01010

01010 information ﬁ“\D\Py
B

01010

Article

Penalty-Enhanced Utility-Based
Multi-Criteria Recommendations

Yong Zheng

Department of Information Technology and Management, College of Computing Illinois Institute of Technology,
Chicago, IL 60616, USA; yzheng66@iit.edu

Received: 18 October 2020; Accepted: 20 November 2020; Published: 26 November 2020 ﬁ:ecf;(t\:)sr

Abstract: Recommender systems have been successfully applied to assist decision making in multiple
domains and applications. Multi-criteria recommender systems try to take the user preferences on
multiple criteria into consideration, in order to further improve the quality of the recommendations.
Most recently, the utility-based multi-criteria recommendation approach has been proposed as an
effective and promising solution. However, the issue of over-/under-expectations was ignored in
the approach, which may bring risks to the recommendation model. In this paper, we propose a
penalty-enhanced model to alleviate this issue. Our experimental results based on multiple real-world
data sets can demonstrate the effectiveness of the proposed solutions. In addition, the outcomes of
the proposed solution can also help explain the characteristics of the applications by observing the
treatment on the issue of over-/under-expectations.

Keywords: recommender systems; utility; multi-criteria; penalty; over-expectation; under-expectation

1. Introduction

Information retrieval and recommender systems are two solutions to alleviate the problem of
information overload [1], while recommender systems can deliver personalized recommendations
to the end users without users’ explicit queries. Recommender systems are usually built by learning
from different types of the user preferences, such as explicit ratings or implicit feedbacks [2,3].
In the past decades, different types of the recommender systems have been proposed and developed.
Multi-criteria recommender systems (MCRSs) [4] is one of these recommender systems which
take the user preferences on different aspects of the items into account to improve the quality of
the recommendations.

MCRSs have been implemented and served in real-world applications, such as hotel bookings at
TripAdvisor.com, movie reviews at Yahoo!Movie, restaurant feedbacks at OpenTable.com. An example
of the OpenTable.com can be shown by Figure 1. The system allows users to reserve tables at
a restaurant and leave ratings on their dinning experiences. To review user experiences on a
restaurant, we are able to observe the overall rating and multiple ratings on different aspects of
the restaurant in Figure 1b, such as food, service, ambiance and noise level. It is because the system
collects each user’s overall rating and multi-criteria ratings as shown by Figure la. Afterwards,
MCRSs can be built by taking advantage of these multi-criteria ratings in order to deliver more
effective restaurant recommendations.

An example of data in MCRSs can be shown by Table 1. The rating refers to the users’ overall
rating on the items. We also have users’ ratings on multiple criteria, such as food, service and value.

The research problem in MCRS is straightforward. Take the task of rating predictions for example;
MCRSs predict an overall rating for a user and an item by taking advantage of the user’s multi-criteria
ratings on the item. In Table 1, MCRSs try to predict Us’s overall rating on T; as shown in the
table above, while we do not know Uj’s multi-criteria ratings on T;. Usually, we need to estimate a

Information 2020, 11, 551; d0i:10.3390/info11120551 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0003-4990-4580
http://www.mdpi.com/2078-2489/11/12/551?type=check_update&version=1
OpenTable.com
OpenTable.com
http://dx.doi.org/10.3390/info11120551
http://www.mdpi.com/journal/information

Information 2020, 11, 551 20f 13

user’s multi-criteria ratings on an item, and then aggregate these ratings to finally predict the overall
rating. The predicted overall rating can be used as a ranking score to sort and produce the list of
recommendations delivered to the user.

* < Back Reviews
Shawn, how was your experience at Sushi Hai

Rate your dining experience (required) Overall

4.3
Overall ***** Outstanding 1 8.8 8 &/
Food * * * * * Outstanding
Food Service Ambiance Noise

Service * * * * * Outstanding 4.4 41 3.9 Moderate
Ambience ***** Qutstanding
Value * * * * * Outstanding

OpenTable Diner (New York Area)

Noise level = Enerqgetic
‘ teview day ag

Reservation made on 12/12/2019

MOST RECENT REVIEWS (764)

1 8.6 8 & ¢

Decent sushi and friendly staff!

(a) Page of rating entry (b) Page of restaurant information

Figure 1. Example of user preferences on multiple criteria.

Table 1. Example of Rating Matrix from OpenTable.

User Item Rating Food Service Value

U, T3 4 4 3 4
U T> 3 3 3 3
U; Ty ? ? ? ?

Most recently, a utility-based multi-criteria recommendation approach [5] was proposed and
it was demonstrated as one of the most effective methods. In this approach, we assume that there
are user expectations on the items which can be represented by a list of ratings in multiple criteria.
Given an item, we can also estimate a user’s ratings on the different aspects of the items. In this
case, the similarity between the user expectations and the multi-criteria ratings on the items can be
considered as the utility of the item from the perspective of the user. A user may like the items more,
if the similarity between user expectation and the user’s multi-criteria ratings on these items is higher.
The similarity score therefore can be used to rank the items to produce the top-N recommendations.
We proposed to learn these user expectations by a learning-to-rank [6,7] method, and the experimental
results were effective and promising.

