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Abstract: A predictable aggregation of dwarf minke whales (Balaenoptera acutorostrata subspecies)
occurs annually in the Australian waters of the northern Great Barrier Reef in June–July, which has
been the subject of a long-term photo-identification study. Researchers from the Minke Whale Project
(MWP) at James Cook University collect large volumes of underwater digital imagery each season
(e.g., 1.8TB in 2018), much of which is contributed by citizen scientists. Manual processing and
analysis of this quantity of data had become infeasible, and Convolutional Neural Networks (CNNs)
offered a potential solution. Our study sought to design and train a CNN that could detect whales
from video footage in complex near-surface underwater surroundings and differentiate the whales
from people, boats and recreational gear. We modified known classification CNNs to localise whales
in video frames and digital still images. The required high classification accuracy was achieved
by discovering an effective negative-labelling training technique. This resulted in a less than 1%
false-positive classification rate and below 0.1% false-negative rate. The final operation-version
CNN-pipeline processed all videos (with the interval of 10 frames) in approximately four days
(running on two GPUs) delivering 1.95 million sorted images.

Keywords: computer vision; dwarf minke whales; convolutional neural networks; underwater object
classification; image classification; deep learning

1. Introduction

A predictable aggregation of dwarf minke whales [1] (Balaenoptera acutorostrata subsp.) occurs in
the Australian waters of the northern Great Barrier Reef (GBR) in June and July each year. The dwarf
minke whale is the second smallest baleen whale, born at approximately 2 m in length and growing to
a maximum measured length of 7.8 m [2]. While in the northern GBR, these whales regularly interact
with people and boats [3]. To date, there is no population estimate for this undescribed subspecies,
and the GBR aggregation represents a unique opportunity to study and improve our understanding
of this poorly-known whale. Since the mid-1990s, a tourism industry has established around this
aggregation, providing swim-interactions for dive tourists [4,5], as well as “platforms-of-opportunity”
for researchers to collect various data, including underwater images of individual whales [3–8].
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The whales’ natural colour patterns are complex (especially around their head and shoulder areas),
individually variable, and likely remain stable through a whale’s life, enabling photo-identification
(photo-ID) of individual animals [7–10], see a typical example in Figure 1.

Figure 1. An example of individual dwarf minke whale distinct colour patterns. Image was enhanced
by the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm [11].

The identification of individual whales from digital imagery underpins research on population
characteristics, biology and behaviour [6]. Once whales are identified, the location, time, and additional
data from that sighting (such as behaviour and size measurements) are used to understand the whale’s
movement in time and space. Unique whale identifications provide insight into whale re-sightings and
overall whale numbers, valuable data in understanding population dynamics and the sustainability of
the associated tourism industry. This information is critical for the management and monitoring of
the species and tourism activities [4,5,8]. Each year an ever-growing volume of images and videos of
dwarf minke whales is collected by the Minke Whale Project (MWP) research team and by tourists
on permitted swim-with-whale vessels aboard GBR diving expeditions operating out of Cairns and
Port Douglas, Queensland, Australia. The volume of imagery collected is growing rapidly (order
of 50,000 images in each of the last three years) with advancements in underwater digital camera
technology and accessibility. This volume of data combined with the labour-intensive nature of
dwarf minke whale photo-ID analyses has created a bottleneck in processing data, whereby it is not
time-effective for researchers to process and analyse the overwhelming seasonal stream of dwarf
minke whale imagery. As a result, there is a large historical database of partially-analysed imagery. In
2019, ten volunteer researchers contributed over 2000 h toward photo-ID, processing approximately
31,000 photos and videos. However, in 2019 alone, the research team collected over 62,000 images.

Video monitoring of aquatic and terrestrial animals is an important tool for ecologists and
biologists [12,13]. As digital storage capacity continues to decrease in cost, video monitoring methods
are shifting towards longer intervals of uninterrupted recordings. Similarly, in our study underwater
digital cameras were often left recording continuously to ensure that all minke whale encounters were
captured with maximum information to facilitate the photo-ID of the whales. Therefore, the limited
researcher and volunteer human resources are inefficiently used by searching through large amounts of
imagery with no whales. Often 90–99% of video content is not research relevant but must be watched
for quality assurance and research rigor. At present, there is no efficient way of discarding the negative
content. Therefore, the full videos are retained which dramatically increases researchers’ effort, disk
storage requirements and file transfer times.

The focus of this study was to develop an image classifier, which could automatically detect a
dwarf minke whale in an image or video frame with a high degree of accuracy.
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1.1. Related Work

To introduce the terminology, given an image, a binary image classifier assigns the image to a
positive or negative class label [14]. In our case, an image (or an individual video frame) of the positive
class contained one or more dwarf minke whales. An image was labelled as negative if it did not
contain a whale. Two definitions of whale-detection were considered. First, a biologist could detect
and/or infer a whale in an image. Second, a whale was visible with enough details making the image
suitable for photo-identification of the whale. For example, Figure 2a technically contains a whale and
is labelled as positive under the first definition of whale-detection but the image is not useful for the
photo-ID processing, hence it was labelled as negative under the second definition.

