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Abstract: Current research on computer-aided diagnosis (CAD) of liver cancer is based on traditional
feature engineering methods, which have several drawbacks including redundant features and
high computational cost. Recent deep learning models overcome these problems by implicitly
capturing intricate structures from large-scale medical image data. However, they are still affected
by network hyperparameters and topology. Hence, the state of the art in this area can be further
optimized by integrating bio-inspired concepts into deep learning models. This work proposes a
novel bio-inspired deep learning approach for optimizing predictive results of liver cancer. This
approach contributes to the literature in two ways. Firstly, a novel hybrid segmentation algorithm is
proposed to extract liver lesions from computed tomography (CT) images using SegNet network, UNet
network, and artificial bee colony optimization (ABC), namely, SegNet-UNet-ABC. This algorithm
uses the SegNet for separating liver from the abdominal CT scan, then the UNet is used to extract
lesions from the liver. In parallel, the ABC algorithm is hybridized with each network to tune its
hyperparameters, as they highly affect the segmentation performance. Secondly, a hybrid algorithm
of the LeNet-5 model and ABC algorithm, namely, LeNet-5/ABC, is proposed as feature extractor and
classifier of liver lesions. The LeNet-5/ABC algorithm uses the ABC to select the optimal topology
for constructing the LeNet-5 network, as network structure affects learning time and classification
accuracy. For assessing performance of the two proposed algorithms, comparisons have been made to
the state-of-the-art algorithms on liver lesion segmentation and classification. The results reveal that
the SegNet-UNet-ABC is superior to other compared algorithms regarding Jaccard index, Dice index,
correlation coefficient, and convergence time. Moreover, the LeNet-5/ABC algorithm outperforms
other algorithms regarding specificity, F1-score, accuracy, and computational time.

Keywords: deep learning; bio-inspired optimization; SegNet; UNet; LeNet-5; artificial bee colony

1. Introduction

Liver cancer is among the most common causes of death worldwide [1]. In order to raise
opportunities for survival by supplying optimal treatments, detecting the presence of liver cancer early
is of significant importance. At the current time, biopsy is considered golden standard to detect cancer,
although it is uncomfortable, invasive, and does not always represent a viable option, depending on
the tumor location [2]. Noninvasive diagnosis of liver lesions could be evaluated by using medical
imaging modalities. Computed tomography (CT) is among the most commonly used modalities for
detecting, diagnosing, and following up the status of liver lesions, specifically metastases [3]. The
images are acquired before and after intravenous injection of a contrast agent with optimal detection
of lesions in the portal phase (60-80 s post injection) images. However, current radiological practice
is to visually inspect the image of the liver. Visual inspection for an enormous number of medical
images can be tedious and time consuming. This task requires the radiologist to search through a
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three-dimensional CT scan which may include hundreds of slices and multiple lesions, causing human
bias and mistakes [4].

For this reason, computer-aided diagnosis (CAD) through computer vision and machine learning [5-8]
has been developed to assist doctors in decision-making through facilitating the interpretation of liver CT
scans [3,4,9-13]. However, little work has been conducted on liver cancer diagnosis using CT images.
Moreover, most of the proposed solutions in the literature are based on manually crafted features [3,4,9-13].
Different visual descriptors have been tested, including texture [3,9,11,12], shape [9], and a combination of
them [3]. The grey level co-occurrence matrix (GLCM) features [3,9,11,12], wavelet coefficient statistics [12],
and first-order statistics [9,11] have been used frequently for texture and shape description, while support
vector machine (SVM) [9,11,13] and artificial neural networks (ANNSs) [11,12] have been used in the
classification stage.

Despite the success of these methods, it is usually challenging to design handcrafted features that
are optimal for a specific classification task. Furthermore, these methods cannot present discriminative
hierarchical feature representations from image data effectively. In recent years, the importance of
representation learning in liver cancer diagnosis has been emphasized instead of feature engineering [14,15].
Deep learning [16-18] is one type of representational learning technique that can learn abstract mid-level
and high-level features from image data. One advantage of deep learning is that it can learn extremely
complex patterns. Deep learning algorithms, especially convolutional neural networks (CNNs), use
"hidden layers" between inputs and outputs in order to model intermediary representations of image data
that other algorithms cannot easily learn. Hence, they can generate high-level feature representations
directly from raw medical images.

CNNs [18,19], which are biologically inspired networks, have led to significant contributions in
medical image analysis tasks, including organ segmentation [20], texture analysis [19], and disease
classification [21]. Several studies have also emphasized that CNNs achieve promising performance
in cancer detection and diagnosis [14,22,23]. However, the accuracy of segmenting and classifying
tumors using CNN models depends on the network hyperparameters and topology, which also have
an impact on the overall performance of the CAD system. Since these parameters affect performance
directly, algorithms that take inspiration from natural phenomena [24-30] can be integrated with deep
learning models to select optimal hyperparameters by searching the solution space in a global manner.

Particle swarm optimization (PSO) [24], artificial bee colony optimization (ABC) [25], differential
evolution (DE) [26], harmony search (HS) [27], gravitational search (GS) [28], grey wolf optimization
(GWO) [9], antlion optimization (ALO) [29], and ant colony optimization (ACO) [30] are a few of the
popular algorithms of this class. Other works have demonstrated that each of these algorithms can
be considered an effective solver of complex optimization problems in the medical domain [31,32].
The ABC optimization algorithm as an instance represents a prominent candidate among effective
optimization algorithms. It is inspired by the intelligent foraging behavior of honey bees and is able to
share information [32].

Contrary to state-of-the-art systems which are based on using feature engineering methods, or
hybrids of feature engineering and deep learning algorithms, this work presents a fully bio-inspired
deep learning approach for liver cancer diagnosis using CT images. The effect of hybridizing multiple
deep learning models with ABC bio-inspired optimization is investigated in the segmentation, feature
extraction, and classification of liver lesions. The main contributions of the paper include the following:

e An extensive survey is introduced to discuss current state-of-the-art methods for diagnosing
both other cancers and liver cancer. Also, recent applications of bio-inspired methods in the
optimization of medical domain problems are reviewed.

e A novel hybrid segmentation algorithm, namely, SegNet-UNet-ABC, is proposed for extracting
liver lesions from CT images using the SegNet network [33], the UNet network [20], and
ABC. In this algorithm, the SegNet network is used for extracting liver from the abdominal
CT scan, while the UNet network is used to extract lesions from the liver. In parallel, the
components of ABC bio-inspired optimization are integrated with each deep learning network
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to adjust its hyperparameters, as they highly affect the segmentation performance [34]. These
parameters include the learning rate, minibatch size, momentum, maximum epochs, shuffle,
and regularization. Hence, this hybridization can provide near-optimal segmentation results in
comparison to state-of-the-art algorithms for liver lesion segmentation.

e  Furthermore, to investigate the efficiency of the ABC algorithm in optimizing segmentation
of liver lesions appearing on CT images when it is used as a hybrid with SegNet and UNet
architectures, extensive comparisons are made to other bio-inspired optimization algorithms,
including GWO, ALO, and ACO. Therefore, this work compares the performance of the proposed
SegNet-UNet-ABC algorithm with that obtained by hybridization of SegNet-UNet with GWO
(SegNet-UNet-GWO), SegNet-UNet with ALO (SegNet-UNet-ALO), and SegNet-UNet with ACO
(SegNet-UNet-ACO). A detailed performance comparison is reported.

e  Moreover, a hybrid algorithm of the LeNet-5 deep learning model [35] and the ABC algorithm,
namely, LeNet-5/ABC, is proposed as a feature extractor and classifier of liver lesions. The reason
for this hybridization is that the hyperparameters mainly determine the layer architecture, i.e., the
size of resulting feature map, in the feature extraction step of the LeNet-5 network, which affects
the learning time and classification accuracy. Therefore, the ABC algorithm is used to determine
the optimal topology for constructing the LeNet-5 model by selecting the best values of kernel
size, padding, stride, and number of filters applied at each convolution and pooling layer. This, in
turn, can optimize the classification part in the LeNet-5 model by reducing classification error and
minimizing the probability of being trapped in local optima.

2. Related Work

By reviewing the state of the art of cancer diagnosis using image modalities, we find that
the contributions can generally be divided into feature-engineering-based CAD methods and
deep-learning-based CAD methods. Hence, this section presents an overview on utilizing these
methods in diagnosing cancers, including liver cancer. Furthermore, this section sheds light on using
bio-inspired methods in optimizing medical diagnosis.

2.1. Feature Engineering Methods for Diagnosis of Cancers Generally and Liver Cancer Specifically

For feature engineering approaches, several studies have been introduced to diagnose either
other cancers or liver cancer. In [36], a texture descriptor was introduced for representing rich texture
features through the integration of multiscale Gabor filters with local binary pattern histograms for the
classification of lung tissue. In [37], the authors introduced a CAD system for thyroid cancer using
internal and external characteristics, where geometric and textural features were extracted. Further,
multilayer perceptron was utilized for classifying internal characteristics, whereas SVM was utilized
for classifying external characteristics.

As for liver cancer diagnosis, many studies have proposed feature engineering methods embedded
into CAD systems by using CT scan images [3,9-12], as illustrated in Table 1. In the segmentation
phase, the region growing algorithm and fuzzy C-means (FCM) are popular algorithms that have
been frequently employed for either liver or lesion segmentation [3,12]. For feature extraction, the
majority of liver CAD systems have used statistical features for describing texture and shape [3,9,11,12],
including GLCM features; wavelet coefficient statistics; and statistical measures of mean, skewness,
variance, standard deviation, and kurtosis. In this context, feature extraction has played a crucial
role in the liver CAD system as it heavily affects overall performance. In the classification phase,
conventional linear and nonlinear machine learning algorithms have been used, including probabilistic
neural networks [11,12], SVM [9,11], and binary logistic regression [3].