However, there is a drawback in this approach. @ Namely, there is an issue of
over-/under-expectations, while the current utility or similar function is not able to capture it.
The issue refers to the situation that a user’s rating on an item may lead to over-/under-expectations
in comparison with the user’s expectations on the items. Finally, It could result in false positives
in the recommendation list and false negatives in the recommendation candidates. Take Table 2
for example, the first three rows refer to user u’s rating vectors on three items, while the last row
refers to u’s expectations to select a restaurant to dine in. It is clear that u’s ratings on T; are
under-expectations, while his or her ratings on T, are over-expectations. However, some of u’s ratings
on T3 are under-expectations, while others are over-expectations. It results in the difficulty of deciding

Information 2020, 11, 551 30f13

whether the user will like T3. It could be more complicated when it comes to the recommendation
methods in the proposed utility-based multi-criteria recommendation models. A filtering strategy [8]
may be helpful to alleviate the issue, but we need to pre-define the filtering rules by using domain
knowledge. The challenge, therefore, becomes how to figure out a general solution for the utility-based
multi-criteria recommendation model without domain knowledge.

Table 2. Example of over-/under-expectation.

User Item Food Service Value Ambiance

u T 2 2 2 2
u T 4 4 4 4
u T3 1 4 2 1
u’s expectation 3 3 3 3

In this paper, we propose to learn and apply penalties for the situation of
over-/under-expectations. The proposed solution is generally enough to be applied in any applications,
and we do not need any domain knowledge to define the filtering rules. The experimental results
based on multiple data sets can demonstrate the effectiveness of our proposed solutions.

The remainder of this paper is organized as follows. Section 2 positions the related work. Section 3
presents the utility-based multi-criteria recommendation model. Section 4 discusses our proposed
solution to alleviate the issue of over-/under-expectations. Section 5 presents the experimental results,
followed by the conclusions and future work in Section 6.

2. Related Work

In this section, we discuss the related work in multi-criteria recommender systems, as well as the
utility-based recommendation models.

2.1. Multi-Criteria Recommendations

As mentioned before, we have both overall rating and multi-criteria ratings in the rating data.

The task in MCRS is predicting the overall rating for a user on an item by taking advantage of the

multi-criteria ratings. Usually, we need to estimate a user’s multi-criteria ratings on an item, and then

aggregate these ratings to finally predict the overall rating, as shown in Equation (1). We use Ry to

represent the overall rating, and R; » ... as the multi-criteria ratings, while the function f is denoted
as the aggregation function.

Ro = f(Ry, Ry, -+, Ry) e

Several multi-criteria recommendation algorithms have been developed to take advantage of
these multi-criteria ratings. One of these methods is the heuristic approach [4,9] which utilizes the
multi-criteria ratings to better calculate user-user or item-item similarities in the collaborative filtering
algorithms. Another one is the model-based approach [4,10,11] which constructs a predictive model to
estimate a user’s overall rating on one item from the observed multi-criteria ratings. The model-based
methods are usually more effective than the heuristic approach, since they are machine learning based
algorithms which can even alleviate sparsity issues in the rating data.

Adomavicius, et al.’s [4] linear aggregation is one of the most basic and popular model which is
usually utilized as a baseline for the purpose of benchmark. In this approach, we need to predict a user’s
rating on each criterion independently by using any rating function in the traditional recommender
systems. Afterwards, we can use a linear regression as the aggregation function to finally estimate the
overall rating by taking advantage of these predicted multi-criteria ratings.

One drawback in the approach above is that it ignores the correlation among the different criteria.
Take the restaurant recommendation in the OpenTable for example, a user may not give a high rating

Information 2020, 11, 551 40f 13

on the criterion “value”, if the user does not like the “food” in this restaurant. Researchers try to build
more effective models by taking the correlation of the criteria into considerations. The flexible mixture
model [10] is one of these attempts. It is a mixture model-based collaborative filtering algorithm
incorporating the discovered dependency structure, while multiple criteria can be put on the structure
connected with a user and an item by using two latent variables. We made another attempt and
proposed the approach of criteria chains [11], in which we predicted the multi-criteria ratings in a
sequence. The predicted preference in one criterion could be considered as contexts to be used to
predict the preference in the next criterion. In this way, we were able to consider the correlation among
criteria in the chain.

2.2. Utility-Based Recommendation Models

According to the classification of recommender systems by Burke [12], there are five
categories—collaborative models [13,14], content-based recommenders [15,16], methods which utilize
demographic information [17], knowledge-based algorithms [18,19], and utility-based models [5,20,21].
The utility-based recommenders make suggestions based on a computation of the utility of each item
for the user. Utility can be used to indicate how valuable an item is from the perspective of a user.
The utility function may vary from data to data, and there are no unified function to be generalized to
different domains or applications. Guttman used different transformation functions (e.g., linear, square
or universal functions) for different types of the attributes (e.g., continuous or discrete) in the context
of online shopping [20]. Li et al. [22] defined the utility of recommending a potential link in the social
networks by a linear aggregation of its value, cost, and the linkage likelihood. Moreover, Zihayat et al.
proposed to use the aggregation of article-driven (e.g., popularity, topic distributions) and user-driven
measures (e.g., clickstream, dwell time) as the utility function for news recommendations [21].
The utility-based multi-criteria recommendation model [5] discussed in the next section is an example
which designs the utility function to serve multi-criteria recommendations. Different optimization
methods can be applied to find the optimal solution in the utility-based recommendation model.
A multi-objective optimizer [23,24] could be useful, if there are multiple objectives involved in the
recommendation model.

Our previous work [5] proposed and developed the utility-based multi-criteria recommendation
models. However, we ignored the over-/under-expectation issue. In this paper, we propose the
improved solutions which are built upon the previous model but they further alleviate the issue of the
over-/under-expectations.

