
  information

Article

A Method of Ultra-Large-Scale Matrix Inversion
Using Block Recursion

HouZhen Wang *, Yan Guo and HuanGuo Zhang

Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,
School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China;
GY_yan@whu.edu.cn (Y.G.); liss@whu.edu.cn (H.Z.)
* Correspondence: whz@whu.edu.cn

Received: 13 October 2020; Accepted: 5 November 2020; Published: 10 November 2020
����������
�������

Abstract: Ultra-large-scale matrix inversion has been applied as the fundamental operation of
numerous domains, owing to the growth of big data and matrix applications. Using cryptography as
an example, the solution of ultra-large-scale linear equations over finite fields is important in many
cryptanalysis schemes. However, inverting matrices of extremely high order, such as in millions,
is challenging; nonetheless, the need has become increasingly urgent. Hence, we propose a parallel
distributed block recursive computing method that can process matrices at a significantly increased
scale, based on Strassen’s method; furthermore, we describe the related well-designed algorithm
herein. Additionally, the experimental results based on comparison show the efficiency and the
superiority of our method. Using our method, up to 140,000 dimensions can be processed in a
supercomputing center.

Keywords: cryptanalysis; matrix inversion; algebraic attack; distributed computing

1. Introduction

With the growth of computer applications, matrix inversion has become a basic operation that
is widely used in various industries. For example, online video service providers (such as YouTube)
use various types of the matrices to store user and item information [1]; in satellite navigation
and positioning, matrix inversion is used to solve positioning equations [2]; triangular matrix
inversion is used in the fast algorithm of radar pulse compression (based on reiterative minimum
mean-square error); and, matrices are also used in multivariate public key encryption [3], etc.
Next, the application of matrix in cryptography is described in detail. In some of existing cryptographic
algorithms, a matrix is used to directly encrypt a message. When the process is duplicated, it is
found that the encrypted message can be obtained by solving the inversion of the encryption matrix.
Additionally, some algorithms can be transfromed into multiple linear equations, represented as
Ax = b, where A is an n× n matrix; x and b are n× 1 vectors. Subsequently, the equation can be solved
by computing the inverse of the matrix A, denoted by A−1, in order to obtain x = A−1× b. For general
matrices, some common inversion algorithms exist such as Gaussian elimination, Gauss-Jordan
elimination [4], Cholesky decomposition [5], QR decomposition [6], LU decomposition [6], and so on.
Meanwhile, other algorithms focus on special types of matrices, such as the positive definite matrix [7],
tridiagonal matrix [8], adjacent pentadiagonal matric [9], and triangular matrix [10]. However, these
algorithms for general matrices are computationally intensive and they require a cubic number of
operations. Hence, many studies have been performed to reduce the complexity. In 1969, Strassen [11]
presented a method that reduces the complexity from O(n3) to O(n2.808), where n denotes the order of
the matrix. In 1978, Pan et al. [12] proved that the complexity can be less than O(n2.796). Coppersmith
and Winograd [13] were the first to reduce the index of n less than 2.5: the obtained time complexity

Information 2020, 11, 523; doi:10.3390/info11110523 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-8672-1241
http://www.mdpi.com/2078-2489/11/11/523?type=check_update&version=1
http://dx.doi.org/10.3390/info11110523
http://www.mdpi.com/journal/information


Information 2020, 11, 523 2 of 15

was O(n2.496). Despite various optimizations, the index of n had never been less than 2. However,
with increasing matrix dimensions and the exponential growth of data volume, it is impossible to
solve the problem that is mentioned above by using only these methods proposed previously and
their optimizations. With the rapid development of parallel computing, the problem of designing an
efficient algorithm for large scale distributed matrix inversion has garnered the significant attention
of researchers.

Message Passing Interface (MPI) is a programming model that can effectively support parallel
matrix inversion. Apart from MPI, plenty of new distributed computing technologies have emerged
as platforms for large data processing tasks in recent years; the most popular ones are MapReduce
and Spark, which exhibit outstanding scalability and fault-tolerance capabilitys. Xiang et al. [14]
proposed a scalable matrix inversion method that was implemented on MapReduce and discussed
some optimizations. Liu et al. [15] described an inversion algorithm using LU decomposition on Spark.
In this paper, we propose a novel distributed matrix inversion algorithm for a large-scale matrix that
is based on Strassen’s original serial inversion scheme and implement it on the MPI. Essentially, it is
a block-recursive method to decompose the original matrix into a series of small ones that can be
processed on a single server. We present a detailed derivation and the detailed steps of the algorithm
and then show the experimental results on the MPI. However, it is noteworthy that the primary aim of
this paper is not to compare the performance of the MPI, Spark, and MapReduce. In summary:

1. We propose and implement a large-scale matrix block-recursive inversion algorithm based on the
Strassen’s method while using distributed and parallel technologies.

2. We describe the theorem used in our algorithm; furthermore, we prove the theorem and describe
the algorithm steps.

3. Through numerous experiments, we prove that the proposed method is superior to LU
decomposition and Gauss-Jordan elimination under the same conditions.