2.2. Deep Learning Methods for Diagnosis of Cancers Generally and Liver Cancer Specifically

Recently, applications of the deep learning have emerged generally in medical image analysis
using a variety of image modalities. Segmentation, feature extraction, and classification are the three
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most basic tasks that deep learning algorithms have been investigated in. For instance, these algorithms
have been widely investigated with different anatomical structures (organs or body locations) for
medical image analysis, including breast [38], prostate [39], heart/cardiac [40], carotid [41], thyroid [42],
intravascular [43], fetus [44], lymph node [45], spine [46], bone [47], muscle [48], tongue [49], and more.
Different kinds of deep networks have been adopted to do these tasks.

For state-of-the-art systems using deep learning approaches in the diagnosis of cancers [14,50,51],
including liver cancer [15,52-54], demonstrated in Table 2, the majority of works have applied CNN
models to learn from the image modalities and hierarchical abstract representations, followed by a
softmax layer or other linear classifier (such as SVM) that is used to provide one or more probabilities or
class labels. To date, the majority of these works have neglected the effect of network hyperparameters
on overall performance. Until now, few solutions have been introduced to optimize the performance
of segmentation, feature extraction, and classification using ordinary deep learning architectures [55].

2.3. Bio-Inspired Optimization in Medical Diagnosis

As with most neural networks, deep learning architectures are susceptible to problems such as
lack of hyperparameter tuning, multiple local optima, and increased computational time. To avoid
these problems, optimization of the network topology and hyperparameters has become a crucial task.
The bio-inspired optimization algorithms are broadly utilized in general optimization problems in the
medical domain, as demonstrated in Table 3 [31,32,56-60], including ultrasonic echo estimation [32],
selecting cancer progression pathway genes [56], microarray cancer classification [57], classification of
DNA microarrays [31], retinal blood vessel localization [58], bioinformatics data dimension reduction
for solving classification problems [59], and diabetes disease diagnosis [60]. However, these algorithms
have been rarely used to optimize the results of segmentation, feature extraction, and classification
obtained using a CNN. Therefore, this work investigates the effect of hybridizing multiple deep learning
networks with bio-inspired optimization on the segmentation, feature extraction, and classification of
liver lesions from CT images.

3. Materials and Methods

A brief explanation is given in this section on materials and methods employed in current
work including the dataset, performance measures, CNN, bio-inspired ABC algorithm, and the
proposed approach.

3.1. Datasets of Liver CT Images

The approach proposed in this work was tested using two publicly available datasets. Firstly, we
used the dataset tested in [20,61], namely, LiTS, which comprises 131 CT scan images along with their
ground truths (clinical annotation). The LiTS dataset also includes a set of 70 CT images for testing
purposes, but this does not have any accompanying annotations. Hence, only the 131 annotated CT
images were considered in this work. Secondly, we used the Liver CT dataset that was tested in [62],
namely, Radiopaedia. This dataset is a complex one which includes abdominal CT images for the liver
taken from more than 105 patients. Furthermore, more than 150 slices for each patient are included.
The images are all available in JPEG format, obtained from a DICOM file of dimension 630 X 630 and
bit depth of 24 bits.
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Table 1. Review on feature engineering methods utilized in liver cancer diagnosis from computed tomography (CT) images.
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Reference

Year of Publication

Approach

Performance Measure

[12]

2013

Algorithm of confidence connected region growing is utilized for liver extraction, and clustering
algorithm of alternative fuzzy C-means (FCM) is utilized for segmenting tumor. Feature extraction is
based on four feature sets: wavelet coefficient statistics, grey level co-occurrence, original gray level, and
contourlet coefficient statistics. Probabilistic neural network is employed for tumor classification.

Highest accuracy = 96.7%.
Highest specificity = 97.3%.

[9]

2016

Hybrid algorithm integrating fuzzy clustering with grey wolf optimization is used for liver segmentation.
16-dimensional vector of shape statistical features (comprising median, area, mean, kurtosis, standard
deviation and skewness) together with texture features taken by GLCM is extracted. SVM is employed for
tumor classification.

Highest accuracy = 97%.

2017

Region growing algorithm is employed for tumor segmentation. Texture, shape, and kinetic curve are then
extracted from tumor. Three-dimensional (3D) texture is represented by GLCM. The 3D shape is described
by margin, compactness, and elliptic model. From every tumor phase, a kinetic curve is taken to represent
density variations between phases. Binary logistic regression analysis is employed for tumor classification.

Highest accuracy = 81.69%.
Highest sensitivity = 81.82%.
Highest specificity = 81.63%.

[10]

2017

14 high-level local and global features are extracted from CT images to describe focal liver regions (such as
center location and Intensity diversity of liver lesion). Three-way rules are used for CT image classification.

Highest accuracy = 91.71%.
Highest precision = 100%.
Highest recall = 88.52%.
Highest Fl-score = 93.84.

[11]

2018

Statistical features comprising first-order statistics together with 13 GLCM features are estimated from the
intended region of interest. Binary particle multi-swarm heterogeneous optimization using the win-win
approach is used for feature selection. Probabilistic neural network and SVM are employed as classifiers.

Accuracy = 82.86%, for both probabilistic

neural network and SVM.

Table 2. The current state-of-the-art deep learning approaches for diagnosing cancers, including liver cancer.

Reference

Year of Publication

Cancer Type

Approach

Performance Measure

Authors used contrast-enhanced ultrasound (CEUS) imaging, taken from an unpublished dataset

Results of accuracy, sensitivity, and

[52] 2014 Liver cancer for Huazhong University of Science and Technology. Feature exaction is based on sparse specificity are 86.36%, 83.33%, and
non-negative matrix factorizations. A deep belief network is used for classification purpose. 87.50%, respectively.
Authors used the Histopathological image database, from Motic (Xiamen) Medical Diagnostic
[50] 2017 Breast cancer  Systems Co. Ltd. For extracting features, nucleus-guided method is used. A CNN with three Accuracy = 96.4%

hierarchy structures is used for classification of breast cancer.
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Table 2. Cont.

Reference Year of Publication  Cancer Type Approach Performance Measure

Prediction error criterion, defined as
(Akaike’s information criterion, AIC), is

53] 2018 Liver cancer Deep multilayered group algorithm of data handling (GMDH)-type neural network based on used. Resulting values of AIC are
’ revised heuristic self-organization. decreased in comparison to ordinary
deep network architecture with several
hidden layers.

Sensitivity of detecting nodule candidates
is 86.42%, whereas sensitivity of reducing
false positives (FPs) is 73.4% for 1/8
FPs/scan, and 74.4% for 1/4 FPs/scan.

Authors used CT images, taken from a publicly available database for lung nodules: the
[51] 2019 Lung cancer  LIDC-IDRI. An object detection framework is presented, which is based upon faster region-based
CNN, namely, R-CNN. 2D CNN is used for lung cancer classification.

Results of accuracy, sensitivity, specificity,

Authors used mammogram images from the Mammographic Image Analysis Society (MIAS). and area under receiver operating

[14] 2019 Breast cancer o .. . e characteristic curve (AUC) are 90.50%,
Feature-wise data augmentation is used with CNN for breast cancer classification. 89.47%, 90.71%, and 0.901 + 0.0314,
respectively.
[15] 2019 Liver cancer Some geometrical, statistical, and textural features are extracted from images, segmented by a Accuracy = 99.38%

Gaussian mixture model. Deep neural network is utilized as the classifier.

End-to-end approach of deep learning incorporating feature extraction of the InceptionV3
[54] 2019 Liver cancer integrated with residual connections, and pretrained weights of ImageNet. Fully connected
layers are integrated as a classifier to provide a probabilistic output of liver lesion type.

Accuracy = 0.96
Fl-score = 0.92

Table 3. Recent state-of-the-art bio-inspired optimization approaches utilized in medical diagnosis.

Reference Publication Year Medical Application Domain Bio-Inspired Optimization Approach Performance Results

Results of energy error, amplitude error,
coefficient error, and residue signal energy
are 10.94%, 1.93%, 0.52%, and 12.05%,
respectively.

Ultrasonic echo estimation
[32] 2018 utilizing ultrasonic and ABC-optimized matching pursuit approach, referred to as ABC-MP.
simulated signals.

Classification accuracies of the
MFDPSO-BLABC approach with SVM are
0.99,0.79, 0.97,0.94, 0.93, and 0.86 for the

following cancer datasets: Leukemia,
Colon, Gastric, DLBCL, Prostate, and
Child_ALL (related to childhood cancer),
respectively.

A gene selection approach, namely, MFDPSO-BLABC, utilizes
bi-stage hierarchical swarm and integrates (1) a feature selection
procedure with discrete particle swarm optimization of multiple

fitness functions (MFDPSO) and a multi filtering-enabled gene

selection technique, and (2) the blended Laplacian ABC algorithm
(BLABC) for clustering genes selected by the first procedure.