3. Preliminary: Utility-Based Multi-Criteria Recommendations

In this section, we introduce the existing utility-based multi-criteria recommendation model [5].

3.1. Utility-Based Model (UBM)

The major contribution of our previous work [5] is the design of the utility function for the
multi-criteria recommender systems. More specifically, the utility of an item from the perspective of
the user refers to how valuable the item is in view of a user. It was defined as the similarity between
the vector of user expectations and the vector of user ratings in the multiple criteria (i.e., different
aspects of the items).

Assume there are N criteria, we use ¢, to represent the vector of user expectations for a user
u, and ﬁ denotes the u’s rating vector (i.e., multi-criteria ratings) on the item i, as shown in
Equations (2) and (3). Note that the expectation vector tells a user’s expectations on the favorite
items aligned to the same criteria used in the vector rﬁ More specifically, r;,l. (t=1,2,---, N) refers to

Information 2020, 11, 551 50f 13

user u’s rating on the item i in the tth criterion. Accordingly, ¢!, can tell user u’s expectation on the
items in terms of the tth criterion. They must be in the same rating scale for each criterion.

— 1.2 N

Cy =< Cy,Cpyr ,C >)
— 1 .2 N

Tui =< Ty Tyi > 3)

The value of the utility can be obtained by the similarity or distance measures between two
vectors, as shown in Equation (4). The larger the utility is, the more the user may like this item.
Note that distance measure will represent dissimilarities, since the similarity will be higher if the
distance is smaller.

Utility(u,i) = similarity(c,, ;) 4)

Theoretically, any similarity measures can be applied in Equation (4), such as Pearson
correlation, cosine similarity, or distance measures (e.g., Manhattan distance, Euclidean distance, etc.)
as dissimilarity measures. Our research deliver more insights about these similarity measures.
First of all, Pearson correlation may not be a good choice since the values may not be reliable if
the number of dimensions in the vectors is limited. In the area of MCRS, we usually have three or
four multiple criteria, which raises the concerns in Pearson correlation. In addition, the angle-based
measures, such as the cosine similarity, are not appropriate, since it may produce 100% similarity if
two vectors are parallel but with different values. As a result, the distance measures can be utilized to
represent the dissimilarity. Any distance measures can be applied. We tried both Manhattan distance
and the Euclidean distance, and found that we could get better results by using Euclidean distance.
Therefore, we only present the results based on the Euclidean distance in this paper. The distance
values should be normalized to the unit scale, and then we use 1 minus the normalized distance value
to represent the similarity between the two vectors.

Therefore, the workflow in the utility-based recommendation model can be summarized as
follows. We use the data in Table 1 for example, and our task is to produce the top-N recommendations
to user Us.

First of all, we need to make predictions on the multi-criteria ratings in order to obtain the vector
of user ratings on the items, i.e., 173 In other words, we need to predict how Us will rate all candidate
items on the three criteria, {food, service, value} in Table 1. In our work, we apply a process of
independent predictions. More specifically, to predict how how Uz will rate an item on the criterion
“service”, we will apply a traditional recommendation algorithm on the rating matrix <user, item,
service>. Accordingly, we apply the same algorithm on other rating matrix associated with the
ratings on each criterion. We use biased matrix factorization (BiasedMF) [25] as the recommendation
algorithm in this step, since it is usually considered as a standard baseline and effective algorithm in
the traditional recommender systems.

The rating prediction function by BiasedMF [25] can be shown in Equation (5).

Pui =+ by +b;+plg; ®)

u refers to the global average rating, while b, and b; are the user bias and item bias respectively.
pu and g; are the latent-factor vector which can represent u and 7 respectively. The MF will learn these
parameters by minimizing sum of squared errors by using stochastic gradient descent as the optimizer.
The L, norms are usually added into the loss function as the regularization terms in order to alleviate
overfitting. The loss function is described in Equation (6), where A is the regularization rate. r,,; and
?,; are the real rating and predicted rating for the entry u,i. The model will learn from each entry
u,iin the training set T. We use px, g*, b* to represent the user latent-factor vectors, item latent-factor
vectors and biases respectively which are the parameters to be learned in the process of optimizations.

Minimize) (ryi = Pui)? + A pul* + gl * + 03 + 57) (6)
P b (u,i)eT

Information 2020, 11, 551 60f 13

Once we obtain the users’ predicted multi-criteria ratings on the items, we randomly initialize the
expectation vector for each user, and learn these vectors by using the optimization below.

3.2. Optimization

We can initialize user expectations for each user at the beginning. In this case, we are able to use
Equation (4) to calculate the utility score which will be used to rank the items to produce the top-N
recommendations. Our previous work [5] learns these user expectations by maximizing the normalized
discounted cumulative gain (NDCG) [26] which is a metric used for listwise ranking in the well-known
learning-to-rank methods. Assuming each user u has a “gain” g,,; from being recommended an item i,
the average discounted cumulative gain (DCG) for a list of | items is defined in Equation (7).

1 N J gui]‘
DCG = N 1;1 Z max((7)

1,logpf))

where the logarithm base is a free parameter, typically between 2 and 10. A logarithm with base 2 is
commonly used to ensure all positions are discounted. NDCG is the normalized version of DCG given
by Equation (8), where DCG* is the ideal DCG, i.e., the maximum possible DCG.