Figure 2. Sub-figures: (a–h) are examples of false-negative classification errors, which were the positive
test images incorrectly predicted as negatives (missing whale) by Minke Whale Detector (MWD)-v1
after the first train-predict cycle using the first strictly technical definition of whale-detection.

Currently, many successful methods for image classification and object detection in images are
based on Convolutional Neural Networks (CNN) [15]. Due to their extraordinary success, a variety
of image classification CNN architectures were developed [16–19] and are routinely used in practice.
For example, the Xception [18] CNN was used to detect invasive cane toads in surveillance videos [20];
and ResNet-50 [17] and Inception-v3 [16] were used to classify weeds in images [21]. However,
the object detection and image classification tasks are not identical. A CNN-based image classification
method outputs a probability of an image containing a required class of objects without specifying the
locations of the objects. Explanation of the decision process of the modern highly complex CNNs is
presently a separate research-grade task [22–24].

In contrast to the classification CNNs (C-CNNs), a CNN-based object detection method outputs
locations of the requested objects, where the locations are typically reported as bounding boxes, for
example, Reference [25]. While the resulting localisation bounding boxes do not explain how the CNN
arrived at their locations, they nevertheless provide instant visual feedback to a user, who could easily
verify if the CNN is working correctly or not. For example, Parker et al. [26] applied R-CNN [27],
Fast R-CNN [28], and Faster R-CNN [25] methods to detect seals and dolphins in underwater videos.
The Faster R-CNN with 2000 proposals (i.e., potential bounding-boxes) was the most accurate in
correctly detecting and localising the considered animals. This result was consistent with the Faster
R-CNN being the second iterative improvement of the original R-CNN method [27].

The object-detection CNNs (OD-CNNs) are clearly a better choice than classification CNNs (C-CNNs)
in terms of explainability [24]. However, the OD-CNNs have two major disadvantages compared to
C-CNNs. First, OD-CNNs are typically much slower that C-CNNs, for example, Faster-RCNN required
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1.5 s per image [26]. This is a speed/accuracy trade-off [29], where accurate localisation of objects
requires additional processing time. The second disadvantage is that OD-CNNs require thousands of
human-annotated bounding boxes (for each category, i.e., class of objects) as training data, which are very
time-consuming to prepare. To illustrate the availability gaps in image-level annotations (required for
C-CNNs) and the bounding-boxes (for OD-CNNs), note that 36 million image-level labels are currently
available in Open-Images-V5 [30,31] for almost 20,000 categories while 16 million boxes are available for
only 600 categories. While the OD-CNN processing speed was improving [32], the second OD-CNN’s
disadvantage remained unavoidable and hence was the deciding factor against using OD-CNNs in this
project, where the OD-CNN training bounding boxes for the underwater images of dwarf minke whales
were deemed too expensive and/or time-consuming to prepare.

Somewhat like object-detection CNNs, semantic segmentation CNNs [33] could also be used
to localise dwarf minke whales [10]. For example, in Reference [10], 100 segmentation masks were
prepared manually. However, such a small number of masks could only teach FCN-8s CNN [33] to
localise whales within simple monotonic surroundings such as the example in Figure 1. Once applied
to the unfiltered raw videos (see frame examples in Figure 3), the FCN-8s CNN (from Reference [10])
yielded unacceptably large number of false-positives. Therefore, a much larger number of segmentation
masks would be required, which are more difficult to prepare than the bounding-boxes. For example,
only 2.8 million segmentation masks are available for an even smaller number of 350 categories in
Open-Images-V5 [30,31] compared to 16 million boxes for 600 categories.

Figure 3. Sub-figures: (a–h) are examples of false-positive classification errors, which were the
negative test images incorrectly predicted as positives (contain a whale) by MWD-v1 after the first
train-predict cycle.

1.2. Method Overview

A typical architecture of modern classification CNNs contains a feature-encoder section [16–18],
which compresses image’s spatial dimensions by a factor of 32 while extracting a large number of
image features, for example, 2048. An input 512× 512× 3 RGB image is converted to 16× 16× 2048,
where the three RGB colour channels are converted to the 2048 features. If the reduced-by-32 spatial
dimensions are retained, a classification 1× 1 convolutional layer could then be used to convert the
2048 features to a localisation probability-map (also known as heatmaps), where a higher value would
indicate higher predicted probability of the object located at that output spatial pixel. This approach
was successfully tested for detecting cane toads in night-time surveillance videos [20] and multiple
fish species in underwater videos in very complex tropical habitats [34].