Selecting cancer progression
[56] 2018 pathway genes from distinct
cancer datasets.
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Table 3. Cont.
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Reference Publication Year Medical Application Domain Bio-Inspired Optimization Approach Performance Results
An approach encompassing genetic algorithm (GA) with ABC Classification f ccurac15 s obtalged usmog
algorithm. The proposed algorithm is executed on the microarray SVM are 90.32%, 93.05%, 97.91%, 77.11%,
[57] 2017 Microarray cancer classification. & i . . . L 86.36%, and 84.72%, respectively, for the
gene expression profile to choose the most informative and predictive f . ’ ]
enes for classifying cancer ollowing datasets: Colon, Leukemial,
8 ’ Lung, SRBCT, Lymphoma, and Leukemia2.
Classification of DNA The ABC algorithm is used to select gene sets from a DNA
microarravs by identifvin microarray characterizing a specific disease. Three classifiers are The optimized MLP and SVM
[31] 2016 - s by identilying trained with the resulting information to classify DNA microarrays  outperformed the optimized RBF in terms
distinct classes associated with a 8 y Y tp P
specific disease associated with disease: multilayer perceptron network (MLP), SVM, of classification accuracy.
P ’ and radial basis function (RBF).
An approach based on two levels of clustering: (1) the ABC e o
. s L . . . The results of sensitivity, specificity, and
Retinal blood vessel localization ~ optimization together with a fuzzy clustering compactness fitness
[58] 2015 X . . . accuracy are 0.721, 0.971, and 0.9388,
from retinal images. function, used to determine coarse vessels, and (2) pattern search, respectivel
employed to optimize the segmentation outcomes. pectively:
Reducing bioinformatics data The ABC is used for selecting an optimal subset of dimensions
[59] 2013 dim. egn sion for solvin among high-dimensional data while keeping a subset which achieves Average accuracy = 93.75%
classification roblemgs the defined objective. Further, the fitness of ABC is assessed by 8 Y =70
P ' k-nearest neighbor.
A modified version of ABC is introduced, which is different from the
Diagnosing diabetes disease ordinary ABC in one point, if no optimization in fitness function is
[60] 2013 & & occurred, blended crossover operator for GA is used for further Classification rate = 84.21%.
P

using a diabetes dataset.

exploration and exploitation. This version is used as a tool to build a
fuzzy-rule-based classifier with no prior knowledge.
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3.2. Performance Measures

For confirming adequacy of liver lesion segmentation by the proposed hybrid algorithm and also
to compare it to the state-of-the-art algorithms, this work implements a quantitative analysis using
three indices: the Jaccard index [15,62], Dice coefficient [15,20,61,62], and correlation coefficient [62,63].
Furthermore, convergence time [64] is another criterion used to evaluate the quality of segmentation
using hybrid methods.

Jaccard index: This similarity index is a popular measure used for binary data as given below,
where AOO represents the area of overlapping, M is a binary image, and K is a ground truth image.

J(400) = Lo &

Dice Index: This coefficient is utilized to measure segmentation performance. The value of the Dice
coefficient describes the percentage of pixels in the predicted image which exactly match the ground
truth. This measure is computed by Equation (2).

M N K|

DM, K) = =———
(M, K) M| + K|

@

Correlation coefficient: This measure is used to compute similarity of segmented image to ground
truth, in terms of their respective pixels” intensity. This coefficient is defined by Equation (3), where the
indices a and b represent the locations of pixels in liver CT image.

Yo Lo (Mg — mean(M) ) (Ky, = mean(K))
V(0 Zp(Map — mean(M))?) (£, By (Kgy — mean(K))?)

CcC = 3)

Convergence time: The convergence time of each hybrid segmentation algorithm is expressed as the
time taken by the algorithm versus the false alarm rate (FAR), computed by Equation (4).

False Positive
FAR = 4
False Positive + True Negative @)

On the other side, three measures were used as validation metrics for testing performance of proposed
LeNet-5/ABC liver cancer classification algorithm.
Specificity: The specificity represents the true negative rate that is given using Equation (5) [65].

True Negative
SP

= . — 5
True Negative + False Positive ©)

F1-score: This measure expresses the harmonic average of both precision and recall [64], which is

computed by Equation (6).

(Precision * Recall)

F1 —score = 2 —
(Precision + Recall)

(6)

Accuracy: The accuracy is expressed as the probability of obtaining a true prediction [65], which can
be computed using Equation (7).

True Positive + True Negative

A = — . — . 7
Y = True Positive + True Negative + False Positive 4+ False Negative @
Computational time (in seconds): This is used for assessing quality of classification obtained by

each classifier.
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3.3. Convolutional Neural Networks

To demonstrate how the CNNs work [14-23], it is required to understand the architecture of the
basic ANNSs, which represent human-brain-inspired architectures widely utilized in machine learning.
ANN comprises three basic layers: the first is input one, the middle is hidden, and the final is output
layer. The set of characteristics which represents the class that the ANN has to learn is received by
the input layer. Further, input data processing is performed by the hidden layer through recognizing
patterns to give identical or approximate value for the class that has to be recognized by the output
layer. As depicted in Figure 1 [19], this process is expressed as feed-forward. If the output is not
matched to the correct class, a back-propagation process is performed by the ANN for adjusting the
connection weights of the corresponding hidden layers according to the calculated error, allowing
correct class recognition based on repetitive learning iterations.

Hidden Layer

Input Layer

Feature Qutput Layer
Feature
Approximate
class

Feed-forward

Back-propagation

Figure 1. Conventional artificial neural network (ANN) architecture.

A recent alternative to ANN for big data, including images, is CNN. The basic difference between
CNNs and ANNS s is the convolution and pooling layers adopted in the former to extract image
characteristics more effectively using fewer dimensions. A CNN passes a given image through its
layers and outputs the decision class. The network may comprise tens or hundreds of layers, where
each layer learns to detect different feature kinds. Each training image is subjected to filters at different
resolutions, then the output of every convolved image is given as input to subsequent layer. The basic
architecture of CNNss is depicted in Figure 2 and includes the following layers.

Feature maps

Input image

Convolutional layer Pooling layer Fully connected

Figure 2. Basic architecture of a CNN showing its convolutional, pooling, fully connected, and output
layers. The given image is passed through these layers to predict the decision class.
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3.3.1. Convolutional Layer

The convolution represents particular kind of linear operation, in which the image matrix is
subjected to a kernel. Figure 3 presents an instance on convolutions, e.g., a filter application to the
given image. Figure 3a presents the matrix of image that will be filtered, the kernel or filter is presented
in Figure 3b, and the convolution result is presented in Figure 3c. The filter depicted in Figure 3b
successively reads from the left to right, besides to, top to bottom, where all pixels in the area of kernel
action are within the gray area of the matrix shown in Figure 3a. Subsequent to this operation, pixel
value 16 in the array of Figure 3a becomes 17 in the matrix of Figure 3c due to the convolution. This
operation is computed as follows: 19 X 0 + 12 x 0 + 11 x 0 + 17 x 1 + 16 x 0 + 18 x 0 + 13 X
0+17x0+ 14 x0 = 17.

Source
11| 12| 10 | 18 | 20 pixel
10] 19 | 12 | 11 3 0 0 0
/
V'
14|17 | 16718 | 13 | x 1 0 0 - /,1?
15 13 | 17 | 14 | 12 0 0 0
12| 10 | 16 | 13 | 14 Filter  Destination
pixel
(a) (b) (c)

Figure 3. Convolution operation of the CNN.

3.3.2. Rectified Linear Unit Layer

Rectified linear unit, referred as ReLU, comes after the convolution layers where feature maps
are fed to nonlinear activation functions. Accordingly, the whole neural network becomes able to
approximate nonlinear functions [14]. The activation function generally represents a simple ReLU,
defined as in Equation (8). The ReLU function swaps all negative states with zeros. At the same time,
feeding the resulting feature maps to the activation function generates new tensors, termed as feature
maps. Figure 4 demonstrates an example of ReLU operation.

Axyz = max {0, Axyz} 8)
20 | 18 19 | 17 | -20 20 | 18 | 19 | 17 0
F 3
-11 | 22 12 | 14 -5 0 22 | 12 | 14 0
[———p
24 | =25 | 22 | 23 19 0.0 24 0 22 | 23 19
—
24 | 20 | -21 | 14 | -23 | Remove 0 20 0 14 0
negative
19 | -18 | 20 | 26 | -20 | values 19 0 20 | 26 0

Figure 4. The rectified linear unit operation, which changes all negative states of feature maps into zeros.
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3.3.3. Pooling Layer

The pooling layers aim at reducing the parameter number of big image data. To this end, each
feature map generated through feeding the data to single or multiple convolutional layers is then pooled
within a pooling layer. The pooling operations obtain small grid segment as input and generate singular
number for every segment. This is known as subsampling or downsampling, in which dimensionality
of every map is minimized while retaining important information. There are different types of spatial
pooling, comprising (1) max-pooling; (2) average-pooling; and (3) sum-pooling. Max-pooling obtains
the largest value of the considered rectified feature map. Obtaining the average of elements in the
feature map is referred as average pooling, while taking their sum is named sum-pooling. Figure 5
demonstrates the max-pooling operation used in this work with different filters and stride values. The
stride refers to number of shifts in pixels over the input image matrix. When the stride value is 1, filters
are shifted one pixel at a time. When the value is 2, filters are shifted two pixels at a time, and so on.

6 4 8 7 6 4 8 7
5 3 10 3 -  » 5 3 10 3 | —» 6 10

Apply max pool Spatial 9 13
2 6 7 9 with 22 filters 2 6 7 9 | pooling

and stride 2 result
7 9 10 13 7 9 10 13
Original image matrix

(a)
6|48 | 7|107]S5s 64 g S B
503|103 |9 ]11]12 513 1il12
> B
2|6 7 9 89|14 Apply max pool ] )
with 33 filters Spatial

719 10 |13 7| 8 |13 pooling

T8 13 result

and stride 2 7351 g R

8 | 6 4 1416 | 6 |11

Original image matrix

(®)

Figure 5. Max-pooling with different filters and stride values: (a) max-pooling with 2 x 2 filters and
stride of 2, and (b) max-pooling with 3 x 3 filters and stride of 2.

3.3.4. Fully Connected Layer

Fully connected layer (FCL) represents the decision layer in a CNN. The softmax function is
utilized to compress the outputs of every neuron to be between 0 and 1. It acts similarly to sigmoid
function. The FCL divides every output as if the total output sum is equal to one. The produced output
represents the categorical probability distribution. The FCL computes a probability that a class is true,
as follows, where o denotes the input vector to the output layer. If the number of output units is equal
to ten, then there will be ten elements in 0. / indexes the units of outputs, so thath = 1,2, ..., K.

e%h

T €%

)

a(o),

3.4. Artificial Bee Colony Optimization

In ABC [31,32,56-60] meta-heuristics, artificial bees of the colony cooperate to find optimal
solutions to the optimization problem. One important feature of ABC is it being inspired by nature,
exactly, by honey bees’ behavior seeking a good-quality food source. The essential components of
ABC which are modeled after bees’ foraging process are demonstrated as follows: (1) food source,
which refers to a feasible solution for the optimization problem; (2) fitness value, which represents
food source quality and is expressed as single quantity associating to objective function for the feasible
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solution; and (3) the bee agents, which represent a group of computational agents. For the algorithm
of ABC, the colony is divided equally into three kinds of honey bees: employed bees, onlooker bees,
and scout bees. The solution within the search space encompasses parameter set that represents food
source location. The count of employed bees equals to the count of food sources, where one employed
bee is specified for one food source. Basic steps of ABC optimization are illustrated below.