DCG

NDCG = 5=

®)

In terms of the listwise ranking, LambdaRank [27] can be applied to optimize NDCG directly.
In addition, genetic and evolution algorithms have also been demonstrated as effective solutions in the
listwise ranking optimization [28]. They have been utilized as the optimizer in the area of recommender
systems before [29,30]. Our previous work found particle swarm optimization (PSO) [31] to be an
effective optimizer, and it is easy to be implemented.

The basic workflow in the PSO can be described by Algorithm 1. In PSO, we need to initialize
multiple particles to search for the optimal solution, while we use the NDCG shown in Equation (8)
as the fitness function. The position of each particle is the parameters we need to learn. In our case,
the position here refers to the all of the user expectation vectors. At the initialize stage, we need to
define the number of particles, the initial positions and velocity. The velocity can define how much
each particle can move (i.e., change the positions at the beginning).

Algorithm 1: Workflow in PSO.
initialization;
while t <= MaxlIteration do
for each particle do
Calculate fitness value;
if fitness is better than pBest then
| update pBest and its position;
end
if fitness is better than gBest then
| update gBest and its position;
end

end

for each particle do
update particle velocity according to Equation (9);

update particle position according to Equation (10);
end
t=t+1;
end

Information 2020, 11, 551 7 of 13

Each particle will run the algorithms with the initialized positions (i.e., user expectations) and
velocity. The velocity is a vector with the same size of the position vector. For each run, we calculate
the fitness value, where it refers to the NDCG metric in our experiments. The learning process will
save a cBest value (i.e., the best NDCG for each particle ¢ in multiple runs) for each particle and a
gBest value (i.e., the best NDCG by the whole group of the articles) for the whole group, as well as
their corresponding positions. In each iteration, the process will update the velocity for each particle,
as shown in Equation (9). We use V;;; to denote the velocity of the jth bit in the position of the particle
i in the tth learning iteration, X;;; as the value of position in the jth bit in particle i in the tth iteration.
Pepest and Pgpes are the vector of positions associated with the individual best fitness (i.e., cBest)
and the global fitness value (i.e., gBest). wy, a1, ap, @1 and ¢, are the arguments to be defined in
advance. In this way, each particle can learn from itself and the best move by the whole group in each
learning iteration.

Vijt = wr X Vi + a1 % (Plp, o, — Xijs) + a0z X (Pégest = Xijt))

Finally, the position of each particle can be updated by Equation (10) and be used in the next
learning iteration.
Xiji+1 = Xijt + Viju (10)

4. Penalty-Enhanced Utility-Based Multi-Criteria Recommendation Model

In this section, we point out the issue of over-/under-expectation in the approach above,
and discuss out solution which applies a penalty in the learning process.

4.1. Issue of Over-/Under-Expectations

To better explain the issue of over-/under-expectations, we use the example shown in Table 2.
The first three rows present a user u’s predicted rating vectors ﬁ on three items—T, T», T3. The last
row gives the user expectation vector o

For simplicity, we use the Manhattan distance to represent the dissimilarity between two vectors.
In this case, the Manhattan distance is 4 which is the same for the items T; and T,. Apparently,
the ratings on the item T are all above the user expectations, while the ratings on T; are all below the
user expectations. Without solving the issue of over-/under-expectations, the items T; and T, will be
considered equally in the item rankings. The situation could be more complicated. Take the item T3
for example, the Manhattan distance will be 6 for T3, but it falls in over-expectation in the criterion
“Room”, and under-expectation in other criteria. T3 will be ranked ahead T; and Ty, but the end user
may prefer T, rather than T3. As a result, there could be false positives in the recommendation list and
false negatives in the list of recommendation candidates.

We realized this issue, and proposed to use a filtering strategy to alleviate this issue [8].
More specifically, we can pre-define the rules for over-/under-expectations. For example, if the
item falls in the situation of over-expectations, we may exclude this item from the list of candidate
items to be recommended. However, it is difficult to pre-define these rules without domain knowledge,
since we do not know whether the user will like an item if it falls in the case of over-expectation
or under-expectation. In this paper, we seek solutions which are general and independent of
domain knowledge.

4.2. Penalty-Enhanced Models (PEMs)

Our solution is simple and straightforward. We plan to learn a “penalty” for each situation.
We define Pyyer and P4, as the penalty for the situation of over-expectation and under-expectations
respectively. Everytime when we produce the utility score, we will add these penalties according to
whether the actual situation is either over- or under-expected. The scale of Pyyer and Py, 40 is [—1, 1],

Information 2020, 11, 551 8of 13

since the utility score that was measured by similarity will fall in [0, 1]. We are going to learn P,y and
P, 14er together with the user expectations in the learning-to-rank process.

Note that, we name it as “penalty”, but actually the value could be positive or negative. It is a
real penalty if the value is negative, since we will penalize the utility score. Otherwise, it is a bonus
which will add values to the utility score—it implies that we still accept the item and it provides extra
value in the situation of over- or under-expectations.

The remaining challenge is how to detect the situation of over- and under-expectations. We use
a sign which can be computed by using YN (z — a) The item is under-expected if the sign is
positive. Otherwise, it is over-expected, if the sign is négative. We will not apply any penalties if the
sign is zero.

A finer-grained approach is to learn these penalties for each user or each group of the users,
since the penalties may vary from user to user. Learning the penalties for each user may suffer the
sparsity problem In this paper, we use PEM+ to denote the approach that we learn Pyyer and P4, for
each group of the users in our experiments, while we create the user groups by using the K-Means
clustering [32] technique.

