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Abstract: In this work, we propose a combined sampling technique to improve the performance of
imbalanced classification of university student depression data. In experimental results, we found that
combined random oversampling with the Tomek links under sampling methods allowed generating a
relatively balanced depression dataset without losing significant information. In this case, the random
oversampling technique was used for sampling the minority class to balance the number of samples
between the datasets. Then, the Tomek links technique was used for undersampling the samples by
removing the depression data considered less relevant and noisy. The relatively balanced dataset
was classified by random forest. The results show that the overall accuracy in the prediction of
adolescent depression data was 94.17%, outperforming the individual sampling technique. Moreover,
our proposed method was tested with another dataset for its external validity. This dataset’s predictive
accuracy was found to be 93.33%.

Keywords: depression prediction; imbalanced data; sampling techniques; feature selection; Patient
Health Questionnaire-9 (PHQ-9)

1. Introduction

Depression is an important public health problem that occurs today and will do so in the future.
It is one of the leading causes of “disability” worldwide and the most common mental disorder among
college students [1]. A study in Thailand discovered that the prevalence of depression in adolescents
was 14.9% [2]. Depression screening is the most important first step in assessing the symptoms and the
severity of depression in people.

The observed depression is difficult to measure due to a condition within individuals who are
sensitive and unaware of themselves being depressed. The diagnosis of depression in adolescents
is necessary. The study found that adolescent depression is under-recognized by general doctors.
Therefore, short and concise depressive screening tools are important to help doctors detect more
students with depression at university.

The Patient Health Questionnaire-9 (PHQ-9) is a self-administered assessment. It is easy to
understand for respondents. This tool is sensitive to the analysis and interpretation of results. It is also
a tool that has few questions. Moreover, the questionnaire was assessed for both mental and physical
symptoms [3]. Al-Busaidi et al. used PHQ-9 to screen for the prevalence of depressive symptoms
among university students in Oman [4]. Levis et al. found that PHQ-9 was sensitive and accurate for
screening to detect major depression [5].

Research related to prediction and analysis of the relevant factors of depression using data mining
techniques has been carried out. For example, Chang et al. used ontologies and Bayesian networks
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to build the terminology of depression and applied Bayesian networks to infer the probability of
depression [6]. Thanathamathee applied the Adaboost decision tree and feature selection technique
to predict adolescent depression. The results were useful for screening depression [7]. Ghafoor et al.
used the association rule and a frequent pattern tree to extract the results of depression [8]. Hou et al.
proposed many data mining techniques to predict depression in university students on the basis of
their reading habits. The results found that logistic regression achieved the highest prediction accuracy
at a lower relative error [9]. Li et al. employed a feature selection method called GreedyStepwise (GSW)
on the basis of correlation feature selection (CFS) and K-nearest neighbor (KNN) for mild depressive
detection [10]. Kim et al. proposed a simple unobtrusive sensing system to monitor the activities of
elderly people living alone. The results showed that the neural network effectively detected normal
and mild depression [11]. Gao et al. focused on machine learning to predict major depression disorder
utilizing features derived from magnetic resonance imaging (MRI) data [12]. Alzyoud et al. developed
a hybrid machine learning model to predict the level of depression for youth smokers [13]. They found
that the age factor is an important attribute for predicting depression. Blessie and George employed
naive Bayes and KNN to extract data patterns to prevent mental illness and assist in mental health
services [14]. Priya et al. applied different data mining techniques to predict anxiety, depression,
and stress [15]. Random forest was the highest identifier for stress, and naive Bayes was the highest
identifier for depression.

Imbalanced data problems are often encountered in the real world, especially medical data,
as there are many patients who are admitted to the hospital. However, the number of patients
diagnosed with disease is small compared to the total number of patients. When these data are used
to predict outcomes (by machine learning and data mining), the learning of the algorithm is affected.
It is assumed that the data are drawn from the same distribution as the training data, presenting
imbalanced data to the classifier and producing unacceptable results [16]. Sampling methods and
synthetic data generation provide a balanced class distribution by adding or removing samples. Naive
random oversampling allows generating new samples by randomly sampling the current samples of
the minority class with replacement. With regard to synthetic sampling, Chawla et al. proposed the
synthetic minority oversampling technique (SMOTE) [17]. SMOTE generated synthetic data for the
minority class by selecting some of the nearest minority neighbors using minority data and generated
synthetic minority data along with the lines between the minority data and the nearest minority
neighbors [18]. Borderline-SMOTE developed by Han et al. was used to generate synthetic data along
the line between the borderline samples of the decision regions [19]. Random undersampling was used
to undersample the data in the majority class by randomly picking samples with replacement. Tomek
proposed the Tomek links method to find all examples in the majority class closest to the minority
class. Then, these examples were removed from the majority class, thereby providing better borderline
decisions for the classifier [20]. Wilson introduced the edited nearest-neighbors method, which applied
a nearest-neighbor algorithm to delete the samples from the majority class that were near or around the
borderline of different classes [21]. Moreover, Tomek proposed a new repeated edited nearest-neighbor
method, extending the edited nearest-neighbor method by repeating it multiple times [22].