In this study, the exact localisation bounding-boxes of animals were not particularly important,
as long as the biologists could easily verify that a CNN detected (i.e., true-positives) or did not detect
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(i.e., true-negatives) the required animals correctly. The classification CNN 16× 16 probability-maps
were re-scaled back to the original input shape (512× 512) and overlapped with the corresponding
images to produce the localisation versions (nicknamed the why-images), see an example in Figure 4a.
This technique fulfilled an auxiliary social goal of this study to accelerate the adoption and acceptance
of the Deep Learning CCNs and to overcome the black-box stigma of the CNNs. In fact, the why-images
were used nearly exclusively for testing and verification in the later stages of this study.

Figure 4. Sub-figures: (a,c,d) are examples of localisation by MWD; (b) is the corresponding original
for (a); (f,h) are examples of the negative-labelling technique, where the corresponding original images
are (e) and (g), respectively.

Since our approach is based on classification CNNs, it requires many thousands of positively and
negatively labelled training images to become sufficiently accurate. Fortunately, in some circumstances
and especially in surveillance videos [20,34], positive and negative video clips could be easily selected
yielding many thousands of training frames with minimal human involvement.

In this study, we extended this approach to videos where cameras were constantly moving.
Therefore, the negative video frames without a whale were often visually very different from the
positive frames containing the whales. As such, the difference in positive and negative images could
be very large and still assist effective training, as was the case of moving debris and underwater
vegetation in the underwater fish detection [34]. In the surveillance videos [20,34], the “intuition” was
that moving/changing background items repeat themselves in some fashion in both negative and
positive images. Hence, a CNN could learn to identify the objects only present in the positive frames,
for example, fish in Reference [34]. However, the same intuition worked equally well in this study,
where a vast number of items, textures and/or patterns often appeared only in positive examples
and therefore were incorrectly learned as a “whale” by the CNN. This problem was solved here by
inventing a negative labelling technique, where in relatively small number of cases (less than 100) the
whales were manually edited out by blurring or excessive distortion.

The total number of video frames was estimated to be in the order of 19 million images. Therefore,
an iterative CNN-refinement approach was adopted, where the training pool of negative and positive
images were extended by manually correcting false-positive and false-negative errors. However, as the
CNN become more accurate with each iteration, the main theoretical challenge of this study was
revealed—how to achieve low rates of false-negatives and false-positives without retesting all available
imagery (1.8 TB), where each testing round took many hours of manual inspection by a researcher
while viewing only a tiny fraction of the CNN outputs.

By adding greater numbers of negative and positive images, the CNN reduced false-positives and
increased false-negatives or vice versa. By trying to reduce both false-positives and false-negatives
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at the same time, we discovered the main novel contribution of this paper, the negative labelling
technique. Whenever the CNN made a false-negative error (i.e., did not detect an existing whale),
that image was added to the pool of positive training images. Additionally, the same image was
manually edited by blurring or distorting the whale beyond human recognition and added to the pool
of negative images.

In summary, this study made the following contributions:

• Negative-labelling technique was proposed and verified to be effective in assisting approximate
object localisation via classification CNNs.

• Simple and very effective architectural modifications (Table 1) to modern off-the-shelf classification
CNNs were verified to be valuable to the end-users by simultaneously yielding approximate
object localization and image classification. The combined localization heatmaps and the original
images could assist in explaining CNN’s results to the users (marine biologists in this study) and
hence to accelerate overall acceptance of the deep CNN technologies.

• The generality of the proposed localising classification architecture (Table 1) was verified by using
ResNet-50 and VGG-13bn CNNs with minimal modifications (PyTorch versions) confirming the
initial results of Reference [34] obtained via Keras/Tensorflow-based Xception CNN [18].

• We developed a very accurate (below 0.1% false-negatives and below 1% false-positives) pipeline
for processing large volumes (1.8TB) of digital imagery of dwarf minke whales.

• The following CNN training techniques were demonstrated to work in a complementary manner
for this study’s domain of near-surface underwater imagery: linear learning rate annealing,
uniform class undersampling, layer-specific learning rate reduction, trainable conversion of
greyscale images for ImageNet-pretrained CNNs, weak cross-domain negative supervision
(VOC [35] was used).

Table 1. MWD Convolutional Neural Network (CNN) architecture yielding simultaneous approximate
whale localization and image classification.

Input Dimensions Layer Description Output Dimensions

Spatial Channels Spatial Channels

512× 512 1 Trainable conversion to 3-channels,
conv(1× 1, 1→ 3) * 512× 512 3

512× 512 3 An ImageNet-trained CNN without its
classification top (ResNet-50 was used) 16× 16 2048 **

16× 16 2048 Trainable object localization heatmap,
conv(1× 1, 2048→ 1) + sigmoid *** 16× 16 1

16× 16 1 Image classification output via maxpool 1× 1 1

* conv(k× k, n→ m) is a (k× k)-kernel convolution layer converting n channels to m channels. ** The number
of CNN output channels (or features) was 2048 or 512 when using ResNet-50 or VGG-13bn, respectively.
*** sigmoid is the Sigmoid activation function.

