively. SVD gives X = UΣV>, where U and
V are orthogonal matrices, and Σ is an M×M diagonal matrix of singular values σ[M]. In practice,
the computation can drop the matrices U and V , and only store the diagonal matrix Σ as an array with
M size. Letting the singular values be in the order σ1 ≥ σ2 ≥ · · · ≥ σM, we can obtain the eigenvalues
of C by

λi =
σ2

i
N − 1

. (1)

To evaluate the amount of variance explained by the components, we use the cumulative explained
variance ratio (CEVR) which is defined as

Ri =
∑i

j=1 λj

∑M
k=1 λk

. (2)

Besides mean centering, we handle the centered training set before performing SVD with
normalization that divides the data value by the empirical standard deviation over each variable.
The data processed with the combination of centering and normalization are called z-scores,
which could improve the performance in some machine learning methods. Then we obtain the
singular values of the z-scores with SVD and calculate the CEVRs by Equations (1) and (2) for each
component. The result is shown in Figure 1.
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Figure 1. CEVR Ri obtained by using SVD. The blue line shows for all components in the training set,
while the red one only shows for 1 ≤ i ≤ 300.

Although a 224 × 224 image has a high dimension, we find that we can adopt less than
300 components to recover greater than 99% variance in the training data. This can help us extract
features with a low-rank decomposition, e.g., truncated SVD [24], for alleviating the curse of
dimensionality. Matrix decomposition is widely used in traditional machine learning methods for
high-dimensional data.

4. Method

To utilize the speckle pattern image data for the downstream applications such as ablation
prediction or laser machining monitoring, extracting features from the original data is the most critical
step, as any further applications will be based on the representative features extracted from the images.
A good form of image feature representations will increase the accuracy performance of the model and
the ability of the model to be applied to more datasets in the future.

In this paper, we adopt two CNN models for feature extraction and design two corresponding
tasks to evaluate the performance of feature extraction on speckle pattern data:

1. Power Classification: Input an image, then predict the corresponding laser source power setting
when this image was taken, i.e., classify the image to one of the 10 classes of laser power.

2. Shot No. Regression: Input an image, then predict the logarithmic corresponding shot no. of this
image, i.e., at which stage during a single experiment this image was taken, the shot no. can be
one value in the range of 1–250.

To handle these two tasks, three steps are designed in our proposed method including image
feature extraction with CNN, classification and regression, and MTL (Figure 2). The details of these
steps will be introduced in the following sections.
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Figure 2. The diagram of the architecture in our method. The numbers are the sizes of their nearest
sides while the default is 1.

4.1. Image Feature Extraction with CNN

The first as well as the most important step of our proposed model is to extract the features
of images from the original data so that we can use these features to represent images with similar
structures, which are more likely to be taken in similar laser source settings or experiment stages.
In this step, we adopt two widely used CNN models in the field of computer vision, AlexNet and
ResNet, for image feature extraction as our base models:

• AlexNet [25] has five convolutional layers and three fully-connected (FC) layers and uses the
rectified linear unit (ReLU) as the activation function instead of the sigmoid function to reduce
gradient vanishing and gradient exploding problems. AlexNet also introduces mechanisms such
as Dropout and overlapping pooling to avoid overfitting.

• ResNet [26] (Deep Residual Network) is designed for networks with great depths by introducing
a new neural network layer, Residual Block, to alleviate the problem of training very deep
networks. The most widely used variances of ResNet include Res18, which has 17 convolutional
layers and one fully-connected layer.

For feature extraction, we drop all the original fully-connected layers at the ends of the two
base models, connect the last convolutional layers to parallel average- and maximum-pooling layers,
and concatenate the two pooling results to a vector as the extracted features. Furthermore, both pooling
layers operate over the neurons on each filter of the last convolutional layer, so that the number
of the extracted features is two times the number of the channels of the last convolutional
layer. Accordingly, the sizes of deep features extracted by AlexNet and Res18 are 512 and 1024
respectively. We expect that average-pooling could transfer the overall extracted information while
maximum-pooling could select significant features.

In general comparison, ResNet has a better performance in accuracy than AlexNet.
However, it shows different results on the laser machining data according to the experiments
mentioned later.