Note that the all operations for solving matrix inversion is based on finite fields and only for a
square matrix.

The remainder of this paper is structured, as follows. Section 2 provides a literature review.
Our method is presented in Setion 3 and the experimental evaluation results in Secion 4. In Section 5,
we conclude the paper and discuss future works.

2. Related Work

Owing to the numerous existed methods for matrix inversion, we focus on only two
representational methods: Gauss-Jordan Elimination and LU decomposition. In the rest of this
section, we introduce the key ideas of the two methods briefly and analyze their deficiency in solving
the inversion of high-order matrix as compared with our presented methods. Some of the other
methods are applied to special matrices, e.g., SVD decomposition is used for the pseudo inversion of
non-square matrix, and Cholesky decomposition is used in symmetric positive definite linear equations.
Additionally, we omit some other methods that are substantially similar to the two most representative
methods mentioned above. Furthermore, we selected the two methods, because they are the most
frequently used in matrix inversion parallel computing of the existing papers.

At the beginning of the section, we give the basic definition of an inverse matrix:

Definition 1. Given an n-th order square matrix A, if an n-th order square matrix B exists satisfying
AB = BA = In, where In is the n-th indentity matrix, the matrix A is invertible, and its inverse matrix
is B, written as A−1.

2.1. Gauss-Jordan Elimination

Gauss-Jordan is an efficient, classic, and well-known method for solving low order matrix
inversion. It has two common forms that are based on either row transformation or column



Information 2020, 11, 523 3 of 15

transformation. The row-based version is more widely used in daily life. As the two methods
have the same principle, we will only briefly introduce the row-based one here.

In the row transformation method, the given n× n matrix A is connected with I, which is an
identity matrix having the same order as A, to obtain an augmented matrix W, denoted as w = [A|I],
whose dimension becomes n × 2n. Then, we apply row transformation operations on the matrix
W to convert W from [A|I] to [I|B], and the matrix B is equal to A−1. The proof is shown below.
As the operations performed on the matrix W contain only the row transformations, the entire process
can be viewed as multiplying W by an invertible matrix P to satisfy PW = P[A|I] = [PA|P] = [I|B].
We can obtain P = B and PA = I and infer that BA = I. Therefore, the matrix B is equal to A−1.
The process can be divided into the following four steps:

Step 1: transform the left part of the matrix W into an upper triangular matrix by applying row
transformations from the top to the bottom. The specific steps are as follows:

(1) Multiply the first row by a constant, such that a11 becomes 1 (initially, if this element is zero,
add any other row whose first element is not zero to this row).

(2) Subtract the first row multiplied by a constant from the second row such that a21 become zero.
Perform the same operation for the remaining rows, written as ri − r1 × j.

(3) Repeat steps (1)–(2) for each column sequentially to transform the left half into an upper
triangular matrix.

Step 2: transform the left part of the matrix W into a diagonal triangular matrix by performing
row transformations from the bottom to the top. This is similar to step 1.

Step 3: multiply each line by a coefficient to transform the left part of the augmented matrix into
an identity matrix.

Step 4: the right part of the augmented matrix W is the inverse of matrix A.
Apparently, the time complexity of the program is O(n3) without any parallelization. For the

Gauss–Jordan, the operations on rows are sequential, and the parallelization of this method is not
highly effective.

2.2. LU Decomposition

LU decomposition can be viewed as another form of Gauss elimination in essence.
Multiple types of decomposition have been proposed, e.g., PLE decomposition, PLS decomposition,
CUP decomposition, LQUP decomposition, and LUP decomposition. Among them, PLE
decomposition breaks the initial matrix A into the product of permutation matrix P , unit lower
triangular matrix L (i.e., the lower triangular matrix whose diagonal elements are all 1) and row
elementary transformation matrix E. Meanwhile, CUP decomposition resolves A into the product
of column elementary transformation matrix C, unit lower triangular matrix U, and permutation
matrix P.

These forms have been shown to be equivalent: it is sufficient to use a permutation matrix to
obtain different decomposition forms that are based on LU decomposition. Their mutual conversion
required no domain operation; only the permutation operation is involved, which can be scaled to
matrix multiplication. Hence, we only discuss the most direct LU decomposition. LU decomposition
essentially transforms the original matrix A into an upper triangular matrix through elementary
row transformation, and the transformation matrix is a unit lower triangular matrix. Inverting the
two matrices respectively and multiplying their inverses to get the inverse of A is known as the
Doolittle algorithm. In addition, the Crout algorithm only replaces the two decomposed matrices with
a lower triangular matrix and unit upper triangular matrix, which is similar to the Doolittle algorithm
in essence. We only present the Doolittle as an example. Note that it has been proven in linear algebra
that LU decomposition is existent and unique provided that the square matrix is non-singular.