2. Results

2.1. First Train-Predict Cycle

The first train-predict cycle adopted the VGG-13bn based Minke Whale Detector (MWD) and the
first definition of whale-detection, which did not consider if detected whales were suitable for photo-ID
or not. The collection of 1320 individually labelled minke images from Reference [10] was used as
the training positives. The collection was denoted as the MWPID-2014 dataset after Minke Whale
Photo-ID since it contained 76 manually identified individual animals from the 2014 observation season.
The VOC-2012 [35] collection of 17,000 images was used as negatives. The VOC-2012 images contained
20 different object classes within four categories: Vehicles (e.g., bus), Household (e.g., chair), Animals
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(e.g., cat), and People. For training, 90% of MWPID-2014 and randomly selected 1000 VOC-2012 were
used, where the 1000 VOC-2012 images were randomly re-drawn for each epoch of training.

To monitor (formally validate, or cross-validate) the model prediction (generalization) performance,
the remaining 10% of MWPID-2014 images were used as the validation subset together with 100
randomly selected (again, different for each validation epoch) VOC-2012 images. By observing the
loss and accuracy values on the validation subset, it was found that only 10–20 training epochs were
needed to achieve 98–100% validation accuracy when training the first version of MWD (MWD-v1).
After training, the MWD-v1 was applied to a subset of images from the 2018 observation season
collection, the MWS-2018i dataset of 11,704 images. MWS-2018i was sorted into predicted negatives
(no detected whale) and positives (at least one whale). All labelled by MWD-v1 images (resized to
512× 512 for file management convenience) were visually inspected and all detected prediction errors
were recorded, see the first cycle row in Table 2.

Table 2. Results of the train-predict cycles.

Cycle Training Images (Count) Test Images (Count) FN * (FN/Count, %) FP * (FP/Count, %)

1 MWPID-2014 [10] (1300)
+ VOC-2012 [35] (17,000) MWS-2018i (11,704) 908 (7.8%) 395 (3.4%)

2 + MWS-2018i (11,704) MWS-2018-s100 (8373) 1973 (23.6%) 61 (0.73%)
3 + MWS-2018-s100 ** MWS-2018-s10a (≈40,000) 377 (0.9%) not recorded
Final + MWS-2018-s10a ** MWS-2018-s10b (≈243,000) < 100 (<0.04%) < 1000 (<0.4%)

(16,471) ***

* FN and FP denote false-negatives and false-positives, respectively. ** Images not suitable for photo-ID were
removed from positives, and new negatives were added via the negative-labelling procedure. *** Manually
curated final dataset of 16,471 images (excluding the 17,000 VOC-2012 [35] negatives).

2.2. Second Train-Predict Cycle

The MWS-2018i collection of 11,704 images was sorted by the first version of MWD (MWD-v1) and
manually verified and, if needed, corrected. Examples of the first-cycle false-positives are displayed in
Figure 3, which illustrate the diversity of the imagery. Conceptually and technically, the false-positives
were easy to deal with by adding them to the pool of negative training images for the next train-predict
cycle. However, the false-negatives presented a pivotal point of the study, see Figure 2. For example,
Figure 2a technically has a whale in it (as per the first definition of whale-detection), which is the
unidentifiable whale next to the person’s hand. Similarly, the above-water images in Figure 2c,h
contain whales but the images could not contribute to the photo-identification.

Exploring whether the first (strictly technical) definition of whale-detection is viable, the manually
verified MWS-2018i images were added to the pool of training images and the second version of
MWD (MWD-v2) was trained. Note false-positive examples in Figure 5 and false-negative examples
in Figure 6. When MWD-v2 (still based on VGG-13bn) was applied to every 100th frame (step of
100 frames) from a subset of videos (denoted MWS-2018-s100 and contained 8,373 images) the rate of
false-negatives increased to 23.6% (see the 2nd cycle row in Table 2). Investigation of such dramatic
deterioration of the false-negative rate revealed the following interesting finds, which are detailed in
the next three subsections.
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Figure 5. Sub-figures: (a–d) are examples of false-positive classification errors by MWD-v2 after the
second train-predict project cycle. Note, (d) is possibly a labelling error.

Figure 6. Sub-figures: (a–d) are examples of false-negative classification errors by MWD-v2 after the
second train-predict project cycle using the first definition of whale-detection.

2.3. Switching from VGG-13bn to ResNet-50

Similar results (first and second cycle rows in Table 2) were observed by using the ResNet-50
based MWD (Table 1) and 512 × 512 training image shapes, instead of the VGG-13bn base and
256× 256 images. In general, the ResNet-50 version was slightly more accurate for images including
larger, blurry whales, for example, Figure 6d, while the VGG-13bn version was marginally better
for smaller whale images, for example, Figure 6c. Since large whale images were more likely to be
useful for photo-ID, only the ResNet-50 versions were considered for the remaining of this study.
Furthermore, the ResNet-50 based MWD was faster to train and it had faster processing speed with
512× 512 images than the VGG-13bn based MWD on 256× 256 images.