3.4.1. Initialization

The ABC algorithm begins with the random choice of a food source corresponding to a potential
solution. Equation (10) is used to produce initial solutions for employed bees, where S;; represents
the jth dimension for the ith food source’s employed bee; S;.“m and S™# denote the lower and upper
bounds of the jth parameter, respectively; u is a random number that falls in [0; 1]. I is the food
source number, i.e., the swarm size, while ] refers to the dimensionality of the problem considered
for optimization. Resetting of abandonment counter (AC) is also done for every employed bee in the
initialization phase.

Sij = s;“i“+ u(ST ~ s;“i“),i: L,2,...,Lj=12..] (10)

3.4.2. Employed Bees Phase

For every employed bee, a new solution is immediately produced in this phase. Firstly, the
employed bee solution is copied to the candidate new solution (D; = S;). Then, Equation (11) is used to
update the solution parameters:

Di]' = gbsu + ¢(51] - Sm]‘), ime{l,2,3,...,E}, jE {1,2,3,..., Z}Yandi + m (11)

where the jth parameter is randomly selected to be updated and the ¢ coefficient is obtained as unity
in the basic ABC algorithm. Such process is done through randomly choosing a candidate S; in the
neighborhood of the ith candidate. Also, ¢ is a random number falling in the interval [-1, 1], E
indicates the count of employed bees, and Z represents the dimensionality of the problem considered
for optimization. After locating a candidate solution and computing the objective function value, the
fitness values for candidate solutions and employed bees’ solutions are computed as shown below:

1 ,
{ F;, = IfB; > 0 12)

1+ B;
Fi = 1 + abs (B;) Otherwise

where F; indicates fitness value for ith candidate solution and B; represents the objective function value
for the ith employed bee. Subsequently, if the resulting fitness value of an updated solution is superior
to that of the present solution, then the present solution is replaced by the candidate solution, while
the AC of an employed bee is readjusted to zero; otherwise, the abandonment counter is immediately
increased by 1.

3.4.3. Onlooker Bees Phase

To enhance the solution, every onlooker bee chooses an employed bee. In this context, the Roulette
wheel is utilized to compute the selection probability for the ith employed bee as follows:

F;
R = —— (13)
j=1Fj

where PR; symbolizes the selection probability of the ith employed bee. Accordingly, the solution of
the chosen employed bee is optimized by the onlooker bee, according to Equation (11). If the resulting
fitness value for the new solution, located by onlooker bee, is superior to that by the employed bee,
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then the latter replaces the onlooker bee and the AC of an employed bee is immediately readjusted to
zero; otherwise, the abandonment counter is incremented by 1.

3.4.4. Scout Bee Phase

A predefined limit is used in this phase to check the AC of every employed bee. Any employed bee
that fails to optimize the solution prior to limit is met, will be considered a scout bee. Thereafter, the solution
of the scout bee is produced using Equation (10) and the AC is immediately reset. Accordingly, the scout
bee is considered an employed bee. Hence, scout bees also prevent the employed bees from stagnating.

3.5. The Proposed Approach

A new methodology for liver cancer diagnosis using CT images is proposed in this section. Instead
of using the conventional feature engineering methods which are designed to be suitable for specific
medical pattern recognition problems, the approach proposed in this work is a fully deep learning one.
However, the more complex a deep learning method is, the more computational time it demands in
order to perform at an acceptable pace. To overcome this problem, in this work we investigate the
effect of hybridizing multiple deep learning networks with bio-inspired algorithms to optimize the
segmentation, feature extraction, and classification of liver lesions. The proposed liver cancer diagnosis
approach is demonstrated in Figure 6 and includes three stages. The first stage is preprocessing of liver
CT images. A proposed hybrid algorithm is used in the second stage to segment liver lesions from the
CT images, based on the SegNet network, UNet network, and ABC algorithm. In the third stage, a
proposed hybrid LeNet-5/ABC algorithm is used as a feature extractor and classifier of the liver lesions
into benign and malignant.

3.5.1. Preprocessing of CT Images

In this phase, the liver CT image is firstly converted into grayscale then resized to a size of
128 x 128 as the SegNet network receives inputs of this size. The noise is removed using a median filter,
whereas contrast is enhanced by histogram equalization. Then grayscale image of the liver is smoothed,
enhanced, and denoised by a median filter algorithm of 3 x 3 window size. The filter runs over every
element of the CT image and replaces every pixel by the median value of its neighborhood pixels
located in the square neighborhood surrounding the evaluated pixel. Equation (14) demonstrates using
the histogram equalization for modifying the dynamic range of each intensity value and increasing
CT contrast without an effect on structure of information included therein. CDF is the cumulative
distribution function of unique pixel value a4, and M represents the grey level number used for an
image of size k x I. Figure 7 shows preprocessing results on some CT slices.

CDF(a) — CDFpin
(k x 1) = CDFmin

Hist(a) = round X (M - 2) (14)
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Figure 6. Proposed approach for liver cancer diagnosis, including (1) preprocessing, (2) liver lesion
segmentation using the SegNet-UNet-ABC algorithm, and (3) feature extraction and classification of
liver lesions using the LeNet-5/ABC algorithm.

3.5.2. The Proposed Hybrid SegNet-UNet-ABC Algorithm for Liver Tumor Segmentation

CNN has different architectures for segmentation, feature extraction, and classification problems.
SegNet and UNet have recently been used for semantic segmentation purposes. However, the network
hyperparameters have a direct effect on the segmentation accuracy. This requires the optimization
of hyperparameters in order to obtain near-optimal segmentation results. Hence, hyperparameter
selection through recent effective optimization algorithms is necessary. These algorithms can search
the solution space efficiently in a global way. For optimizing liver lesion segmentation from CT images,
we propose a hybrid algorithm, namely, SegNet-UNet-ABC, which integrates SegNet and UNet deep
learning architectures with ABC optimization for segmenting livers from abdominal CT images and
lesions from liver tissue. The proposed hybrid segmentation algorithm is depicted in Figure 8 and
includes the following:
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(@) (b) ()

Figure 7. Preprocessing results of different cases: (a) original image, (b) median filtering result, and

(c) histogram equalization result.

A. Liver segmentation from the abdominal CT image using the SegNet network.

The abdominal CT scan includes other organs in addition to the liver. Therefore, liver extraction
is a critical task to achieve accurate cancer diagnosis. In this work, the CNN is used to accomplish
this task, wherein the SegNet architecture is employed. This architecture has shown robustness in
pixel-wise semantic segmentation tasks [33]. The SegNet network encompasses an encoder-decoder
architectural engine that is ended at a pixel-wise classification layer, as shown in Figure 8.

The encoder section of the SegNet architecture comprises a repeating group of layers. Each group
is constituted of some convolutional layers that are followed by a layer of max-pooling. This portion
reveals the first 13 convolutional layers in the VGG16 [65] architecture. The role of the convolutional
layer is to produce the required number of feature maps through the convolution process of input by
a filter bank. Thereafter, resulting feature maps are patch normalized [20]. Next, the ReLU process,
namely, the pixel-wise operation, is implemented, where the output represents max (0, k). In this
context, a max-pooling layer is used to perform downsampling by 2 through defining a window with
size 2 X 2 and using a stride value of 2. The max-pooling is crucial for the SegNet to fulfill translational
invariance. However, it exhibits loss of the boundary details, which is unfavorable in the segmentation
process. To overcome this issue, the boundary information is sorted within feature maps of the encoder
before implementing the max-pooling process. Practically, the index of the pixel with the maximum
value is kept within the feature maps of every pooling window.

For the decoder section of the SegNet architecture, the layers are organized in parallel to the
encoder but in reverse order. The memorized max-pooling locations are firstly used to upsample the
input maps and to present a sparse feature map. The convolutions are then used to produce a dense
feature map using the filter banks of the decoder. In the same manner as the encoder section, the batch
normalization is implemented after the convolution operation. At the final layer of the decoder, the
pixel information is fed into the output layer using the Softmax activation function. The predicted
segmentation is achieved through classification of every pixel to a corresponding class.
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Figure 8. The proposed SegNet-UNet-ABC algorithm for segmenting liver lesions from CT images,
which comprises three steps: (1) liver segmentation from the abdominal CT image using the SegNet
network, (2) lesion segmentation from the liver tissue using the UNet network, and (3) optimization of
segmentation performance of the SegNet and UNet architectures using the ABC algorithm.

B. Lesion segmentation from the liver tissue using the UNet network.

This step is crucial to extracting lesions from liver tissue to be analyzed later. For this purpose,
the UNet architecture is used. The UNet architecture has demonstrated good results when applied to
biomedical images [66]. As depicted in Figure 8, the input layer receives the liver image in the form
128 x 128 x 1. Furthermore, the UNet architecture comprises three parts. The downsampling path is
the first part, in which we can find two convolutional layers which are followed by a max-pooling
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layer of 2 X 2 window size and a stride value of 2. The input liver image is convolved twice using a
filter of size 3 X 3 followed by a ReLU activation function. Padding value is retained the same because
the output image will have the same size as the input image. The filter number in the convolution
layer of the first group is set to eight and continues doubling until reaching the fifth layer group.

Thereafter, an upsampling path is followed where the feature maps of each group are halved [16].
In this regard, the UNet architecture uses a concatenation layer to concatenate the features from both
the previous layer and the downsampling layer, which has the same number of filters as the current
layer group. Following this, there are two layers with a convolutional filter of 3 X 3, followed by
a ReLU activation function. This group of layers is repeated starting from group six to group nine.
The output layer is the tenth, which is a convolutional one with 1 x 1 filter [66] and has eight feature
channels. To sum up, 27 layers [20] are involved in this architecture (18 convolutional + ReLU, 4
pooling, 4 up-convolutional, and 1 softmax layer).