The critical step in LU decomposition is to obtain the ‘L’ and ‘U’. Subsequently, we use
Gauss-Jordan (or other methods) to get the inversion of ‘L’ and ‘U’. The main purpose of



Information 2020, 11, 523 4 of 15

decomposition is to reduce the computational cost of elimination and ease the storage within computer
programs. The decomposed forms are shown below:

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann



=


l11

l21 l22
...

...
. . .

ln1 ln2 . . . lnn




u11 u12 · · · u1n
u22 · · · u2n

. . .
...

unn


(1)

As shown in Equation (1), we can deduce the following formulas according to the rules of matrix
multiplication and the equality of matrices on both sides of the equations:

u1j = a1j j = 1, 2, 3, . . . , n

li1 = ai1/u11 i = 2, 3, . . . , n

uij = aij −
i−1

∑
k=1

likukj j = i, i + 1, . . . , n; i = 2, 3, . . . , n

lij = (aij −
j−1

∑
k=1

likukj)/ujj i = j + 1, j + 2, . . . , n; j = 2, 3, . . . , n

Matrix L and U can be calculated by the formula above. Subsequently, we calculate the inverse
of L and U, respectively, and multiply them to get the inverse of original matrix. The formula to
calculation every element of L and U has been provided, and it is obvious that the time complexity
is O(n3). The worst complexity of multiplying matrices is still O(n3). In conclusion, the complexity
of LU decomposition is O(n3) without parallelization. However, in the actual implementation of
LU decomposition, the row-permuted matrix PA is decomposed instead of the original matrix A,
when considering that the LU decomposition of the original matrix may fail to materialize in some
cases. The permutation matrix P can render the factorization more stable. Therefore, the inverse matrix
A−1 can be obtained by calculating U−1L−1P. Obviously, the complexity has not changed.

It is impractical to calculate the inversion by the formula above directly when the dimension of the
matrix is extremely large. Liu et al. [13] presented a method that is based on LU decomposition in detail
and we will only mention their formula for inversion. Their method first used the following equation:(

P1 O
o P2

)(
M1 M2

M3 M4

)
=

(
L1 O
L2 L3

)(
U1 U2

O U3

)

Here,

(
P1 O
o P2

)
is the permutation matrix P mentioned previously that renders the factorization

to be more stable. Subsequently, performing multiplication for the equation above, the result are
as follows: (

P1M1 P1M2

P2M3 P2M4

)
=

(
L1U1 L1U2

L2U1 L2U2 + L3U3

)



Information 2020, 11, 523 5 of 15

The details of the intermediate substitution are not unrolled here, and the final equations are
the following:

L−1 =

(
L−1

1 O
−L−1

3 L2L−1
1 L−1

3

)

U−1 =

(
U−1

1 −U−1
1 U2U−1

3
O U−1

3

)

P =

(
P1 O
O P2

)

By comparing the most optimized LU decomposition (Algorithms 5–7 in [13]) with the proposed
method, it is clear that in the primary parts the number of basic operation, such as multiplication and
inversion, of the two methods has a difference and the cost of LU is larger than the latter.

3. Theoretical Demonstration and Algorithm Design

In this section, we present the detailed theoretical derivation that is required for our proposed
method and describe the algorithm. The process can be divided into two parts: matrix completion and
block recursive inversion. After partitioning the original matrix, we obtained four submatrices of the
same order. Next, we analyze the process, formulate the theorem, and provide the revelant proofs of
each part.

3.1. Matrix Completion

For a more general conclusion, we assume that the order of the given square matrix is 2r × s,
where r is a natural number and s is the order of the block matrix that can be decomposed on a
single server. The original matrix does not always satisfy this criterion, and we must fill the matrix in
this case. The completion lemma is as follows:

Lemma 1. Fill the original matrix H with null matrix O and identity matrix I, whose order is subject to

specific circumstances. The form after filling is as follows:

[
H O
O I

]
. Apparently, the revision of filling matrix

can be obtained easily: (
H O
O I

)−1

=

(
H−1 O

O I−1

)
Subsequently, we obtain the inversion of the original matrix directly.

3.2. Block Inversion Theorem

In this section, we present and prove the theorem for obtaining the inversion of the original matrix
by invertible submatrices. We first introduce the following lemmas before proving the inverse theorems.

Lemma 2. If the square matrices A and D are invertible, then the block matrix H =

(
A O
C D

)
is invertible

and its inverse matrix is

H−1 =

(
A O
C D

)−1

=

(
A−1 O

−D−1CA−1 D−1

)



Information 2020, 11, 523 6 of 15

Proof. Firstly, submatrix A is invertible, based on the preconditions; therefore, we have the
following equation: (

Im O
CA−1 In

)(
A O
C D

)
=

(
A O
O D

)

Apparently, the matrix

(
A O
O D

)
has the inversion, which is

(
A−1 O
O D−1

)
. Multiply both sides

of this equation by it, and the following is obtaied:(
A−1 O
O D−1

)(
Im O

CA−1 In

)(
A O
C D

)
= I

Based on the equation, H is invertible and its inversion is

H−1 =

(
A−1 O
O D−1

)(
Im O

CA−1 In

)