2.4. Negative Labelling

Investigating the large false-negative rate (second row of Table 2) revealed that training
with different compositions of the negative and positive pools of images made the numbers of
false-negatives and false-positives highly unstable and oscillating. The main reason for the instability
was traced to the first strictly technical definition of whale-detection. For example, Figure 6a contained
the tail sections next to the person’s knee. When such images were added to the pool of positive images,
any other objects in the images were effectively labelled as a “whale”. To overcome this problematic
effect of the per-image labelling, it was discovered that both false-negative and false-positive rates could
be consistently improved by using negative-labelling. For any false-negative erroneous classification,
the negative-labelling technique consisted of creating a corresponding negative image by editing the
whale out of the image, see sample pairs in Figure 4e,f, as well as (g) and (h). Then the original positive
image was added to the pool of positive images and the corresponding manually edited negative
image was added to the negative pool.

2.5. Uniform Class Sampling

Another source of training instability was due to potentially highly imbalanced numbers of positive
and negative images. Often, very large numbers of only positive or only negative video frames were
added to the training pool of images, which did not necessary improve the validation accuracy. Such
training experiments were counter-intuitive, when one would expect to obtain more accurate classifier
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from additional training images even if they were all new negatives or all new positives. The limitation of
carefully balancing the negative and positive counts was not practical as well as theoretically unsatisfactory.
We solved this challenge by applying the uniform class undersampling [36] method. Hence, one training
epoch was fixed at 1000 samples, which on average contained approximately 500 negative and 500 positive
images. One validation epoch was defined as per standard machine learning convention to include each
available validation image exactly once, see Figure 7.

Figure 7. MWD-v4 training history of binary cross-entropy loss and accuracy calculated on the training
and validation subsets.

2.6. Switching to the Photo-ID Definition of Whale-Detection

The negative-labelling technique stabilized the process of consistent improvement of the MWD.
However, the number of required manual edits (to create the matching negatives) became impractically
large within the scope of the first definition of whale-detection. That is, there were too many cases
similar in fashion to Figure 6a,c. Furthermore, if an image (or video frame) was retained but it was not
suitable for the photo-ID, the image would have to be manually discarded by researchers at a later
stage. Therefore, it was concluded that the first definition of whale-detection was not suitable for this
study and the second definition of the positives was adopted for the final stages of this work, which
was “image containing a whale suitable for the photo-ID labelling”. Thus, starting from the third cycle,
all images not suitable for photo-ID were removed from the training pool of positives. For example,
Figures 2a,c,h and 6a,c were removed.

2.7. Third Train-Predict Cycle with ResNet-50-Based MWD

For the third train-predict cycle, MWD-v3 (with the ResNet-50 backbone CNN) was tested on
an unseen (by MWD-v3) collection of video frames, where every 10th frame (step of 10) was taken
from a previously unused subset of videos and denoted MWS-2018-s10a containing approximately
40,000 images. At this point, the most critical performance question was assessed: “How many
whales were completely missed due to the false-negatives?”, where the missed whales occurred only in the
false-negatives but not in true-positives. There were 377 false-negative images spread across 83 videos.
Each of the false-negatives were assessed to see if the whale was identifiable (i.e., recognizable colour
patterns, distinct scar(s), unique whales). In the 377 false negatives (the third cycle row in Table 2),
there were 12 identifiable whale images that had recognizable coloration patterns or a distinct scar(s).
The 12 whales were cross-checked against the true-positives from the same videos and verified that all
12 whales were detected correctly in the corresponding true-positives. Hence, all identifiable whales
were detected.
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2.8. Final Train-Predict Cycle

Due to project timing and team members’ availability, the final version of the MWD could only be
comprehensively acceptance tested once, which required approximately one full-time-person-week
of manual checking. If failed to achieve the required accuracy, especially for the 0.1% false-negative
rate target, the proposed automatic sorting of the 2018 imagery would be possibly postponed for
many months or until after the 2020 field season. Keeping in mind that a number of non-standard
techniques (e.g., weak cross-domain supervision with VOC [34], uniform class sampling and negative
labelling) were used to progress in this study, the final training dataset was carefully curated in an
attempt to mitigate identified domain challenges. Specifically, many thousands of repetitive video
frames were removed arriving at the final set of 16,471 highly diverse images containing P = 13,173
positives and N = 3298 negatives. For the final MWD-v4 training (see Figure 7), the final dataset was
randomly split 90% for training and 10% for validation preserving the percentages of the positive and
negative classes, that is, stratified on the class labels. Then the trained MWD-v4 (Table 1) was tested on
MWS-2018-s10b containing approximately 243,000 images, where every 10th frame (step of 10) was
taken from a previously unused subset of videos. The planned target performance was well exceeded
by the achieved 0.04% false-negative and 0.4% false-positive rates, see the final cycle row in Table 2.