C. Optimization of segmentation performance using the ABC algorithm.

Solution vectors are firstly generated by the ABC algorithm. Each generated vector comprises
all possible values of hyperparameters to be optimized. These values are then employed as training
parameters during training process of SegNet network. The fitness value for each hyperparameter
vector produced by the ABC is evaluated using Equation (15). This is implemented by computing
the contour matching score (C — score) between the predicted image P and ground truth image G.
Accordingly, the optimal solution for liver segmentation from the abdominal CT scan will be the one
that increases the F1-score, precision, and recall. The three weights w ', Wy, and w, were used to define
the Fl-score, precision, and recall, respectively.

Fitness = C —score (P, G) (15)
C —score (P, G) = wy(F1 —score) + wy(Precision) + wy(Recall) (16)
The precision and recall are computed as follows, while F1-score is computed by Equation (6).

Precision — True Positive (17)
" True Positive + False Positive

True Positive
Recall = — - 18
ect True Positive + False Negative (18)

As demonstrated in Algorithm 1, the optimal hyperparameters for liver segmentation are computed
using Algorithm 2. The best solution is returned by Algorithm 2 when the termination criterion is
satisfied (cycle < MCN), which is achieved when the number of iterations reaches the threshold value.
Thereafter, the resulting solution is passed to Algorithm 1, where training is implemented afresh using
the produced hyperparameter values, the SegNet deep learning architecture, and the training set
(SegNettyining), as shown in Steps 6 and 7. After that, the trained SegNet network is tested using the
testing set (SegNetresting) to validate the liver segmentation performance, as shown in Step 8.

The previous steps are done for the UNet network as demonstrated in lines 10 to 19 of Algorithm
1, where the resulting set of segmented liver images is divided to training (UNeétrygining) and testing
(UNetTesting). The training set of UNet (UNetrygining) is then divided to training (Trainingpp) and
validation (Validation pp). Thereafter, the Trainingrp, Validation rp, and UNet structure are sent as
functional parameters of Algorithm 2 of the ABC, which computes the hyperparameters that optimize
lesion segmentation using UNet. The resulting optimized parameters are embedded into the UNet
network. Then, the network is trained using the original training set (UNetrygining) and tested
on (UNetresting), as demonstrated in Steps 17 and 18 of Algorithm 1. Figure 9 demonstrates the
liver segmentation results using SegNet and the UNet predictions of liver lesions. The optimized
hyperparameter values selected by the ABC algorithm for segmentation using the SegNet and UNet
networks, are shown in Table 4.
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Figure 9. Segmentation results: (a) original image, (b) liver segmentation using SegNet, and (c) UNet

predictions of liver lesions.
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Table 4. The optimized hyperparameters for segmenting livers and liver lesions using SegNet and

UNet, respectively.
Optimized Values
Hyperparameter
SegNet UNet
Initial learning rate 0.01 0.05
Minibatch size 11 16
Momentum 0.9 0.9
Maximum epochs 30 150
Shuffle Once Every epoch
I, regularization 0.0006019928 0.0004795852

Algorithm 1: The proposed hybrid SegNet-UNet-ABC for liver lesion segmentation.

Inputs: Deepryining — training set of abdominal CT images.
Deepresting — testing set of abdominal CT images.
Output: Optimized performance of liver lesion segmentation from CT scan image.
1. Load Deeprraining and further split it into training set Trainingrp and validation set Validation pp.
. Load the SegNet model.
. Send the Trainingrp, Validation pp, and SegNet structure as functional parameters of Algorithm 2.
. Initialize the SegNet hyperparameter vectors including learning rate Learningyqte,
minibatch size M, momentum T, maximum epochs E, shuffle S, and regularization .
5. Get the optimized hyperparameter values of SegNet network generated by Algorithm 2.
6. Embed the resulting optimized parameters Optimaly,, into the SegNet architecture.
7. Train the network on the original training set SegNettaining-
8
9

= W N

. Evaluate performance of liver segmentation from abdominal CT image using SegNetresting-

. Load the resulting dataset of liver image after it has been segmented using SegNet.
10. Split the set of segmented images into training UNetTygining and testing UNetresting-
11. Split the training set UNetrgjning into Trainingrp and Validation pp.
12. Load the UNet model.
13. Send Trainingrp, Validation rp, and UNet structure as functional parameters to Algorithm 2.
14. Initialize the UNet hyperparameter vectors including learning rate Learningyate,

minibatch size M, momentum T, maximum epochs E, shuffle S, and regularization I.

15. Get the optimized hyperparameter set of the UNet network using Algorithm 2.
16. Embed the resulting optimized parameters P, into the UNet architecture.
17. Train the network on the segmented training set UNetygining-
18. Evaluate the performance of liver lesion segmentation from the liver tissue using UNetTesting-

Algorithm 2: The ABC algorithm for selecting the optimal hyperparameter values that optimize the
performance of segmentation using the deep network.

Inputs: FS — the food source number.
L — the limit or maximum number of trials for abandoning a source.
MCN — the maximum cycle number.
Trainingrp — training set.
Validation pp — validation set.
Deep learning architecture (SegNet, UNet, or LeNet-5).
Output: Optimal hyperparameters optimizing segmentation performance using the deep network.
1. Initialize the parameter set of ABC algorithm.
2. Randomly generate an initial population Py from the hyperparameter vectors, where k = {1.2,....., K}.
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3. Randomly select the food sources that correspond to potential solutions using Equation (10).

4. Set cycle = 1

5. Do

6.

7.

8.

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

For each employed bee
Produce a new candidate solution ¢; from Py.
Update one parameter in the solution according to Equation (11).
IF the loaded deep learning model is SegNet OR UNet THEN
Evaluate fitness F; of all candidates and employed bees using Equation (15).
IF the loaded deep learning model is LeNet-5 THEN
Evaluate fitness F; of all candidates and employed bees using Equation (19).
END IF
END IF
Do the greedy selection as follows:
IF a fitness of an updated candidate solution > fitness of the present solution
THEN
Swap the present solution with the candidate one.
ELSE
Reset abandonment counter for the employed bee to 0.
END IF
Keep the optimal solution found so far that has the highest fitness value.
END For
For every onlooker bee Do
Select the employed bee by computing its probability using Equation (13).
Randomly select new neighbor solution P,;gnper by Equation (11),

through updating the solution of the selected employed bee using the onlooker bees.

IF the loaded deep learning model is SegNet OR UNet THEN
Evaluate fitness of all candidates and employed bees using Equation (15).
IF the loaded deep learning model is LeNet-5 THEN
Evaluate fitness of all candidates and employed bees using Equation (19).
END IF
END IF
IF fitness of the new solution discovered by onlooker bee > fitness of employed bee
THEN
Swap the onlooker bee by the employed one.
ELSE
Reset abandonment counter for employed bee to 0.
END IF
Keep the optimal solution Py, found so far that has the highest fitness value.
END For
For each scout bee
SetL = 5.
IF the abandonment counter of a bee is >L
THEN
Reset abandonment counter for the employed bee to 0.
Produce new solution for scout bee using Equation (10).
END IF
END For

49. Until cycle < MCN
50. Get the last found sources.
51. Return the solution k with an optimal hyperparameter set optimizing segmentation performance.

52.}
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3.5.3. The Proposed Hybrid LeNet-5/ABC Algorithm as Feature Extractor and Classifier of
Liver Lesions

One advantage of the CNN is that it can operate directly on the raw data without extraction of
data characteristics. This is due to the feature extraction step embedded inside. When constructing
CNN architecture, the hyperparameters including convolutional kernel size, number of filters, padding,
and stride can affect the network performance as they determine structure of layers, comprising size
of resulting feature map at the layer level. Contrarily, the pretrained deep learning networks such
as LeNet-5 and AlexNet use static predefined hyperparameters to extract features from images. In
LeNet-5 as an example, all convolutional kernels are set to size 5, while in the AlexNet architecture,
the sizes of kernels are 11, 5, and 3. Hence, to get optimal feature extraction results using CNN,
hyperparameter setting has to be appropriately done. However, there are no standard rules for
optimizing CNN hyperparameters that influence the feature extraction process. This has depended
mostly on the designer’s intuition [35,67].

Contrary to the ordinary work on CNNss as feature extractors, the ABC optimization algorithm is
proposed in this work for tuning the hyperparameters of feature extraction step; this is hypothesized
to optimize the predictive results of liver lesion classification, as depicted in the optimized LeNet-5
of Figure 10. The steps of the hybrid LeNet-5/ABC algorithm are shown in Algorithm 3, in which
the ABC is used for optimizing the ordinary LeNet-5 topology, which is considered to be the first
architecture for CNNs. The ABC algorithm generates an initial population with potential solutions
for LeNet-5 construction, where each solution vector comprises the kernel size, stride, and padding,
in addition to the number of filters at each convolution and pooling layer, as presented in Step 3 of
Algorithm 3. These parameters are supposed to be the solutions for employed bees. The classification
error computed at the LeNet-5 classification step is used for evaluating the classification quality of liver
lesions, which is used for representing the fitness of solutions computed by ABC, as demonstrated in
Step 30 of Algorithm 2. In other words, the fitness value of the hyperparameter vector generated by
Algorithm 2 is computed using the following cost function that determines the new solution generated
in each iteration step.