=

(
A−1 O

−D−1CA−1 D−1

)

The following theorem can be proved similarly:

Lemma 3. If the square matrices A and D are invertible, then the block matrix H =

(
A B
O D

)
is invertible

and its inverse matrix is

H−1 =

(
A B
O D

)−1

=

(
A−1 −A−1BD−1

O D−1

)

Lemma 4. If the square matrices B and C are invertible, then the block matrix H =

(
A B
C O

)
is invertible

and its inverse matrix is

H−1 =

(
A B
C O

)−1

=

(
O C−1

B−1 −B−1 AC−1

)

Lemma 5. If the square matrices B and C are invertible, then the block matrix H =

(
O B
C D

)
is invertible

and its inverse matrix is

H−1 =

(
O B
C D

)−1

=

(
−C−1DB−1 C−1

B−1 O

)

By the lemmas above, we prove the following theorem:

Theorem 1. If the block matrix H =

(
A B
C D

)
and sub-matrix A are invertible, then matrix (D−CA−1B)−1

exists and the inversion of H is:

H−1 =

(
A−1 + A−1B(D− CA−1B)−1CA−1 −A−1B(D− CA−1B)−1

−(D− CA−1B)−1CA−1 (D− CA−1B)−1

)



Information 2020, 11, 523 7 of 15

Proof. We record the inversion of H as H−1 =

(
A B
C D

)−1

=

(
X Y
Z W

)
. According to the definition

of the invertible matrix, HH−1 = H−1H = I. Performing the matrix multiplication results in
the following:

HH−1 =

(
A B
C D

)(
X Y
Z W

)

=

(
AX + BZ AY + BW
CX + DZ CY + DW

)
=

(
Im O
O In

)

This results in the following equations:
AX + BZ = Im (a)

AY + BW = O (b)

CX + DZ = O (c)

CY + DW = In (d)

(2)

Based on Equation (2b), we have
Y = −A−1BW (3)

By substituting Equation (3) into Equation (2d), we obtain

W = (D− CA−1B)−1 (4)

Subsequently, we can obtain Y by substituting Equation (4) into Equation (3):

Y = −A−1B(D− CA−1B)−1 (5)

According to Equation (2a), we have

X = A−1(Im − AZ) (6)

By substituting Equation (6) into Equation (2c), we obtain

Z = −(D− CA−1B)−1CA−1 (7)

Finally, we obtain the Z by substituting Equation (7) into Equation (6):

X = A−1 + A−1B(D− CA−1B)−1CA−1 (8)

To summarize, we obtain the inversion of H, as follows:

H−1 =

(
A−1 + A−1B(D− CA−1B)−1CA−1 −A−1B(D− CA−1B)−1

−(D− CA−1B)−1CA−1 (D− CA−1B)−1

)

Similarly, we can prove the following theorems:



Information 2020, 11, 523 8 of 15

Theorem 2. If the block matrix H =

(
A B
C D

)
and sub-matrix B are invertible, then matrix (C−DB−1 A)−1

exists and the inversion of H is

H−1 =

(
−(C− DB−1 A)−1DB−1 (C− DB−1 A)−1

B−1 + B−1 A(C− DB−1 A)−1DB−1 −B−1 A(C− DB−1 A)−1

)

Theorem 3. If the block matrix H =

(
A B
C D

)
and sub-matrix C are invertible, then matrix (B− AC−1D)−1

exists and the inversion of H is

H−1 =

(
−C−1D(B− AC−1D)−1 C−1 + C−1D(B− AC−1D)−1 AC−1

(B− AC−1D)−1 −(B− AC−1D)−1 AC−1

)

Theorem 4. If the block matrix H =

(
A B
C D

)
and sub-matrix D are invertible, then matrix (A− BD−1C)−1

exists and the inversion of H is

H−1 =

(
(A− BD−1C)−1 −(A− BD−1C)−1BD−1

−D−1C(A− BD−1C)−1 D−1 + D−1C(A− BD−1C)−1BD−1

)

3.3. Recursive Algorithm

Algorithm 1 shows the corresponding deterministic algorithm, and the partition of original matrix
is presented in the Figure 1. As shown, we stored the partition process as a tree. For a more concise and
clear figure, the first and last nodes illustrate the partition results at every layer, and the partition of
the other blocks is similar. Although we have only divided it by a certain number of times, the actual
number is much higher. Information regarding each node is represented in a three-tuple, written as
(n, i, j), where n is the dimension of the matrix contained in the node; i and j are the row and column
of the first element of the matrix, respectively. Finally, we attempt to find a path, which is called the
inversion chain, where the matrix contained in each node is invertible.