5. Experiments and Results

In this section, we present our data sets, evaluation strategies and the experimental results.

5.1. Data Sets and Evaluations

We use four real-world data set with multi-criteria ratings:

e TripAdvisor data: This data was crawled by Jannach, et al. [33]. The data was collected through a
Web crawling process which collects users’ ratings on hotels located in 14 global metropolitan
destinations, such as London, New York, Singapore, etc. There are 22,130 ratings given by
1502 users and 14,300 hotels. Each user gave at least 10 ratings which are associated with
multi-criteria ratings on seven criteria: value for the money, quality of rooms, convenience of
the hotel location, cleanliness of the hotel, experience of check-in, overall quality of service and
particular business services.

e Yahoo!Movie data: This data was obtained from YahooMovies by Jannach, et al. [33]. There are
62,739 ratings given by 2162 users on 3078 movies. Each user left at least 10 ratings which are
associated with multi-criteria ratings on four criteria: direction, story, acting and visual effects.

e SpeedDating data: It was available on Kaggle (https://www.kaggle.com/annavictoria/speed-
dating-experiment). There are 8378 ratings given by 392 users. It is a special data for reciprocal
people-to-people recommendations, while the “items” to be recommended are the users too.
Each user will rate his or her dating partner in six criteria: attractiveness, sincerity, intelligence,
fun, ambition, and shared interests.

e ITMLearning data: It was collected for the educational project recommendations [34], while the
authors used the filtering strategy to alleviate the over-/under-expectations. There are 3306
ratings given by 269 users on 70 items. Each rating entry is also associated with three criteria:
app (how students like the application of the project), data (the ease of data preprocessing in the
project) and ease (the overall ease of the project).

We compare the proposed PEM and PEM+ approaches with the following baseline approaches:

e The matrix factorization (MF) is the biased matrix factorization model [25] by using the rating
matrix <User, Item, Ratings> only without considering multi-criteria ratings.

o The linear aggregation model (LAM) [4] is a standard aggregation-based multi-criteria
recommendation method which predicts the multi-criteria ratings independently and uses a
linear aggregation to estimate a user’s overall rating on an item.

https://www.kaggle.com/annavictoria/speed-dating-experiment
https://www.kaggle.com/annavictoria/speed-dating-experiment

Information 2020, 11, 551 90of 13

e The criteria chain model (CCM) [11] and flexible mixture model (FMM) [10] are two methods
which take the correlation among criteria into consideration.

e The UBM model which is the original utility-based multi-criteria recommendation model without
handling the over-/under-expectation issues.

We apply 5-fold cross validation on these data sets, and evaluate the performance of
recommendations based on top-10 recommendations by using precision and NDCG. Furthermore,
we use the particle swarm optimization (PSO) [35] as introduced previously. Particularly, we use
OMOPSO [36] in the open-source library MOEA (http://moeaframework.org). OMOPSO was
demonstrated as one of the top-performing PSO algorithms. MOEA is an open-source library for
multi-objective learning, but it can also be used for single-objective learning, while we just setup
NDCG as the only objective in the library. MOEA provides built-in optimal parameters for each
learning algorithm, and we use these default parameters.

In addition to the PEM approach discussed in Section 4.2, we also examine PEM+ in which we
put users into different clusters and learn the penalties for each cluster of the users. More specifically,
we use the classical K-Means clustering on the user-item rating matrix. We tried different values
for K (K=2,4,6,8,10), and we found that the optimal value of K is 8, 6, 4, 4 for the TripAdvisor,
Yahoo!Movie, SpeedDating and ITMLearning data respectively by using the the within-cluster sum of
squared errors. We would like to examine whether PEM+ can offer further improvements, we just
tried the small K values. The performance could be better if we try larger values, while we may also
have more parameters to be learned. In PEM+, we will learn Pyer and P4, for each cluster of users.

5.2. Results and Findings

First of all, we present the results based on precision and NDCG in Figure 2. Table 3 presents
the NDCG results for the utility-based recommendation models, as well as the improvement by
PEM and PEM+ in comparison with UBM. We performed two-paired t-test as the significant test
at the 95% confidence level. We use * to represent significant results between proposed approach
(i.e., PEM and PEM+) and the best performing baseline method, and o to indicate significant results
between PEM and PEM+. Significance results based on precision are depicted in Figure 2, while the
results for NDCG are described in Table 3.

First of all, we compared the results among the baseline methods (i.e., ME, LAM, FMM, CCM and
UBM). We observed that the UBM approach generally outperformed other baseline methods in terms
of both precision and NDCG. UBM produced slightly better NDCG results than the NDCG by FMM in
the TripAdvisor and Yahoo!Movie data.

By comparing the solutions proposed in this paper (i.e., PEM and PEM+) with the baseline
methods, we observed that the PEM could offer improvements on both precision and NDCG on all the
data sets, except the speed dating data. PEM+ was able to beat all baselines except the speed dating
data too. We believe that the failure was caused by the characteristics of this data set, which will be
discussed in the next paragraph. A further look at the comparison between PEM and PEM+ can tell that
PEM+ beat PEM in NDCG for all data except the dating data. However, PEM+ failed to outperform
PEM in precision for the Yahoo!Movie and ITMLearning data. Recall that we used the NDCG as the
fitness function in PSO, while the results on precision may be out of controls. Another potential reason
could be that we did not try larger K values in KMeans for PEM+.