Error = 1 — Accuracy (19)

Thereafter, the onlooker bees choose the solutions which return higher fitness values, update
these solutions, and compute the fitness values of their solutions once again. Such process is repeated
till the termination criterion of Algorithm 2 is met, cycle < MCN. Solutions which cannot optimize
the fitness value through a certain time period are considered as abandoned, while new solutions
are generated using the scout bees. Further, the LeNet-5 architecture of the CNN is trained using the
new optimized hyperparameter values of each convolution and pooling layer. Since size of input
layer in the LeNet-5 architecture is 32 x 32 X 1, the segmented lesion image is resized using MATLAB
from 128 x 128 X 1to 32 x 32 x 1. Then, the 2D kernels of LeNet-5 are exploited to extract the local
information of liver lesions. On the other side, setting the hyperparameters using the ABC algorithm
will influence the feature map size resulting at each subsequent layer of the feature extraction step in
the CNN. Thus, the feature map size is computed at each layer using Equation (20), as demonstrated
in Step 6 of Algorithm 3.

Size 4 2 * Padding — Kernel
- +1
Stride

Output = (20)
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Figure 10. Optimization model of the LeNet-5 network structure, in which the ABC algorithm
determines an optimal topology for constructing LeNet-5 by selecting optimal values for kernel size,
padding, stride, and number of filters applied at each convolution and pooling layer. Then the LeNet-5
network is trained with the resulting values to optimize the feature extraction step and increase
classification accuracy of liver lesions.

Here, Output denotes output layer size, Size is input layer size, Padding represents the padding
value, Stride is the stride value, and Kernel denotes kernel size. In the proposed algorithm, the neuron
numbers of the fully connected layer equal 120 and 84, while the neuron number at output layer was
set to 2, which indicates the number of liver lesion classes, i.e., malignant and benign.

The LeNet-5 network is then constructed according to the new topology, as demonstrated in
Step 8 of Algorithm 3. Accordingly, the new LeNet-5 architecture is trained using the original
training set LeNet — Sresting and tested on LeNet — 5resting, as shown in Steps 9 and 10 of Algorithm
3. Table 5 presents the optimal hyperparameter set selected by the ABC algorithm to construct
the LeNet-5 architecture. From the table, the best values of convolutional kernels are k; = 9,
ko = 5,k3 = 19, and ks = 4, respectively, for the first convolutional layer (Conv;), first pooling
layer (Pool;), second convolutional layer (Conv,), and second pooling layer (Pooly). The best stride
values are alsos; = 1,50 = 1,53 = 1, and s4 = 2, while the best padding values are p; = 6,
p2 = 0,p3 = 0, and ps = 0, respectively, for Convy, Pool;, Convy, and Pool,. The new sizes of
feature maps are 36 X 36 X 5,32 x 32 x 19,14 x 14 X 8,6 X 6 X 8, respectively, at the same layers.
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Algorithm 3: The proposed hybrid LeNet-5/ABC for liver lesion classification.

Inputs: LeNet — Stpgining — training set of CT images after segmenting the liver using SegNet.
LeNet — Sresiing — testing set of CT images after segmenting the liver using SegNet.
Output: Optimal topology of the LeNet-5 network which optimizes the predictive results of liver lesion
classification.
- Load the input LeNet — 51ypining and split it into Trainingrp and Validation pp.
. Send the Trainingrp, Validation pp, and LeNet-5 structure as functional parameters of Algorithm 2.

W N =

. Initialize the hyperparameter values of each convolution and pooling layer in the LeNet-5 topology
including the kernel size k, number of filters f, stride s, and padding p.

4. Get the optimal parameters for constructing the CNN topology using Algorithm 1 of ABC.

5. For each layer L in LeNet-5 architecture

6. Compute size of resulting feature map at L using Equation (20).

7. End

8. Reconstruct the LeNet-5 network according to the new optimized topology.

9. Train the new LeNet-5 network on the original training set LeNet — Srestiyg-

10. Evaluate the performance of liver lesion classification using testing set LeNet — STesting-

Table 5. The optimal values selected by the ABC algorithm to construct the LeNet-5 topology.

Number of Size of Output

Layer Kernel Size Stride Padding Filters Feature Map
Convolutional

(Conoy) k=9 si=1  p1=6 f=5 36 X 36 X 5
Pooling (Pooly) k2 =5 =1 p=0 fr =19 32 x 32 x 19
Convolutional

(Conwy) ks =19 s3=1  p3=0 f =8 14 x 14 x 8
Pooling (Pool,) ky = 4 s4 =2 py =0 fi=8 6% 6% 8

4. Experimental Results

This section clarifies a performance evaluation of the segmentation and classification algorithms
proposed in this work. Results and discussion along with comparisons to the other work are
demonstrated as follows.

4.1. Experimental Setup

In this work, each dataset was split into a 7:3 ratio [15]; hence, 70% of each was allocated
as a training set and 30% was allocated for testing. The original training set was split further to
create a validation set: training (35%) and validation (35%). The validation set was used to tune the
hyperparameters. More specifically, a model was trained with various hyperparameters on the reduced
training set (i.e., the full training set minus the validation set), and the values that performed best
on the validation set were returned by the bio-inspired algorithm. Once the bio-inspired algorithm
selected the best-performing parameters on the validation set, the best model was trained on the full
training set (including the validation set), and this gave the final model. Eventually, the final model
was evaluated on the test set to get an estimate of the performance measures and report results. The
results reported in this paper were taken using a testing set.

4.2. Results and Discussion

For validating the proposed approach for liver cancer diagnosis, this section tests its main
phases, which include lesion segmentation from the CT images using the proposed SegNet-UNet-ABC
algorithm, and lesion classification using the proposed hybrid LeNet-5/ABC algorithm. Furthermore,
comparisons to the previously published approaches for liver cancer diagnosis are made.



Information 2020, 11, 80 24 of 36

4.2.1. Validation of the Liver Lesion Segmentation Algorithm

To test the efficiency of the proposed SegNet-UNet-ABC algorithm in liver tumor segmentation,
this study compares its performance to that of two recent segmentation methods that have been
proposed in the literature in this regard. The first method was proposed in [62], which is a hybrid
of watershed algorithm (WA), neutrosophic sets (NS), besides to fast fuzzy c-mean-based clustering
(FFCM). The authors tested their method, named NS-WS-FFCM, using the Radiopaedia dataset. The
obtained results were 92.88%, 86.84%, and 91.66%, respectively, for Jaccard index, Dice index, and
correlation coefficient. On the other side, the second compared method was introduced in [20] and
utilizes cascaded CNNs optimized using GA to perform liver lesion segmentation using the LiTS
dataset. The authors reported that their deep learning method achieved 0.9557 in terms of Dice score.
For comparison purposes, Table 6 demonstrates the results of liver lesion segmentation obtained in
this work using the proposed SegNet-UNet-ABC method, over the Radiopaedia and LiTS datasets.

Table 6. The application results of the SegNet-UNet-ABC algorithm for liver lesion segmentation.

Proposed Liver Tumor Segmentation Method

Radiopaedia LiTS
Image
Jaccard Dice Correlation Jaccard Dice Correlation
Index Index Coefficient Index Index Coefficient

1 0.954 0.96 0.951 0.945 0.95 0.94
2 0.95 0.964 0.957 0.965 0.979 0.968
3 0.959 0.961 0.95 0.948 0.955 0.944
4 0.942 0.962 0.958 0.959 0.971 0.967
5 0.945 0.959 0.95 0.95 0.975 0.96
6 0.942 0.971 0.97 0.95 0.954 0.952
7 0.955 0.965 0.961 0.944 0.965 0.953
8 0.95 0.971 0.969 0.962 0.978 0.969
9 0.958 0.964 0.954 0.954 0.963 0.951
10 0.947 0.956 0.943 0.95 0.957 0.95
11 0.933 0.948 0.93 0.951 0.963 0.959
12 0.958 0.967 0.96 0.971 0.978 0.97
13 0.952 0.968 0.966 0.958 0.975 0.966
14 0.963 0.978 0.974 0.966 0.988 0.961
15 0.961 0.953 0.95 0.966 0.974 0.967
16 0.968 0.964 0.95 0.945 0.977 0.94
17 0.971 0.978 0.976 0.966 0.978 0.964
18 0.977 0.982 0.98 0.98 0.984 0.95
19 0.963 0.979 0.975 0.959 0.96 0.952
20 0.962 0.971 0.97 0.979 0.983 0.949
21 0.963 0.97 0.966 0.97 0.954 0.96
22 0.975 0.979 0.969 0.987 0.954 0.956
23 0.969 0.974 0.97 0.964 0.961 0.955
24 0.97 0.975 0.966 0.97 0.959 0.95
25 0.964 0.969 0.961 0.96 0.977 0.952
26 0.954 0.96 0.95 0.977 0.986 0.958
27 0.971 0.976 097 0.971 0.965 0.96
28 0.965 0.97 0.968 0.985 0.97 0.977
29 0.956 0.963 0.952 0.98 0.988 0.952
30 0.977 0.979 0.974 0.987 0.962 0.96
Total 0.96 0.968 0.962 0.964 0.97 0.958

The results demonstrate that the application of proposed SegNet-UNet-ABC algorithm over the
Radiopaedia dataset achieved 0.96, 0.968, and 0.962 in terms of the Jaccard index, Dice index, and
correlation coefficient, respectively, while it achieved 0.964, 0.97, and 0.958, respectively, for the three
measures when it was tested on the LiTS dataset. It is obvious that the proposed method outperformed
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the NS-WS-FFCM method and the other method when each of them was applied to one of the datasets
tested in this work. These results are due to the robustness of the SegNet and UNet in segmenting
liver parenchyma and liver lesions from the CT images, respectively, which perform well in the case
of absent clear edges, the definite shape of the liver parenchyma, in addition to the near connection
between the liver tissue and the adjacent organs, as illustrated in the cases in Figure 9. In addition, the
ABC bio-inspired optimization algorithm optimized the segmentation results of the liver parenchyma
and liver lesions by selecting the best hyperparameters for SegNet and UNet which achieved the
highest fitness in each step of segmentation.