Algorithm 1 The recursion algorithm.
Input: H → The original matrix; s→ the dimension solved by a single server
output: H−1 → the inversion of H
step 1: For the given matrix H, determine whether it needs to be filled according to
Lemma 1 and write the augmented matrix as H∗;

step 2: Divide the n-dimensional H or H∗ obtained in the step 1 into
[

A B
C D

]
;

step 3: Repeat the division of step 2 for each sub-block matrix until the dimension of
them is less than s;
step 4: Find the inversion chain, e.g., (s, q, k), · · · , (m, i, j), · · · ,
(n, 0, 0);
step 5: Calculate the inversion of the parent nodes from the leaf (s, q, k) along the path
sequentially, finally get the matrix M, i.e., inversion of root (n, 0, 0);
step 6: if the matrix is not filled then

goto step 7;
else

take the first n rows and the first n columns of M to form the
new matrix, which is H−1;

end if;
step 7: Return H−1.



Information 2020, 11, 523 9 of 15

H

A B C D

A11 A12 A14A13 B11 B12 B13 B14 C11 C12 C13 C14 D11 D12 D13 D14

......

......

A11 A12 A13 A14 D11 D12 D13 D14

A11
-1

A12 A13 A14
-1 -1 -1

D11 D12 D13 D14
-1 -1 -1 -1

Figure 1. Matrix partition.

It is noteworthy that the method that we adopted to obtain the inversion of the leaf node was
Gauss-Jordan elimination. Theoretically, 2× n× (n− 1) threads exist to reduce the time complexity
from O(n3) to O(n) when the program is executed in a supercomputing center. However, the real
complexity is slightly more than O(n) because of some bottlenecks such as memory access. Meanwhile,
we use the shared memory of the GPU to reduce excessive access times due to the large matrix order.

To more clearly describe the process, we take a 16-dimensional matrix as an example.
The following matrix instance is a 16-dimensional square matrix H based on GF(2), denoted as

(16, 0, 0). When the entire process is replicated next, step 1 is skipped, which means no padding is
required, in order to obtain a more distinct presentation. The value of s is set to 2. For a more concise
process, we use a known inversion chain as an example: divide one of the submatrices each time,
although the same operation is required for all submatrices.

1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0
1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 1
1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 1
1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1
1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1
1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1
1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1
1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1
1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1
1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1
1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1
1 0 0 1 0 1 1 1 1 0 1 0 1 1 0 1
1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 1
1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1
1 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1
0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1


Matrix Instance



Information 2020, 11, 523 10 of 15

First we divide the matrix H into four submatrices, as shown below:

A8 =



1 0 0 1 1 0 1 1
1 0 0 1 1 0 1 1
1 0 0 1 1 0 1 1
1 0 0 1 1 0 1 1
1 0 0 1 1 0 1 1
1 0 0 1 1 0 1 1
1 0 0 1 1 0 1 1
1 0 0 1 1 0 1 1


, B8 =



1 0 1 0 1 1 0 0
1 0 1 0 1 1 1 1
1 0 1 0 0 0 0 1
1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 1
0 0 1 0 1 1 0 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 0 1


,

C8 =



1 0 0 1 1 0 1 0
1 0 0 1 1 0 0 1
1 0 0 1 1 1 1 1
1 0 0 1 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 0 1 1
0 0 0 1 1 0 1 1


, D8 =



1 0 1 0 1 1 0 1
1 0 1 0 1 1 0 1
1 0 1 0 1 1 0 1
1 0 1 0 1 1 0 1
1 0 1 0 1 1 0 1
1 0 1 0 1 1 0 1
1 0 1 0 1 1 0 1
1 0 1 0 1 1 0 1


The submatrices above are written as (8, 0, 0), (8, 0, 8), (8, 8, 0) and (8, 8, 8), individually.

After continuing to divide matrix B8, four submatries can be obtained, i.e., (4, 0, 8),
(4, 0, 12), (4, 4, 8), (4, 4, 12). In the subsequent partition, a subscript denotes the dimension of the
matrix to distinguish the same mark, i.e., A, B, C, D.

A4 =


1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0

 , B4 =


1 1 0 0
1 1 1 1
1 0 0 1
0 1 0 1



C4 =


1 0 1 0
0 0 1 0
0 1 1 0
0 0 1 1

 , D4 =


1 1 0 1
1 1 0 1
1 1 0 1
1 1 0 1


Through the last division, the four matrices that we obtained are recorded as

(2, 4, 8), (2, 4, 10), (2, 6, 8), (2, 6, 10).

A2 =

(
1 0
0 0

)
, B2 =

(
1 0
1 0

)
, C2 =

(
0 1
0 0

)
, D2 =

(
1 0
1 1

)

The matrix satisfies the condition to be computed on a single server. Furthermore, matrix

D2 =

(
1 0
1 1

)
, also written as (2, 6, 10), is invertible. It can be inferred that, after all the divisions are

completed, the number of 2-dimensional matrix, whose probability of irreversibility is 5
8 , is a total of 64.