4.2. Classification and Regression

In this step, we design different loss functions for the models solving the two tasks introduced
above. Loss function evaluates the error between real label value and predicted label value output by
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the model, i.e., a minimized loss value tends to imply that the model fits the dataset well, which is
also the goal of the training of a learning model. However, for different tasks conducted on the same
dataset, we may focus on different domains of the data, therefore, to fulfill different task requirements,
we need to design different loss functions accordingly.

For Power Classification, we can directly use the cross-entropy loss function as this is a classic
multi-classification problem, which can be denoted as

Lp = − 1
N

N

∑
i=1

K

∑
k=1

yi,k log pi,k, (3)

where for the i-th input sample (xi, yi), ci is the labeled laser source power setting of an image xi,
and yi,k is the one-hot representation of the sample label where

yi,k =

{
1, if ci = k

0, otherwise
. (4)

The probability of the i-th sample will be predicted with label k is pi,k, and there are K labels (in this
study, according to the dataset, K = 10) and N samples in total.

For Shot No. Regression, we employ smooth L1 loss [18] to build a regression model on the
shot no. of each image. The reason why we use smooth L1 loss instead of normal L1 loss or squared
L2-norm is that it could avoid propagating too large gradients when the absolute loss is greater than
1; also, it could do soft learning when the loss is in the range [−1, 1]. Another modification is that
because a shot no. is just a discrete integer in the specified interval, we could then apply a logarithmic
function to it to relax this strong constraint. Therefore, the loss can be denoted as

Ls =
1
N

N

∑
i=1

smooth-L1 (zi − z′i
)

, (5)

where for the i-th input sample (xi, zi), zi is the logarithmic real shot no. of image xi, z′i is the predicted
logarithm, and

smooth-L1(a) =

{
0.5a2, if |a| ≤ 1

|a| − 0.5, otherwise
. (6)

4.3. Multi-Task Learning

For our study, the idea of MTL is adopted as the designed two tasks are considered related
and they all serve the same aim to help neural network model to better extract features from the
speckle pattern images. Laser ablation shows that depth sequences of laser machining are variant by
different power settings, so we believe that speckle patterns in processing stages are relative to the
power. By combining the two mentioned losses, we can consider the Ls as a regularization term to Lp.
Furthermore, instead of setting a specific regularization term that encodes the relationship between the
two tasks, sharing convolutional layers can reduce the amounts of model parameters for the two tasks.
If we encode the relationship between the two tasks, we may increase space and time complexity by
the square of the amounts of model parameters, which seems impractical for deep learning methods.
We will show that these help us get an overall better performance and generalization than training the
two tasks individually by the later experimental results.
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By sharing the same neural network layers and combining different loss functions at output
layers, the overall loss function can be denoted as

L = αLp + (1− α)Ls

=
1
N

N

∑
i=1

(
−α

K

∑
k=1

yi,k log pi,k + (1− α)smooth-L1 (zi − z′i
))

,
(7)

where 0 ≤ α ≤ 1 is the hyper-parameter to adjust the weight of different loss functions,
i.e., the importance of variant tasks. In this study, we fix it to α = 0.5, which means these two tasks are
treated equally.

5. Results and Discussions

To evaluate the performance of feature extraction on the laser processing data, we introduce
several metrics, execute the mentioned deep learning tasks and compare them to the result by
neural networks without feature extraction and one of the traditional machine learning methods
with generally high performance, support vector machine (SVM) [27].

5.1. Metrics and Settings

In this paper, we introduce accuracy (ACC), precision (PR), recall (RC), F1 score into the evaluation
of Power Classification, and mean absolute error (MAE), R2 score into the one of Shot No. Regression.
For the evaluation over N samples and K classes,

ACC =
1
N

N

∑
i=1

1(ci = c′i), (8)

PRk =
TPk

TPk + FPk
=

∑N
i=1 1(c′i = k ∧ ci = k)

∑N
i=1 1(c′i = k)

, (9)

RCk =
TPk

TPk + FNk
=

∑N
i=1 1(c′i = k ∧ ci = k)

∑N
i=1 1(ci = k)

, (10)