2.9. Localisation Heatmaps

The localisation heatmaps (produced by MWD-v4) were exclusively used to check the sorted
(whale/no-whale) predictions, see examples in Figure 4a,d. Note the interesting false-positive in
Figure 4c, where MWD detected a shark. This could be viewed as a serendipitous property of the
MWD (and CNNs in general), which would detect any visual features similar to those in dwarf minke
whales (training positives). Furthermore, the advantage of using the localisation heatmap is particular
pronounced in that “miss-classification”, Figure 4c, which highlighted the head and fins of the shark
but not its body. Similar, the middle section of the whale in Figure 4d is not highlighted indicating
that MWD did not see sufficient number of such cases during training. This visual conformation
(of why any given classification occurred) could be easily used to design or adjust training set of
images. For example, the ignored (not highlighted) ventral area of the whale in Figure 4d allows for
sex identification of individuals but it is currently not detected on its own.

2.10. Negative-Labelling Viability

In total, less than 100 manual negative-labelling edits were eventually required for the final training of
the MWD (ResNet-50 based), see examples in Figure 4f,h, which confirmed the viability of the image-level
labelling approach adopted in this study. Whale blurring (editing out) could be performed in many
commonly used image manipulation programs and importantly it could be done by the researchers using
MWD if required in the future. For example, we used the freely available GNU Image Manipulation
Program (GIMP), where a range of blurring filters could be applied to a selected image area. In contrast,
the bounding-boxes labelling approach requires specialised software and user training. Furthermore,
the bounding boxes could introduce additional training uncertainty and instability when a non-whale
background is selected, for example, for the bounding-box labelling of Figure 2d.

2.11. Final Sorting of the 2018 Season Imagery

While examining the sorted predictions in the third and fourth train-predict cycles, it was noted that
the step of 10 frames (every 10th frame and 0.1–0.4 seconds interval) was sufficiently frequent (within
each video) to yield a comprehensive set of images to identify each detected whale. Running on two
NVIDIA 1080Ti GPUs, it took approximately four days to process all available 1.8TB imagery from the
2018 field season. The resulting image-sorted folders contained approximately 1.95 million images from
which 805,000 (41%) were positives and 1,149,500 (59%) negatives. We are planning to open-source the
pre-trained dwarf minke whale detector and the filtering pipeline to the public in due course.
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3. Discussion

Underwater videos are a valuable tool for capturing non-symmetrical identification colorations
and markings of dwarf minke whales in situ, and a full analysis of video imagery is a core goal of
the MWP research team. Utilizing a low-error MWD to sort through high volumes of videos greatly
reduces the time and effort needed by researchers to manually sort through non-whale imagery. This
frees researchers to focus on more substantial biological analyses. Hundreds of hours of footage from
multiple field seasons can be sorted by the MWD in a matter of days providing positive images of
dwarf minke images for identification more efficiently. This will allow more time to be spent on
individual whale identification and matching re-sightings via a catalogue. CNN classification has
also shown the capacity for further biological analysis, with the ventral side identification of dwarf
minke whales, as in Figure 4d. Ventral (currently indirect) recognition allows for sex identification of
individuals and indicates the capability to better understand dwarf minke whale population statistics
in the Great Barrier Reef.

The primary beneficiaries of this study are, ultimately, the whales themselves, with their effective
management and conservation dependent on an improved understanding of population dynamics
and exposure to a range of anthropogenic pressures. In the short and medium term, the immediate
beneficiaries are the MWP research team, and managers of the Marine Park who seek to improve
monitoring of migratory species in the Great Barrier Reef. The MWP research team benefits in reclaimed
research time, data outputs and future efficiency with this CNN method for photo-ID processing time.
Reef managers (and the tourism operators and tourists who interact with the whales) benefits from the
improved efficiency of research and monitoring in which they participate, via more timely results and
an improved understanding of the resource [37].

4. Materials and Methods

4.1. Minke Whale Photographic Database

Our 2018 Minke Whale Field Season generated a collection of digital still images and videos
with total size of 1.8 TB. It contained approximately 50,000 still images and 5000 videos. In this study,
the per-image classification was adopted and every video was converted to images (one video frame
converted to one image). This resulted in more than 19 million video frames.

4.2. Requirements and Constraints

The following requirements for the Minke Whale Detector (MWD) were identified in consultation
with the project stakeholders:

1. Image-level: MWD should work on a per-image level since many thousands of still digital images are
collected in each observation season. The videos were converted to individual frames for processing.

2. Below 0.1% false-negative-rate per image and 0% false-negatives per seasonal imagery: The key goal
was to detect every individual whale at least once within all available imagery for a given season.
That is, if a whale was missed in a frame, there were many other frames or images (in the same or
different video clip) where MWD would detect the same whale for the photo-ID purposes with
high certainty. Due to the nature of the encounters and whale behaviour, our testing confirmed
that in the small number of whales that were missed, every individual whale was detected in
other identifiable imagery from the corresponding season. The accuracy we aimed for and indeed
achieved was that all possible whale IDs were found, and any identifiable whales that were
“missed” were found in another part of the video/imagery. This means that there was a 0% error
rate, after missed whales were cross checked. This very high accuracy performance requirement
was the main practical challenge of this study.