Therefore, it is almost impossible that all of them are irreversible simultaneously. To simplify our
description, the two-dimensial matrix D2 obtained at the final step is invertible. After calculating the
inversion of intermediate nodes sequentially, we finally get a chain, where the matrix on each node
is invertible, denoted as D2 : (2, 6, 10) −→ C4 : (4, 4, 8) −→ B8 : (8, 0, 8) −→ H : (16, 0, 0), which are
highlighted in the follow matrix. Along the chain, the inversion of H can be deduced according to the
theorems of the previous section. The final inversion is omitted here.



Information 2020, 11, 523 11 of 15



1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0
1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 1
1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 1
1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1
1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1
1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1
1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1
1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1
1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1
1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1
1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1
1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1
1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1
1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1
1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1
1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1


Inversion Chain

4. Experimental Evaluation

We performed experiments on personal computers in order to evaluate the performance of the
proposed algorithm (later written as NovelIn) and compared it with the Gauss-Jordan Elimination
(later written as G-J). In this section, except the comparison with the G-J, the performance about
applying the algorithm to different matrix sizes is also presented. Finally, we present the results of
executing the NovelIn on GPU clusters.

4.1. Experimental Environment

Firstly, we implement G-J and NovelIn on the personal computer, which has a 2.3 GHz Intel CPU
with four physical cores and NVIDIA GTX960M. On the personal computer, we measure the runtime
for solving the general matrix, whose order is not large than 20,000, to compare the performance of
G-J and NovelIn. Owing to the limitations of the personal computer, the operations with high order
matrices mentioned before were performed on a parallel computing platform, namely GPU clusters
that were composed of servers that are deployed in a data center with well designed architecture.
Each server has 128 GB RAM and two 2.4 GHz Inter Xeon CPUs with 20 physical cores.

In order to investigate the performance of the algorithms, we generated different matrices of
different orders, as shown in Table 1.

Table 1. Order of matrices.

Matrix Order (PC) Order (GPUs)

M1 1000 10,000
M2 2000 20,000
M3 3000 30,000
M4 4000 40,000
M5 5000 50,000
M6 6000 60,000
M7 7000 70,000
M8 8000 80,000
M9 10,000 100,000

M10 20,000 140,000

4.2. Comparison of Performance

In consideration of the actual situation, we evaluate the performance of the two methods,
i.e., G-J and NovelIn, on GF(28), GF(216) and GF(232). For GF(28), GF(216), which contain fewer



Information 2020, 11, 523 12 of 15

elements, its matrix elements are inversed by looking up the tables, which consist of a positive table,
storing the polynomial value of the element, and a negative table, storing the opposite. It is obvious that
the memory that tables required is 512 B and 64 KB for GF(28) and GF(216) individually. For GF(232),
the memory required is enormous; therefore, we take the algorithm of exponentiating by squaring
in order to obtain the inversion of each element, and its time complexity is O(n2). The specifical
experimental data on the different finite fields are shown in the following tables. Table 2 presents the
data used on GF(28).

Table 2. The results on GF(28).

Dimension

Times (s) Method
G-J (4 Threads) G-J (8 Threads) NovelIn (1000) NovelIn (500) NovelIn (200) NovelIn (100) Speedup

1000 9 3.2 10 4.6 2.2 1.8 1.78
2000 52 24 30 17 14 13 1.85
3000 192 74 98 48 46 42 1.76
4000 745 174 375 101 101 99 1.76
5000 990 374 810 200 196 193 1.94
6000 1842 692 1253 358 337 332 2.08
8000 9621 1839 3000 810 782 780 2.36

10,000 22,100 3625 5320 1580 1530 1526 2.38
20,000 29,090.4 24,700 13,521 12,862 12,121 2.40

Most of our experiments are based on GF(28), when considering that GF(28) has the least number
of elements, as shown in Table 2. For the G-J, we set the recursive threshold, namely the order solved
by personal computer, to 100. We present the comparison in Figure 2 to show the effects of number
of threads on runtime; we discovered that it is not as simple as cutting it in half when the number of
threads increases from four to eight. In the case of four threads, we did not provide the running time of
the 20,000 dimensional matrix because it is extremely large. Hence, we then set the number of threads
to eight. The number followed by the word “NovelIn” is the corresponding recursive threshold when
using NovelIn.

0 5000 10,000 15,000 20,000

0

5000

10,000

15,000

20,000

25,000

30,000

Ex
ec
ut
io
n 
ti
me
s 
(s
)

Dimension of the Matrix

 8 threads
 4 threads

Figure 2. The impact of different threads on the G-J’s runtime.