As a summary, PEM and PEM+ could offer improvements over the utility-based recommendation
model. The only exception was the SpeedDating data set. We did have multi-criteria ratings in
this data set. However, it was a data set for people-to-people recommendations which fell in the
category of reciprocal recommendations. The nature of this data was different from other multi-criteria
rating data, which may have resulted in less improvements here. We observed that the NDCG
was even decreased by using PEM. The underlying reasons may lie in the special characteristics of
the reciprocal recommendations. In the context of speed dating, a successful recommendation will
consider a “match” between two users. In our recommendation approach, we only considered the

http://moeaframework.org

Information 2020, 11, 551 10 of 13

preferences from the perspective of the users who received the recommendations, but ignored whether
the recommended people would like to date with the target user. It may result in a drop or less
improvements. A reciprocal recommendation model which also considers the dating partners [37,38]
may help improve the recommendation performance.

TripAdvisor Yahoo!Movie

0.0014 * %o 0.0035 0.03 0.05

0.0012 0.003 0.025 0.04
_ 0001 0.0025 _ g 002 005 =
(=} =4 3
2 0.0008 0.002 g 2 0,015 g
© 0.0006 0.0015 ¢ g 0.02 ®
o

0.0004 0.001 001

0.0002 0.0005 0.005 001

0 0 0 0
MF LAM FMM CCM UBM PEM PEM+ LAM FMM CCM UBM PEM PEM+
mmm Precision —@=NDCG mmm Precision —#=NDCG
SpeedDating ITMLearning

0.014 1 0.066 0.16

0.012 Wo - 0.98 0.064 0.14

0.01 0.96 0.062 0.12
c I 0.1
-2 0.008 094 Z 2 5
2 0,006 002 O g 006 0.08 8
e Bl € 0058 0.06 @

0.004 0.9 0.04

0.002 0.88 0.056 0.02

0 0.86 0.054 0
LAM FMM CCM UBM PEM PEM+ LAM FMM CCM UBM PEM PEM+
mmm Precision —e=NDCG = Precision —e=NDCG

Figure 2. Experimental results.

Table 3. Results based on normalized discounted cumulative gain (NDCG).

TripAdvisor Yahoo!Movie SpeedDating ITMLearning
UBM 0.0028 0.038 0.9852 0.1264
0.003 (7.14%) 0.042 (10.5%) 0.1441 (14%)
* * *

PEM 0.98 (—0.5%)

0.0031 (10.7%) 0.044 (15.8%) 0.1466 (15.9%)
*o *o *o

PEM+ 0.9866 (0.14%)

Our previous research [8] proposed to use the filtering strategies to alleviate the issue of
over-/under-expectations for the ITMLearning data. We chose the best filtering strategy and run the
model. It achieved the NDCG result as 0.1311 which was lower than the results by using both PEM
and PEM+. It is not surprising, since the filtering operation may mistakenly remove the items that a
user may like. Our solution based on the penalties actually provided a soft and finer-grained solution
to alleviate the issue of over-/under-expectations. These results demonstratde that our solution was
much more effective than the filtering strategy, not to mention that the penalty-enhanced solution did
not require any domain knowledge to define the rules for filtering.

Finally, we present the learned P,y and P,,4,, by using the PEM approach, as shown by Table 4.

We observed that the penalties learned by our models varied from case to case. The “penalty” was
positive for over-expectations and negative for under-expectations for the TripAdvisor, Yahoo!Movie
and ITMLearning data sets. It tells that the users still liked the item if it was over-expected,
and additionally a bonus was added to the predicted score which was used to rank the items.
The penalty was negative in the case of under-expectation, so the predicted score was penalized
accordingly. The pattern in the SpeedDating data was different from others—the penalty for
over-expectation was negative, while it was positive for under-expectations. It implies that a user may
not have accepted a recommended partner if some characteristics of the partner were over-expected.
By contrast, the penalty for under-expectation was positive but close to zero, which implies that a
partner was still acceptable even if the partner slightly missed the expectations in some characteristics.

Information 2020, 11, 551 11 of 13

These results are interesting and can also help us understand more characteristics about each data
or domain.

Table 4. Learned penalties.

Pover Pynder
TripAdvisor 0.124 —0.022
Yahoo!Movie 0574 —0.985
SpeedDating —0.29 0.02
ITMLearning 0.324 —0.165

6. Conclusions and Future Work

In this paper, we point out the issue of over-/under-expectations in the existing utility-based
multi-criteria recommendation approach, and propose to learn penalties to alleviate this issue.
Our experimental results based on four real-world data sets can demonstrate the effectiveness of
the proposed solutions. Particularly, the penalty-enhanced approach works better than the filtering
strategy, and it is general enough to be applied to any data sets.