To investigate the effect of the ABC algorithm on optimizing liver lesion segmentation from
CT images when it is used as a hybrid with the SegNet and UNet architectures, some comparisons
were made to other bio-inspired optimization algorithms: grey wolf optimization (GWO) [9], antlion
optimization (ALO) [29], and ant colony optimization (ACO) [30]. Therefore, in this work we compare
the performance of SegNet-UNet-ABC algorithm with that obtained by hybridization of SegNet-UNet
with each one of these three other bio-inspired algorithms. Figure 11 presents comparisons of the
segmentation performance using SegNet-UNet-ABC, SegNet-UNet-GWO, SegNet-UNet-ALO, and
SegNet-UNet-ACO, over the datasets (a) Radiobaedia and (b) LiTS. From the figure, the proposed
hybrid SegNet-UNet-ABC outperformed the other hybrid segmentation algorithms in terms of liver
lesion segmentation according to the Jaccard index, Dice index, and correlation coefficient.

Comparison of SegNet-UNet-ABC performance versus those obtained by different hybridzations of SegNet-
UNet with bio-inspired optimization algorithms, in terms of liver tumor segmentation using Radiopaedia
dataset

0.97
0.96
0.95
0.94
0.93
0.92
0.91

0.9

Value

SegNet-UNet-GWO SegNet-UNet-ACO SegNet-UNet-ALO SegNet-UNet-ABC
W Jaccard index 0.945 0.934 0.94 0.96

H Dice index 0.956 0.945 0.952 0.968
m Correlation Coefficient 0.95 0.928 0.947 0.962

(a)
Comparison of SegNet-UNet-ABC performance versus those obtained by different hybridzations of SegNet-
UNet with bio-inspired optimization algorithms, in terms of liver tumor segmentation using LiTS dataset

0.97
0.96
0.95
0.94
0.93
0.92
0.91

0.9
0.89

Value

SegNet-UNet-GWO SegNet-UNet-ACO SegNet-UNet-ALO SegNet-UNet-ABC
M Jaccard index 0.94 0.93 0.942 0.964

H Dice index 0.95 0.941 0.955 0.97
m Correlation Coefficient 0.948 0.92 0.95 0.958

(b)

Figure 11. Comparisons of the segmentation performance using SegNet-UNet-ABC, SegNet-UNet-GWO,
SegNet-UNet-ALO, and SegNet-UNet-ACO, over the datasets (a) Radiopaedia and (b) LiTS.
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Furthermore, the convergence time of the proposed SegNet-UNet-ABC algorithm was computed
and then compared to those of SegNet-UNet-GWO, SegNet-UNet-ALO, and SegNet-UNet-ACO.
Figure 12 presents the time taken by all hybrid algorithms to segment the lesions from CT images
using the Radiopaedia and LiTS datasets, respectively. As depicted in Figure 12, when following the
proposed SegNet-UNet-ABC algorithm across the two datasets, we can see that it obtained lower
convergence time than the other compared algorithms. Hence, it is superior to SegNet-UNet-GWO,
SegNet-UNet-ALO, and SegNet-UNet-ACO in terms of convergence time, Jaccard index, Dice index,
and correlation coefficient. Table 7 demonstrates the parameter list that achieved the best segmentation
results for each bio-inspired optimization algorithm.

14 -
12 -
10 -
— m SegNet-UNet-GWO
" 8 i
£ B SegNet-Unet-ACO
L]
E 6 - = SegNet-Unet-ALO
4 - m SegNet-UNet-ABC
2 -
0
FAR=1  FAR=0.1 FAR=0.01 FAR=0.001
(a)
14 -
12 -
10 -
— B SegNet-UNet-GWO
1] 8 _
E m SegNet-Unet-ACO
[+1]
E 6 - m SegNet-Unet-ALO
4 - B SegNet-UNet-ABC
2 -
0

FAR=1  FAR=0.1 FAR=0.01 FAR=0.001
(b)

Figure 12. The convergence times obtained by all hybrid algorithms to segment liver lesions from the
CT images using (a) the Radiopaedia dataset and (b) the LiTS dataset.



Information 2020, 11, 80 27 of 36

Table 7. The parameter lists which achieved the best segmentation results for each
bio-inspired algorithm.

ABC ALO GWO ACO

Colony size = 50 Search agents size = 20 Search agents = 90 Number of ants = 100

Maximum iterations = 30 Maximum iterations =50 Maximum iterations =30 Maximum iterations = 20

Number of food source,
onlooker and employed Lower bound = -50 Evaporation rate = 0.05
bees = 25

Initial pheromone and

Number of solutions = 50 Upper bound = 50 the heuristic value = 0.1

These results verify that the ABC is the most successful bio-inspired algorithm among those
examined when it is used to tune the hyperparameters of SegNet and UNet. High flexibility, broad
applicability, population of solutions, capability for handling an objective cost, capability to effectively
explore the local solutions, ease of implementation, and robustness properties played a crucial role
in optimizing the segmentation of liver and lesions. This result agrees with [68], where the ABC
algorithm showed high ability to tune CNN hyperparameters when it was used to optimize hand
gesture recognition performance.

4.2.2. Validation of the LeNet-5/ABC Algorithm

For validating performance of proposed LeNet-5/ABC algorithm as a feature extractor and
classifier of liver cancer, we compared the solution results obtained by it against two other algorithms
used in the literature for the same purpose, which are the single CNN [69] and traditional feature-based
SVM [69]. In the first compared algorithm, the single CNN was employed as a feature extractor and
classifier of liver cancer. In the second compared algorithm, a 114-dimensional feature vector was
extracted from CT images including gray level statistics, GLCM features, and Gabor features, then
principal component analysis (PCA) was used to reduce the feature space into a 25-dimensional vector.

For comparison, the number of runs used for validating each algorithm was set to 10. The
three algorithms were validated using the two datasets, LiTS and Radiopaedia. The total averages of
specificity, F1-score, and classification accuracy at each run of LeNet-5/ABC are presented in Figure 13.
The same averages were likewise computed at each run of the single CNN algorithm and traditional
feature-based SVM, as demonstrated in Figures 14 and 15, respectively. The overall averages at all
runs of each algorithm were also computed to give a clear view of the optimization occurring across
the three algorithms.

For 10 runs of the LeNet-5/ABC algorithm, it is obvious from Figure 13 that the overall averages
of specificity, F1-score, and accuracy were 0.986, 0.98, and 0.99, respectively, over the Radiopaedia
dataset, whereas they were 0.982, 0.976, and 0.985, respectively, over the LiTS dataset. By following the
10 runs of the single CNN algorithm, it is evident that the averages were 0.963, 0.967, and 0.956 over
the Radiopaedia dataset, while they were 0.958, 967, and 0.961 over the LiTS dataset. Eventually, the
averages of specificity, F1-score, and accuracy obtained through 10 runs of traditional feature-based
SVM were 0.932, 0.919, and 0.904 over the Radiopaedia dataset, whereas they were 0.926, 0.914, and
0.893 over the LiTS dataset.
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Liver cancer classification results using the hybrid LeNet-5/ABC algorithm and the Radiopaedia dataset

0.995
0.99
0.985
0.98
0.975
0.97
0.965
0.96
0.955

Value

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run9 | Run10 [Average
m 5P 0.99 0.986 0.99 0.989 0.98 0.972 0.985 0.983 0.99 0.99 0.986

mF1-5core| 0.97 0.984 0.98 0.981 0.983 0.984 0.97 0.99 0.971 0.984 0.98
® Accuracy| 0.992 0.99 0.986 0.994 0.99 0.98 0.983 0.991 0.993 0.992 0.99

(a)

Liver cancer classification results using the proposed LeNet-5/ABC algorithm and the LTS dataset

0.995
0.99
0.985
0.98
0.975
0.97
0.965
0.96
0.955

Value

Run 1 Run 2 Run 3 Run 4 Run 5 Run & Run 7 Run 8 Run9 | Run 10 |Average
mSp 0.989 0.984 | 0979 | 0.973 | 0.977 0.971 | 0.981 0.99 0.988 0.98 0.982

W F1-Score| 0.974 | 0.976 0.969 | 0973 | 0.974 | 0.976 0.98 0.971 0.98 0.978 | 0.976
® Accuracy| 0.989 0.986 0.99 0.976 | 0.987 0.981 | 0.988 0.972 0.995 0.979 | 0.985

(b)

Figure 13. Classification results of liver lesions obtained over 10 runs of the proposed LeNet-5/ABC
algorithm, in terms of specificity (SP), Fl-score, and accuracy. Results are demonstrated using the
(a) Radiopaedia dataset and (b) LiTS dataset.

As computational time is a necessary measure to evaluate the quality of classification, Figure 16
presents a comparison of the computational time (in seconds) required to test each CT image in the LiTS
and Radiopaedia sets using LeNet-5/ABC, single CNN, and traditional feature-based SVM. For the
two datasets, it is vivid that LeNet-5/ABC achieved the lowest computational time (4 s) in comparison
to the two other algorithms. Therefore, LeNet-5/ABC outperforms them regarding specificity, F1-score,
accuracy, and computational time.
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Liver cancer classification results using the single CNN and the Radiopaedia dataset

29 of 36
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0.94
0.93
0.92
Run 1 Run 2 Run 3 Run4 | Run5 Run 6 Run 7 Run 8 Run9 | Run 10 | Average
mSP 0.951 0.953 0.954 0.956 0.96 0.963 0.969 0.967 0.973 0.976 0.963
W F1-Score| 0.958 0.963 0.962 0.961 0.954 0.97 0.978 0.973 0.97 0.972 0.967
W Accuracy| 0.952 0.959 0.943 0.94 0.954 0.957 0.96 0.959 0.966 0.968 0.956
(a)
Liver cancer classification results using the single CNN and the LiTS dataset
0.98
0.97
0.96
3
2 o095
>
0.94
0.93
0.92
Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run9 | Run 10 | Average
mSP 0.941 0.944 0.947 0.949 0.952 0.955 0.958 0.974 0.978 0.98 0.958
M F1-Score| 0.956 0.964 0.965 0.96 0.967 0.967 0.969 0.97 0.97 0.975 0.967
W Accuracy| 0.957 0.954 0.959 0.96 0.954 0.96 0.954 0.965 0.969 0.97 0.961
(b)
Figure 14. Classification results of liver lesions obtained using the single CNN algorithm, in terms of
specificity (SP), F1-score, and accuracy. Results are demonstrated using the (a) Radiopaedia dataset
and (b) LiTS dataset.
Liver cancer classification results obtained using traditional feature-based SVM and Radiopaedia dataset
0.96
0.94
0.92
5
= 0.9
>
0.88
0.86
0.84
Run 1 Run 2 Run 3 Rund | Runb Run 6 Run 7 Run 8 Run9 | Run 10 |Average
mSP 0.902 0.91 0.942 0.929 0.95 0.924 0.909 0.945 0.951 0.957 0.932
mF1-Score | 0.93 0.93 0.921 0.901 0.931 0.907 0.887 0.925 0.93 0.926 0919
W Accuracy| 0.89 0.893 0.915 0.916 0.902 0.915 0.896 0.893 0917 0.902 0.904
(a)

Figure 15. Cont.