For the NovelIn, we set four recursive thresholds and measured their runtimes to obtain the
best one. The result is presented in Figure 3a. It is not difficult to find that, with the decrease of
recursive threshold, the runtime gap of the process, which deals with the same order matrix, becomes
gradually unclear. Therefore, in the experiments based on the GF(216) and GF(232), the recursive
threshold is set to 100 directly. Figure 3b shows that the runtime of NovelIn is superior than that of
the other, and the gap becomes wider with a higher dimension of the matrix when the experimental
environment remains the same. To reflect the advantage more directly, the speedup—the time required
by G-J divided by the time required by NovelIn—is shown in Figure 3c. Comparing the performance
of the two methods, it is evident that the performance of NovelIn is more superior. Next, we execute



Information 2020, 11, 523 13 of 15

the algorithm in a supercomputing center. Table 3 shows the relative data based on all the finite fields.
Given the capability of the supercomputing center, we set the recursive threshold to 2000. The results
from the supercomputing center are presented in Figure 3d, and its effect is remarkable. For the 140,000
dimensional matrix, NovelIn only requires 4700 s in order to obtain its inversion.

Table 3. The results on the supercomputing center.

Dimension

Times (s) Finite Field
GF(28) GF(216) GF(232)

10,000 9 20 20
20,000 35 94 94
30,000 77 273 273
40,000 152 545 545
50,000 260 1066 1066
60,000 424 1870 1870
80,000 940 4058 4058

100,000 1754 7898 7898
140,000 4757

0 5000 10,000 15,000 20,000

0

5000

10,000

15,000

20,000

25,000

Ex
ec
ut
io
n 
ti
me
s 
(s
)

Dimension of the Matrix

 1000
 500
 200
 100

(a) Different minimum

0 5000 10,000 15,000 20,000

0

5000

10,000

15,000

20,000

25,000

30,000

Ex
ec
ut
io
n 
ti
me
s 
(s
)

Dimension of the Matrix

 G-J
 NovelIn

(b) Comparison of G-J and NovelIn

0 5000 10,000 15,000 20,000
1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Sp
ee
du
p

Dimension of the Matrix

 Speedup

(c) Speedup

0 20 40 60 80 100 120 140 160

0

1000

2000

3000

4000

5000

Ex
ec
ut
io
n 
ti
me
s 
(s
)

Dimension of the Matrix (thousand)

(d) The result of parallel computing

Figure 3. The comparison of G-J and NovelIn and NovelIn’s performance on GF(28).

We mentioned that the recursive threshold is set to 100 directly in the experiments based on
GF(216) and GF(232); additionally, the relevant experimental results are listed in Table 4. The results are
presented in Figures 4 and 5, respectively. According to Figure 4a, it is obvious that NovelIn performed
better than the other. By contrast, Figure 5a shows an interesting result, in that the performance
of NovelIn is inferior to that of the G-J when the matrix order is not large enough on the GF(232).
Additionally, we depict the change in the speedup with the growth of the matrix order in the Figure 4b.
As expected, the speedup shows an upward trend in general, which resembles the change on GF(28).
Otherwise, Figures 4c and 5b show the time of applying NovelIn to a real high order matrix on the
supercomputing center, where the specific data are shown in Table 3. The performance and scalability
of NovleIn are apparent.



Information 2020, 11, 523 14 of 15

Table 4. The results on GF(216) and GF(232).

Dimension

Times (s) Finite Field
G-J (GF(216)) NovelIn (GF(216)) Speedup (GF(216)) G-J (GF(232)) NovelIn (GF(232)) Speedup (GF(232))

1000 3.9 1.8 2.17 3.9 85 0.05
2000 32 13 2.46 32 328 0.10
3000 116 40 2.90 116 40 2.90
4000 310 94 3.30 310 1809 0.17
5000 583 181 3.22 583 3592 0.16
6000 1048 310 3.38 1048 310 3.38
8000 2601 731 3.56 2601 12,908 0.20

10,000 4910 1426 3.44 4910 25452 0.19
12,000 8827 2452 3.60 8827 2452 3.60
20,000 46,082 11,326 4.07 46,082 11,326 4.07

0  2000  4000 6000  8000  10,000    12,000

0

2000

4000

6000

8000

10,000

Ex
ec
ut
io
n 
ti
me
s 
(s
)

Dimension of the Matrix

 G-J
 NovelIn

(a) Comparison of G-J and NovelIn

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8
Sp
ee
du
p

0 2000  4000  6000  8000        10,000       12,000

Dimension of the Matrix

 Speedup

(b) Speedup

0 20,000 40,000 60,000 80,000 100,000

0

2000

4000

6000

8000

Ex
ec
ut
io
n 
ti
me
s 
(s
)

Dimension of the Matrix

(c) The result of parallel computing

Figure 4. The comparison of G-J and NovelIn and NovelIn’s performance on GF(216).

0 5000 10,000 15,000 20,000

0

10,000

20,000

30,000

40,000

50,000

Ex
ec
ut
io
n 
ti
me
s 
(s
)

Dimension of the Matrix

 G-J
 NovelIn

(a) Comparison of G-J and NovelIn

0 20,000 40,000 60,000 80,000 100,000

0

2000

4000

6000

8000

Ex
ec
ut
io
n 
ti
me
s 
(s
)

Dimension of the Matrix

(b) Speedup

Figure 5. The comparison of G-J and NovelIn and NovelIn’s performance on GF(232).