F1
k =

2× PRk × RCk
PRk + RCk

, (11)

PR =
1
K

K

∑
k=1

PRk, RC =
1
K

K

∑
k=1

RCk, F1 =
1
K

K

∑
k=1

F1
k , (12)

where 1(·) is the indicator function, c′i indicate the predictive power of i-th sample, and TPk, FPk and
FNk are the numbers of true positives, false positives and false negatives for class k respectively;

MAE =
1
N

N

∑
i=1

∣∣zi − z′i
∣∣ , (13)

R2 = 1− ∑N
i=1
(
zi − z′i

)2

∑N
i=1

(
zi − 1

N ∑N
i=1 zi

)2 . (14)

ACC, PR, RC, F1, and R2 are the higher the better, while MAE is the lower the better. Because the
numbers of samples in each class are the same on our data subsets, ACC = RC.

In the experiment, we use the PyTorch [28] implementations of AlexNet and ResNet.
The concatenated deep features are passed to batch normalization (BN) layer, and 0.25-Dropout for
better stability and generalization. In a classification model, there is a 2-hidden-layer fully-connected
neural network (FNN) following the deep feature output. Each hidden layer of the FNN is 512-sized
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and the first one followed by a ReLU, a BN layer and a 0.5-Dropout sequentially. The neural network
used for regression is similar to the one for classification, yet we adopt leaky ReLU with a 0.3 negative
slope as the first activation. For MTL, we adjoin these two sorts of neural networks to the feature output
layer together. To optimize models’ parameters, we employ stochastic gradient descent with weight
decay 1.0× 10−4. We also apply a triangular cyclic scheduler [29] to adjust the learning rate within
the range [1.0× 10−3, 6.0× 10−2] and the momentum within [0.8, 0.9] by 16.5 epochs for each slope
of the triangles. For each epoch, we shuffle the training images with the batch size 256. In addition,
we choose the 17 convolutional layers version for ResNet. The models are trained 100 epochs and
selected by achieving both the higher accuracy and the lower loss on the validation set.

To compare with the deep learning methods, we also use two other machine learning methods
SVM and simple FNN. SVM maps the data to a high- or infinite-dimensional space so that the data
points are separate enough to divide to different targets. SVM is usually used with a linear or nonlinear
kernel to help the data mapping, but we find that linear SVM performs extremely better than one
with generally used Radial Basis Function on our dataset. According to the result of the analysis in
Section 3.2, we transform the data to z-scores and reduce the dimension of each sample to 260 by
applying truncated SVD with the top 260 singular values, where R260 > 0.99. Then we train two SVM
models for the two tasks on the dimension-reduced training set and test them on the validation
and test sets. Besides, For simple FNN, the architectures are the same as the one followed deep
features mentioned above, while an input is a 50176-sized vector by flattening a 2-dimensional speckle
pattern image.

5.2. Results

In this section, we first compare the performance of different methods by using the metrics
mentioned above. Then, we discuss the benefit of MTL against single-task learning (STL) on the dataset.

The results in Tables 2 and 3 shows that AlexNet model with MTL outperforms the others for
both tasks, especially the traditional SVM method. Even though the decomposed data retain greater
than 0.99 variance ratio, the linear spaces still lack enough connection among the variables to discover
good divisions for the problems. When introducing CNN for feature extraction, the neural networks
perform better than simply flattening the original image data. FNN-only could not extract features
well, albeit with MTL. In the CNN-used cases, ResNet has a deeper architecture, however, it performs
worse than AlexNet in our experiment settings in not only the evaluation but also the time and space
cost. We consider that the Fourier transform in the data of speckle patterns could be treated as a part
of feature extraction layers on the top of the whole model. Because the “parameters” of the Fourier
transform can not be tuned during training, the deeper the model is, the harder the parameters of the
later layers are optimized. Furthermore, we observe that the smooth L1 loss is usually smaller than
the cross-entropy loss in our settings, so that deeper models gain less backward information in the
regression task.

Table 2. The classification result of the tasks with different models.