Information 2020, 11, 80 30 of 36

Liver cancer classification results obtained using traditional feature-based SVM and LiTS dataset
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Run 1 Run 2 Run 3 Run4 | Run5 Run 6 Run 7 Run 8 Run9 | Run10 |Average
mSP 0.904 | 0917 | 0.939 | 0.928 0.93 0933 | 0919 | 0534 | 0.917 | 0.938 | 0.920

WF1l-Score | 0.88 0.896 | 0.904 | 0.903 | 0.902 | 0.925 0.94 0.928 | 0.929 0.93 0.914
W Accuracy | 0.88 0.895 0.89 0.892 | 0895 | 0904 | 0.886 | 0.894 | 0.906 | 0.884 | 0.893

(b)

Figure 15. Classification results of liver lesions obtained using the traditional feature-based SVM, in
terms of specificity (SP), F1-score, and accuracy, using the (a) Radiopaedia dataset and (b) LiTS dataset.

Comparable computational time (in seconds) of each sample over the LiTS and
Radiopaedia sets using LeNet-5/ABC, single CNN, and feature-based SVM

Feature-based SVM

Single CNN

LeNet-5/ABC

15
LeNet-5/ABC Single CNN Feature-based SVM
M Radiopaedia dataset 4 6 12
M LiTS dataset 4 7 13

Figure 16. The computational time (in seconds) required by each CT image over the LiTS and
Radiopaedia sets using LeNet-5/ABC, single CNN, and feature-based SVM.

4.2.3. Comparisons to Other Work

To investigate the effectiveness of the overall proposed approach for liver cancer diagnosis, a
comparison between it and the most recent works was made. Table 8 [15,61,70,71] demonstrates
the comparison, which includes the following: (1) dataset used; (2) the approach which comprises
segmentation method, feature extraction, and classification algorithm; and (3) the performance measures
used. As can be observed, the majority of segmentation methods proposed in the literature [61,70]
depend on region-based and clustering approaches, which check the low contrast between the liver
and the surrounding tissues and organs. However, the noise of CT images, together with the large
difference in liver shapes of patients, makes the state-of-the-art algorithms for liver segmentation
incapable of giving optimal results. For instance, in comparison to current work, the two segmentation
algorithms proposed in [61] achieved lower performance regarding Dice index and F1 — score. The
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results reported for Dice index are 0.8602 and 0.8803, while those reported for F1 — score are 0.8771

and 0.8556.
Table 8. Comparison to other works on liver cancer diagnosis using CT images.
Reference Year Dataset Approach Performance Measure
Morphological Snake outperformed the
Liver segmentation using Morphological other algorithm in terms of Dice index
[61] 2018 LiTS Snake and Felzenszwalb, and liver and accuracy, by achieving 0.88 and
centroid prediction using ANN. 98.11%, respectively. The result of
F1 —score was 0.8771.
[70] 2018 Private dataset Deep learning model of generative Specificity = 92.4%
adversarial networks.
Lesion segmentation and classification Iézs;és o;) ;;ms: du;;n;g;;zs;gi zgtlr:ére
[15] 2019 Private dataset using watershed with GMM and GLCM o /70 0T aceutacy,
. . Jaccard index, and specificity,
with DNN, respectively. .
respectively.
. . Crow search, integrated with chaos _
[71] 2019 Radiopaedia theory and FCM algorithm. Accuracy = 0.880
Private dataset CNN and DWT-SVD-based perceptual _ o
[72] 2019 (hospital data) hash function. Accuracy =97.3%
Results of the Radiopaedia dataset were
0.99, 0.96, 0.968, 0.986, and 0.98 for
Radiopaedia and Lesion segmentation and classification accuracy, Jaccard index, Dice index,
Proposed 2019 P using SegNet-UNet-ABC and specificity, and F1 — score. Results of the

LiTS

LeNet-5/ABC, respectively.

LiTS dataset were 0.985, 0.964, 0.97, 0.982,

and 0.976, respectively, for the same
measures.

On the other side, classification of liver cancer depends on traditional feature-based SVM, ANN,
and CNN, and hybrid approaches [15,69]. For instance, 0.880 was reported in [71] as the classification
accuracy obtained on the Radiopaedia dataset, which is lower than the accuracies reported in the
current work. In [70], 92.4% was reported in terms of specificity, which is lower than the specificity
results achieved using the proposed approach. In [15], the authors attained their results using two
datasets: training and testing. The results reported using the testing set were 98.38%, 95%, and 97.72%
for accuracy, Jaccard index, and specificity, respectively, while the results reported using the training
set (samples seen by the system) were 99.38%, 98.18%, and 99.09%, respectively, for the same measures.
Therefore, the results reported in the current work using the testing set (samples unseen by the system)
outperform those reported in [15] in terms of accuracy, Jaccard index, and specificity. Hence, it is
evident from Table 8 that the proposed hybrid bio-inspired deep learning approach outperforms
state-of-the-art contributions that have used the same and different CT datasets in terms of accuracy,
Jaccard index, Dice index, specificity, and F1 — score.

The main thought to justify why the proposed hybrid model performs better than the other works
is that the deep learning networks achieve robust performance in terms of liver lesion segmentation
and classification when they are hybridized with the ABC bio-inspired optimization algorithm. This
hybridization helped to increase the segmentation performance by minimizing over-segmentation.
It also helped to handle the indeterminacy and uncertainty in CT images in a more effective way.
Furthermore, it improved the classification performance of the LeNet-5 network by providing an
optimal topology of the network and reducing over-fitting and the probability of being trapped
in local optima. This eventually achieved high classification accuracy that led to better diagnostic
results. Likewise, this reduced the computational time needed by the deep learning algorithms
either to segment the liver lesions from the CT image or to classify the lesions into the corresponding
cancer types.

5. Conclusions

This work proposed a new approach for liver cancer diagnosis from CT images, based on the
hybridization of different deep learning models with the ABC bio-inspired optimization algorithm.
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Firstly, a novel hybrid segmentation algorithm was proposed for extracting liver lesions from CT
images using SegNet, UNet, and ABC, named SegNet-UNet-ABC. The ABC algorithm was used in this
regard to tune the hyperparameters of the SegNet and UNet deep learning architectures, in such a way
as to optimize the performance of liver lesion segmentation. Secondly, a proposed hybrid LeNet-5/ABC
algorithm was introduced; this uses the LeNet-5 architecture of CNN as a feature extractor and
classifier in a different way to other works on liver cancer diagnosis which employ the traditional
feature-based classification methods. Furthermore, the ABC algorithm was used to select the optimal
topology for constructing the LeNet-5 network, with the aim to improve the predictive results of liver
cancer diagnosis. Two publicly available datasets, namely, Radiopaedia and LiTS, were tested. To
investigate the efficacy of the proposed SegNet-UNet-ABC algorithm in liver lesion segmentation from
CT images, this work firstly compared its performance to that of two other segmentation methods
from the state-of-the-art. The results demonstrate that the SegNet-UNet-ABC algorithm outperformed
the two other algorithms when it was applied to the two datasets. The results obtained using the
Radiopaedia dataset were 0.96, 0.968, and 0.962, while those obtained using the LiTS dataset were 0.964,
0.97, and 0.958 for Jaccard index, Dice index, and correlation coefficient, respectively. Furthermore,
extensive comparisons were made to investigate the efficiency of the ABC algorithm in selecting
hyperparameters that improve segmentation accuracy when used in combination with the SegNet
and UNet architectures. The other bio-inspired optimization algorithms used in the comparison were
GWO, ALO, and ACO. Hence, this work compared performance of SegNet-UNet-ABC algorithm to
that of SegNet-UNet-GWO, SegNet-UNet-ALO, and SegNet-UNet-ACO. The results demonstrate that
the SegNet-UNet-ABC algorithm outperformed the other algorithms regarding Jaccard index, Dice
index, correlation coefficient, and convergence time. Moreover, the hybridization of deep learning
networks with the ABC bio-inspired concept provides optimal hyperparameters which minimize
over-segmentation and overcome indeterminacy and uncertainty in CT images in a more effective
way. Further, validation of the hybrid LeNet-5/ABC algorithm was done by comparing the solution
results obtained by it to those obtained by two other algorithms used in the literature for feature
extraction and classification of liver cancer: the single CNN and traditional feature-based SVM. Results
obtained across 10 runs of each algorithm revealed optimization in overall averages of specificity,
Fl-score, and accuracy, in favor of the LeNet-5/ABC algorithm. The optimization ratios obtained over
the Radiopaedia dataset were 2.3%, 1.3%, and 3.4%, respectively, for the aforementioned algorithms,
while the ratios were 2.4%, 1.3%, and 2.4%, respectively, for the same algorithms, over the LiTS dataset.
Moreover, the LeNet-5/ABC algorithm is superior than other algorithms in terms of computational
time. For future work on liver cancer diagnosis, multiple modalities such as ultrasound and CT images
are intended to be fused as a multimodal diagnostic approach including deep learning. This approach
is hypothesized to increase diagnosis confidence through the merits of deep multimodal fusion of
medical images.
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