5. Conclusions

In this paper, we have focused on the problem of large-scale matrix inversion, which has
become increasingly fundamental, owing to the constant growth of the data in various fields.
We presented an efficient inversion algorithm for large-scale matrices and its implementation.
The key idea is to breakdown the large-scale matrices into a set of sub-blocks and then calculate
the inversion by the proposed method. Our experimental evaluation demonstrated that the excellent
performance of our method. Specifically, it performed better when executing the program on the
supercomputing center. This algorithm, which is aimed at large-scale matrix inversion, may render
some existing encryption algorithms no longer secure, such as an algebraic attack. Because the essence
of an algebraic attack is matrix inversion, the method that is proposed in this paper can make the
algorithms that rely solely on ultra-large-scale matrix to resist algebraic attacks no longer secure.

The analysis of evaluation results on clusters with varied dimensions demonstrated the good
scalability of our algorithm. For the future work, we will attempt to utilize multi-GPU collaborative
computing, such that matrices can be distributed to different GPUs, in order to further extend the
practicability of this algorithm for larger matrices.

Author Contributions: Data curation, Y.G.; methodology, Y.G.; resources, H.Z.; software, H.W.; writing—original
draft, Y.G.; writing—review and editing, H.W. All authors have read and agreed to the published version of
the manuscript.



Information 2020, 11, 523 15 of 15

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yan, M.; Sang, J.; Xu, C. Unified youtube video recommendation via cross-network collaboration.
In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, Shanghai, China,
23–26 June 2015; pp. 19–26.

2. Matsue, T.; Sekitsuka, T.; Shingyoji, R. Satellite Radiowave Receiving Device, Electronic Timepiece, Method
for Controlling Positioning Operations, and Storage Device. U.S. Patent App. 16/135,383, 28 March 2019.

3. Porras, J.; Baena, J.; Ding, J. ZHFE, a new multivariate public key encryption scheme. In Proceedings of
the International Workshop on Post-Quantum Cryptography, Waterloo, ON, Canada, 1–3 October 2014;
pp. 229–245.

4. Althoen, S.C.; Mclaughlin, R. Gauss-Jordan reduction: A brief history. Am. Math. Mon. 1987, 94, 130–142.
[CrossRef]

5. Krishnamoorthy, A.; Menon, D. Matrix inversion using Cholesky decomposition. In Proceedings of the
2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland,
26–28 September 2013; pp. 70–72.

6. Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. Numerical Recipes: The Art of Scientific Computing, 3rd ed.;
Cambridge University Press: Cambridge, UK, 2007.

7. Vajargah, B. F. A way to obtain Monte Carlo matrix inversion with minimal error. Appl. Math. Comput. 2007,
191, 225–233. [CrossRef]

8. Huang, Y.; McColl, W. Analytical inversion of general tridiagonal matrices. J. Phys. A Math. Gen.
1997, 30, 7919. [CrossRef]

9. Kanal, M. Parallel algorithm on inversion for adjacent pentadiagonal matrices with mpi. J. Supercomput.
2012, 59, 1071–1078. [CrossRef]

10. Ries, F.; De Marco, T.; Guerrieri, R. Triangular matrix inversion on heterogeneous multicore systems.
IEEE Trans. Parallel Distrib. Syst. 2012, 23, 177–184. [CrossRef]

11. Strassen, V. Gaussian elimination is not optimal. Numer. Math. 1969, 13, 354–356. [CrossRef]
12. Pan, V.Y. Strassen’s algorithm is not optimal trilinear technique of aggregating, uniting and canceling for

constructing fast algorithms for matrix operations. In Proceedings of the 19th Annual Symposium on
Foundations of Computer Science (sfcs 1978), Ann Arbor, MI, USA, 16–18 October 1978; pp. 166–176.

13. Coppersmith, D.; Winograd, S. On the asymptotic complexity of matrix multiplication. SIAM J. Comput.
1982, 11, 472–492. [CrossRef]

14. Xiang, J.; Meng, H.; Aboulnaga, A. Scalable matrix inversion using mapreduce. In Proceedings of the
23rd International Symposium on High-Performance Parallel and Distributed Computing, Vancouver, BC,
Canada, 23–27 June 2014; pp. 177–190.

15. Liu, J.; Liang, Y.; Ansari, N. Spark-based large-scale matrix inversion for big data processing. IEEE Access
2016, 4, 2166–2176. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00029890.1987.12000605
http://dx.doi.org/10.1016/j.amc.2007.02.082
http://dx.doi.org/10.1088/0305-4470/30/22/026
http://dx.doi.org/10.1007/s11227-010-0487-y
http://dx.doi.org/10.1109/TPDS.2011.103
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1137/0211038
http://dx.doi.org/10.1109/ACCESS.2016.2546544
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Gauss-Jordan Elimination
	LU Decomposition

	Theoretical Demonstration and Algorithm Design
	Matrix Completion
	Block Inversion Theorem
	Recursive Algorithm

	Experimental Evaluation
	Experimental Environment
	Comparison of Performance

	Conclusions
	References