3. Below 1% false-positive rate: MWD should have sufficiently low false-positive rate, where the
classification error of less than 1% was deemed acceptable. Thus, at least 99% of negative (missing
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whale) images or video frames would be correctly filtered out. Note the chosen trade-off in favour
of the lowest possible false-negative rate (not missing a whale), rather than a balanced number of
false-negatives and false-positives.

4. Practical training times and processing speed: MWD could be trained and then process the current
yearly volume of imagery in the matter of days, where 300 GB, 1.8 TB and 1.9 TB were collected
in 2017, 2018 and 2019, respectively.

4.3. Dwarf Minke Whale Detector

Each video was converted into a sequence of individual images. The available imagery also
contained approximately 50,000 digital photographs. The adopted per-image classification approach
worked identically regardless if a given image was originally a video frame or a digital photograph.

The goal of this study was to develop and deploy an exceptionally accurate underwater whale
classification CNN, where the per-image false-positive and false-negative rates were required to be
below 1% and 0.1%, respectively. Therefore, any experimentation with custom hand-crafted CNN
architectures were considered an unnecessary and unproductive risk, which could only be justified if
the existing off-the-shelf CNNs could not deliver the required accuracy and processing speed.

One of the simplest modern deep CNN architectures is the VGG CNN [38], which is built essentially
from only two types of neural network layers: (3× 3) convolutional and (2× 2) maximum pooling layers.
In Reference [10], its sixteen-layer version (VGG16) was used together with the FCN-8s [33] segmentation
CNN to verify that an individual dwarf minke whale could be recognized in the collection of 1320 images
containing 75 other whales. However, the requirements for the fast training and processing times ruled
out using VGG via a segmentation CNN (for example, FCN-8s [10,33]), which require much longer
training times (compared to a classification CNN). Therefore, and as per detailed justification in this
paper’s introduction, only the readily-available classification CNNs were considered.

The fastest training times are typically achieved by the knowledge-transfer (also known as transfer
learning) [39] when training a classification CNN, which was already trained on the ImageNet [40]
collection of images. Such ImageNet-trained (or simply pretrained) CNNs are commonly available for
download and when used could shorten the training times from days to hours, which was an important
consideration for this project. Following Reference [34], VGG [38] and ResNet-50 [17] CNNs were
converted to the approximate object-localisation CNNs by replacing the ImageNet-trained last layers
with a single 1× 1 convolution layer followed by a sigmoid activation, see the architecture summary in
Table 1. Additionally, and only while training, a global maximum pooling layer was added to train the
CNNs with zero target values (for negative images) and the target values of one (for the positive images).
The standard binary cross-entropy was used as the loss function. When used for prediction/testing, the
CNNs produced heat-maps, see examples in Figure 4. The VGG [38] and ResNet-50 [17] CNNs (rather
than the Xception CNN [18]) were selected here to confirm that the utilized approach [34] was not specific
to only Xception CNN (used in Reference [34] ) and was generic in nature.

The RAdam [41] version of the Adam [42] algorithm was used as the training optimizer since
Adam is known to be more forgiving to non-optimal learning rates when compared to the Stochastic
Gradient Descent [43,44]. Furthermore, RAdam did not require the learning-rate warm-up stage [41].
After experimenting with step-function drops [17,19,45], exponential-decay, and cosine-decay [46,47]
for the learning rate annealing schedules, the simplest possible linear-decay schedule was utilized
throughout this study, where the Adam learning rate was reduced linearly from its initial value
(l = 1× 10−3) to the fine-tuning level (l = 1× 10−5) over 100 epochs. The main identified advantage
of the linear annealing was its robustness to non-optimal learning rates, where identical starting
(lmax = 1× 10−3) and finishing (lmin = 1× 10−5) learning rates were used for all experiments in this
study. The cosine-annealing [46,47] was tuned (by cross-validation) to perform marginally better;
however, it required multiple training sessions with different initial learning rates and therefore
was deemed not practical for this study. The linear and cosine schedules need the following four
interlinked hyper-parameters: number of epochs, batch size, starting and finishing learning rates.
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Therefore, a cyclic learning rate (CLR) schedule [48] was discarded due to its introducing yet additional
hyper-parameter (the number of steps per cycle), which also required fine-tuning. Furthermore,
Reference [48] reported only a relatively small (order of 1%) accuracy improvement due to the CLR,
where the best reported accuracy values were 94.9%. The regularization weight decay was fixed at
1× 10−5 and not optimized by cross-validation. Effective batch size was fixed at 32 images per batch
with the actual batch size of eight images and four gradient accumulation steps. Every training session
was done with 100 epochs.