However, there are still some limitations in the current work. We can consider more solutions for
these issues as our future work. First of all, we define the case of over-/under-expectation for each
rating entry by a user on an item, and apply the corresponding penalties. We can actually exploit a
finer-grained method which will apply a penalty to each bit of the rating vector (i.e., case by case for
the rating on each criterion). In this case, we have more penalties to be learned, but it may be able to
further improve the models. In addition, we did not try larger K values for the KMeans clustering
in the PEM+ method. Other K values may deliver better results. Using PSO as the optimizer may
result in an efficiency issue for a large-scale data. We can use cloud service (such as Amazon Web
Services) to learn the parameters. Or, we can seek other optimization methods in future. Finally,
the penalties may be affected by other information, such as contexts [39,40] or trust information [41,42].
For example, the issue of over-/under-expectations may be serious in some contexts, but they can be
ignored in other situations. Or, the issue can be ignored if the item was recommended by a trusted
person. We will seek these alternative improvements in our future work.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CCM Criteria Chain Model

DCG Discounted Cumulative Gain

FMM Flexible Mixture Model

LAM Linear Aggregation Model

MCRS Multi-Criteria Recommender Systems
MF Matrix Factorization

MOEA Multi-Objective Evolutionary Algorithms
NDCG Normalized Discounted Cumulative Gain
PEM Penalty-Enhanced Model

PSO Particle Swarm Optimization

UBM Utility-Based Model

Information 2020, 11, 551 12 of 13

References

1. Bawden, D.; Robinson, L. The dark side of information: Overload, anxiety and other paradoxes and
pathologies. J. Inf. Sci. 2009, 35, 180-191. [CrossRef]

2. Alexandridis, G.; Siolas, G.; Stafylopatis, A. ParVecMF: A paragraph vector-based matrix factorization
recommender system. arXiv 2017, arXiv:1706.07513.

3. Alexandridis, G.; Tagaris, T.; Siolas, G.; Stafylopatis, A. From Free-text User Reviews to Product
Recommendation using Paragraph Vectors and Matrix Factorization. In Companion Proceedings of the 2019
World Wide Web Conference; Association for Computing Machinery: New York, NY, USA, 2019; pp. 335-343.

4. Adomavicius, G.; Kwon, Y. New recommendation techniques for multicriteria rating systems.
IEEE Intell. Syst. 2007, 22, 48-55. [CrossRef]

5. Zheng, Y. Utility-based multi-criteria recommender systems. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, Limasso, Cyprus, 8-12 April 2019; pp. 2529-2531.

6. Liu, TY. Learning to Rank for Information Retrieval; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2011.

7. Balakrishnan, S.; Chopra, S. Collaborative ranking. In Proceedings of the Fifth ACM International Conference
on Web Search and Data Mining, Seattle, WA, USA, 8-12 February 2012; pp. 143-152.

8. Zheng, Y.; Ghane, N.; Sabouri, M. Personalized Educational Learning with Multi-Stakeholder Optimizations.
In Proceedings of the Adjunct ACM Conference on User Modelling, Adaptation and Personalization, Larnaca,
Cyprus, 9-12, June 2019.

9. Manouselis, N.; Costopoulou, C. Experimental analysis of design choices in multiattribute utility
collaborative filtering. Int.]. Pattern Recognit. Artif. Intell. 2007, 21, 311-331. [CrossRef]

10. Sahoo, N.; Krishnan, R.; Duncan, G.; Callan,]. Research Note—The Halo Effect in Multicomponent Ratings
and Its Implications for Recommender Systems: The Case of Yahoo! Movies. Inf. Syst. Res. 2012, 23, 231-246.
[CrossRef]

11. Zheng, Y. Criteria Chains: A Novel Multi-Criteria Recommendation Approach. In Proceedings of the 22nd
International Conference on Intelligent User Interfaces, Limassol, Cyprus, 13-16 March 2017; pp. 29-33.

12. Burke, R. Hybrid recommender systems: Survey and experiments. User Model. User-Adapt. Interact. 2002,
12, 331-370. [CrossRef]

13. Schafer,].B.; Frankowski, D.; Herlocker, J.; Sen, S. Collaborative filtering recommender systems. In The
Adaptive Web; Springer: Berlin/Heidelberg, Germany, 2007; pp. 291-324.

14. Ekstrand, M.D.; Ried],].T.; Konstan, J.A. Collaborative Filtering Recommender Systems. Available online:
https://dl.acm.org/doi/10.1561 /1100000009 (accessed on 23 November 2020).

15. Pazzani, M.]J,; Billsus, D. Content-based recommendation systems. In The Adaptive Web; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 325-341.

16. Lops, P.; De Gemmis, M.; Semeraro, G. Content-based recommender systems: State of the art and trends.
In Recommender Systems Handbook; Springer: Berlin/Heidelberg, Germany, 2011; pp. 73-105.

17. Zhao, W.XX,; Li, S.; He, Y.; Wang, L.; Wen, J.R,; Li, X. Exploring demographic information in social media for
product recommendation. Knowl. Inf. Syst. 2016, 49, 61-89. [CrossRef]

18. Burke, R. Knowledge-based recommender systems. Encycl. Libr. Inf. Syst. 2000, 69, 175-186.

19. Tarus,] K;; Niu, Z.; Mustafa, G. Knowledge-based recommendation: A review of ontology-based
recommender systems for e-learning. Artif. Intell. Rev. 2018, 50, 21-48. [CrossRef]

20. Guttman, RH. Merchant Differentiation through Integrative Negotiation in Agent-Mediated Electronic
Commerce. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1998.

21. Zihayat, M.; Ayanso, A.; Zhao, X.; Davoudi, H.; An, A. A utility-based news recommendation system.
Decis. Support Syst. 2019, 117, 14-27. [CrossRef]

22. Li, Z.; Fang, X.; Bai, X.; Sheng, O.R.L. Utility-based link recommendation for online social networks.
Manag. Sci. 2017, 63, 1938-1952. [CrossRef]

23. Ribeiro, M.T.; Lacerda, A.; Veloso, A.; Ziviani, N. Pareto-efficient hybridization for multi-objective
recommender systems. In Proceedings of the sixth ACM conference on Recommender systems, Dublin,
Ireland, 9-13 September 2012.