Model Validation Test
ACC PR F1 ACC PR F1

SVM with SVD 0.44333 0.49753 0.43899 0.52022 0.53973 0.49488
simple FNN 0.71637 0.70822 0.71340 0.73178 0.77212 0.72773

simple FNN with MTL 0.71803 0.72773 0.70776 0.75502 0.78540 0.74073

AlexNet 0.87184 0.88112 0.87064 0.88446 0.89578 0.88406
AlexNet with MTL 0.90069 0.90809 0.90032 0.9061 0.91547 0.90524

ResNet 0.87912 0.89091 0.87580 0.89204 0.90394 0.89191
ResNet with MTL 0.85171 0.87135 0.85183 0.88202 0.89715 0.87770
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Table 3. The regression result of the tasks with different models.

Model Validation Test
MAE R2 MAE R2

SVM with SVD 0.83891 –0.39754 0.83301 –0.37363
simple FNN 0.40982 0.70053 0.41074 0.70823

simple FNN with MTL 0.42202 0.68666 0.41330 0.69938

AlexNet 0.35468 0.73977 0.37303 0.71816
AlexNet with MTL 0.28893 0.84342 0.29558 0.82798

ResNet 0.35415 0.76356 0.37520 0.76356
ResNet with MTL 0.32888 0.79420 0.34177 0.78346

For Power Classification, we construct confusion matrices for the predictive results of classification
(Figure 3). In a confusion matrix, each column denotes an actual class while each row is a predicted class.
The values located at the diagonal of the matrix are the numbers of corresponding correct predictions,
while the others are the ones of corresponding prediction errors. We find that the concentration of the
diagonal with MTL is higher than the one with STL. MTL reduces the numbers of the errors for most
of the labels, especially for the samples shot by 1.8 mW power. Despite the decline of the numbers of
the corrects for 3.0 mW and 3.5 mW, the errors still locate at the neighborhoods mostly.
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Figure 3. Confusion matrices of the predictions for Power Classification by AlexNet models with (a)
STL and (b) MTL.

Additionally, we plot ACC of Power Classification and MAE of Shot No. Regression over each
shot no. in Figures 4 and 5. The p-values are given by the one-way ANOVA tests. Noticeably, there are
watersheds near the twenty-fifth shots because the volume of speckle patterns is too little to generate
enough information on the image at the beginning steps of laser processing. Nevertheless, these results
show that MTL helps not only the predictions of the later steps but also the ones of the beginnings.
The reason is that MTL could make the optimization concern complementary information of power
and shot no. simultaneously, while STL has no reference to other information sources.

MTL enhances most of the power predictions, but the ones for 3.0 mW and 3.5 mW perform
a little badly according to the confusion matrix. Similarly, for Shot No. Regression, the MAE of the
shots later than about 200th tends to rise. The reason for that may be the anomalous data (e.g., the
material has been cracked by a high power or many time shots) affect the training and the predicting,
which is the limit of the discriminative models we used. The self-supervised learning approach [30] is
a candidate to help us solve this problem and develop the anomaly detection method in future work.
Furthermore, we pass shot no. to training models with MTL, yet the models handle only one image at
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a time in the prediction procedure. Utilizing the time-series information could be another way for us
to improve the methodology.

0 50 100 150 200 250

shot no.

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

valid

test

(a) STL (p = 0.024)
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Figure 4. The comparison of ACC of Power Classification over each shot no. between (a) STL and (b)
MTL is significantly different (p < 0.001). The black lines denote the ACC over the validation and
test sets.
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Figure 5. The comparison of MAE of Shot No. Regression over each shot no. between (a) STL and (b)
MTL is significantly different as well (p < 0.001). The black lines denote the MAE over the validation
and test sets.

6. Conclusions

In this paper, we present an application of deep learning for the feature extraction of laser
machining data, which is inspired by attending the IMDJ workshop and the work of laser processing
monitoring. Through the experiment, we find that AlexNet with multi-task learning performs better
than ResNet or single-task model. Because the computational cost of AlexNet is less than ResNet,
it could be easier used for real-time applications. We can employ this feature extraction framework
to enlarge the use of deep learning for other related laser machining problems, e.g., ablation depth
prediction on other materials. However, this method is supervised so that it is dependent on the label
information. In the future, we will introduce an unsupervised [31] or self-supervised fashion to mine
the data features more deeply.
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