In order to utilize the benefits of the knowledge-transfer [39] to their full potential, it is normally
required to freeze (exclude from training) the ImageNet-trained layers and to train only the project
specific last classification layer. The training is completed by unfreezing (including in training)
the pretrained-layers and by training the CNN with a lower (fine-tuning) learning rate. Following
Reference [49], a more convenient approach (originally popularised by FastAI [50]) was adopted by
reducing the learning rates (by ten times) of the ImageNet-trained ResNet-50 or VGG-13bn layers thus
avoiding the freezing/unfreezing training complication and significantly accelerating the training
convergence process [49].

4.4. Training Pipeline

The VGG [38] deep learning CNN architecture is a common classification baseline and it was
considered first. Furthermore, in addition to the VGG structural simplicity, various pretrained VGG
versions were freely available in such popular machine learning platforms as Keras/TensorFlow,
FastAI [50], and PyTorch [51]. In particular, the pretrained 11-, 13-, 16-, and 19-layer VGG versions
were available in PyTorch with or without additional batch-normalization [52] layers. Historically,
the batch-normalization (BN) technique [52] was discovered after the publication of VGG [38], and
therefore BN does not normally appear in the classic versions of VGG. The BN [52] layers are currently
standard components of most modern CNNs, therefore, only the BN-containing versions of VGG were
considered in this study. Specifically, the VGG-13bn CNN (once converted to this study’s localisation
configuration, see Table 1) was selected after confirming that it performed nearly identically to the
16-layer version (VGG-16bn) using the CIFAR-10 and CIFAR-100 benchmarks [53].

The following training pipeline was implemented initially for the VGG-13bn CNN backbone and
then re-used in identical fashion for the ResNet-50-based final version of the MWD. All still images
(and video frames) were resized to the 256× 256 shape (or to 512× 512 when using ResNet-50) and
converted to greyscale for both training and testing phases. The 256× 256 and 512× 512 image shapes
were selected because the adopted VGG-13bn and ResNet-50 models could classify video frames at
about 30–70 frames per second on Nvidia 1080Ti GPU (available for this study), which satisfied the
project speed requirements. During the training phase, the following image augmentations [54] were
used: the images were randomly rotated up to 360 degrees, flipped horizontally and scaled down by
up to 50%. With 0.5 probability, either 3× 3-kernel blurring or the CLAHE [11] enhancement were
applied. Most of the images were not square shaped originally (see, for example, Figure 1), therefore by
square resizing them, significant shrinking or stretching distortions were introduced to whale shapes.
However, since the whales were in a highly diverse range of spatial orientations, such distortions
supplied an additional training image augmentation in a natural fashion.

The actual training history of the final MWD-v4 CNN is illustrated in Figure 7, where 16,471 manually
verified and/or labelled images (see Table 2) were split 90% for training and 10% for validation. Note that
the full range of the considered image augmentations (via the Albumentations library [54]) was applied
while collecting the loss and accuracy performance metrics for the validation subset. Hence, the validation
accuracy was still fluctuating between 96% and 100% values even during the last epochs of training.

To assess the training pipeline together with the MDW architecture (Table 1), five-fold cross-validation
was performed, see Table 3. For each testing fold, the corresponding 20% of the final dataset was treated
as a testing-holdout subset completely excluded from training. Five ResNet-50-based MWD (MWD-CV)
instances were independently trained on the remaining 80% of the dataset (different for each fold). Since
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the actual final MWD-v4 was trained on 90% of the dataset, each of the five MWD-CV models was run
through the pipeline twice, where the second training pass started from the weights obtained from the
first pass. Table 3 shows a comprehensive set of metrics obtained by classifying the corresponding test
holdout images without augmentations except for converting to greyscale and resizing to the 512× 512
shape. Nearly identical five-fold cross-validated test accuracy (97.94%) was achieved compared to the
final MWD-v4’s validation accuracy of approximately 98% (Figure 7). The cross-validated test values
were somewhat less accurate than the actual operational false-negative and false-positive rates collected
during the final acceptance testing by the project’s marine biologists. This confirmed that the training
dataset was sufficiently representative of the project’s domain imagery.

Table 3. Five-fold averaged performance metrics of the final Minke Whale Detector training pipeline.

Metric Description Mean (±Std)

TP, FP Predicted * true (TP) and false (FP) positives TP = 2577.8(±8.2) FP = 11.0(±4.1)
FN, TN Predicted false (FN) and true (TN) negatives FN = 56.8(±8.5) TN = 648.6(±4.5)
P Actual test positives, P = TP + FN P = 2634.6
N Actual test negatives, N = FP + TN N = 659.6
Recall TP/P 97.84% (±0.32%)
Precision TP/(TP + FP) 99.57% (±0.15%)
Accuracy (TP + TN)/(P + N) 97.94% (±0.22%)
F1 score 2/(1/recal + 1/precision) 98.70% (±0.14%)
ROC AUC Area Under the ROC Curve [14] 99.58% (±0.12%)

* Default 0.5 threshold was used to convert MWD’s probability outputs to class predictions.
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