24. Ribeiro, M.T,; Ziviani, N.; Moura, E.S.D.; Hata, I.; Lacerda, A.; Veloso, A. Multiobjective pareto-efficient

approaches for recommender systems. ACM Trans. Intell. Syst. Technol. 2014, 5, 1-20.

http://dx.doi.org/10.1177/0165551508095781
http://dx.doi.org/10.1109/MIS.2007.58
http://dx.doi.org/10.1142/S021800140700548X
http://dx.doi.org/10.1287/isre.1100.0336
http://dx.doi.org/10.1023/A:1021240730564
https://dl.acm.org/doi/10.1561/1100000009
http://dx.doi.org/10.1007/s10115-015-0897-5
http://dx.doi.org/10.1007/s10462-017-9539-5
http://dx.doi.org/10.1016/j.dss.2018.12.001
http://dx.doi.org/10.1287/mnsc.2016.2446

Information 2020, 11, 551 13 of 13

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Koren, Y; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009,
42,30-37. [CrossRef]

Valizadegan, H.; Jin, R.; Zhang, R.; Mao,]. Learning to Rank by Optimizing NDCG Measure. Available online:
https://dl.acm.org/doi/10.5555/2984093.2984304 (accessed on 23 November 2020).

Donmez, P.; Svore, K.M.; Burges, C.J. On the local optimality of LambdaRank. In Proceedings of the 32nd
International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, MA,
USA, 19-23 July 2009; pp. 460-467.

Yeh, J.Y,; Lin,].Y,; Ke, H.R,; Yang, W.P. Learning to rank for information retrieval using genetic programming.
In Proceedings of the SIGIR 2007 Workshop on Learning to Rank for Information Retrieval (LR4IR 2007),
Amsterdam, The Netherlands, 23-27 July 2007.

Ujjin, S.; Bentley, P.J. Particle swarm optimization recommender system. In Proceedings of the 2003
IEEE Swarm Intelligence Symposium, SIS’03 (Cat. No. 03EX706), Indianapolis, IN, USA, 26 April 2003;
pp- 124-131.

Zheng, Y.; Burke, R.; Mobasher, B. Recommendation with differential context weighting. In Proceedings
of the International Conference on User Modeling, Adaptation, and Personalization, Rome, Italy,
10-14 June 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 152-164.

Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33-57. [CrossRef]
Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means
clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881-892.
[CrossRef]

Jannach, D.; Zanker, M.; Fuchs, M. Leveraging multi-criteria customer feedback for satisfaction analysis and
improved recommendations. Inf. Technol. Tour. 2014, 14, 119-149. [CrossRef]

Zheng, Y. Personality-Aware Decision Making In Educational Learning. In Proceedings of the 23rd
International Conference on Intelligent User Interfaces, Tokyo, Japan, 7-11 March 2018; p. 58.

Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress
on Evolutionary Computation-CEC99, Washington, DC, USA, 6-9 July 1999; Volume 3, pp. 1945-1950.
Sierra, M.R.; Coello, C.A.C. Improving PSO-based multi-objective optimization using crowding, mutation
and e-dominance. In Proceedings of the International Conference on Evolutionary Multi-Criterion
Optimization, Guanajuato, Mexico, 9-11 March 2005; Springer: Berlin/Heidelberg, Germany, 2005;
pp- 505-519.

Pizzato, L.; Rej, T.; Chung, T.; Koprinska, I.; Kay,]. RECON: A reciprocal recommender for online dating.
In Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26-30 September
2010; pp. 207-214.

Zheng, Y.; Dave, T.; Mishra, N.; Kumar, H. Fairness In Reciprocal Recommendations: A Speed-Dating
Study. In Proceedings of the Adjunct ACM Conference on User Modelling, Adaptation and Personalization,
Singapore, 8-11 July 2018.

Adomavicius, G.; Mobasher, B.; Ricci, F.; Tuzhilin, A. Context-Aware Recommender Systems. Al Mag. 2011,
32, 67-80. [CrossRef]

Adomavicius, G.; Tuzhilin, A. Context-aware recommender systems. In Recommender Systems Handbook;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 217-253.

Agreste, S.; De Meo, P; Ferrara, E.; Piccolo, S.; Provetti, A. Trust networks: Topology, dynamics,
and measurements. [EEE Internet Comput. 2015, 19, 26-35. [CrossRef]

Lee, J.; Noh, G.; Oh, H.; Kim, C.k. Trustor clustering with an improved recommender system based on social
relationships. Inf. Syst. 2018, 77, 118-128. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ (© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MC.2009.263
https://dl.acm.org/doi/10.5555/2984093.2984304
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1007/s40558-014-0010-z
http://dx.doi.org/10.1609/aimag.v32i3.2364
http://dx.doi.org/10.1109/MIC.2015.93
http://dx.doi.org/10.1016/j.is.2018.05.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Multi-Criteria Recommendations
	Utility-Based Recommendation Models

	Preliminary: Utility-Based Multi-Criteria Recommendations
	Utility-Based Model (UBM)
	Optimization

	Penalty-Enhanced Utility-Based Multi-Criteria Recommendation Model
	Issue of Over-/Under-Expectations
	Penalty-Enhanced Models (PEMs)

	Experiments and Results
	Data Sets and Evaluations
	Results and Findings

	Conclusions and Future Work
	References