In predicting highly imbalanced disease data, Khalilia et al. presented a method to predict
disease risks from highly imbalanced data, using random forest and combined repeated, random
subsampling [16]. Bektas et al. applied feature selection and an oversampling method to predict
imbalanced cardiovascular diseases [23]. Sharma and Verbeke handled imbalanced Dutch depression
data by undersampling, oversampling, over-undersampling and random oversampling example
(ROSE) techniques, and then applied extreme gradient boosting to classify mental illness [24].

According to the literature review, the following research questions are proposed:

RQ1. Which questions in PHQ-9 were involved in the depression prediction performance of university
students who responded to this questionnaire? Is it necessary to use all 9 questions?

RQ2. Which oversampling or undersampling techniques should be used to achieve better depression
prediction performance of university students who responded to this questionnaire?
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RQ3.Is using only one dataset of depression enough to predict university student depression effectively?

This paper is organized as follows: Section 2 presents the proposed method; Section 3 summarizes
the performance evaluation; the deployment and discussion are presented in Section 4; lastly,
the conclusion is provided in Section 5.

2. Materials and Proposed Method

2.1. Feature Selection

Feature selection is a process of extracting the most relevant features from the dataset; it generates
a subset of the original feature set to improve predictive performance with less processing time. Some of
the original features that were not important are eliminated. In this paper, the filter approach method
was applied. This is a way to calculate the weight or the relative value of each feature by selecting only
the features that are important to keep.

2.1.1. Chi-Square

The chi-square (xZ) test is used for categorical features in a dataset. To calculate the chi-square
between each feature and the target in a descending order of weight values, the following equation can
be used [25]:

n 2
2y (Oi- E)
e= ) M
i=1
where O; represents the observed value(s) and E; represents the expected value(s).

2.1.2. Gini Index

The Gini index is a measure of the impurity of a dataset. A higher attribute weight denotes
greater relevance. Suppose S is a dataset and the samples have k different classes (C;, i =1, ..., k).
S is divided into k subsets (S;, i =1, ..., k), where S; is a sample set that belongs to class C;. s; is the
sample number of sets S;. Then, the Gini index of set S is described as follows [26]:

k
Gini(S) =1 - pr, @)
i=1
where Plz is the probability, estimated using s;/s. The minimum value of Gini(S) is 0, indicating that

the maximum useful information can be obtained.

2.1.3. Information Gain

Information gain is calculated using the entropy value, which is a measure of the difference or
dispersion of the data. If the data are very different, the entropy value is high; on the other hand, if the
data are very similar, the entropy value is low. Information gain is defined as follows [27]:

p(j,x)

I:Zj:p(j,x) logm, ©)
oplAp)
I= Z]: p(j)p(xlj)log 200’

where p(j, x) is the joint distribution of class j and feature x.
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2.2. Proposed Method

In this paper, we proposed seven major steps to handle the problem of imbalanced depression
data, as outlined in Figure 1.

Depression Data Set

Data Preprocessing

10 Fold-Cross Validation
I

Feature Selection

(Chi-square, Gini index, Information gainer Method) J

s s N
Depression Prediction Handling Imbalanced
Using Random Forest Depression Data Using
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|
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Figure 1. The proposed method to handle imbalanced depression data.

1. The depression data were divided into training data, for generating the prediction model for
depression, and unseen testing data, for evaluating the performance of the model for prediction.
For training data, 10-fold cross-validation was used to divide the data into 10 equally sized sets.
Each set was in turn used as the test set, while the random forest classifier was trained on the
other nine sets [28].

2. Chi-square, Gini index, and information gain were used to extract the principle feature items.
These techniques were selected to automatically identify meaningful smaller subsets of feature
items and still exhibit high performance in terms of the prediction of depression [29].

3.  The reduced feature items of training data were obtained by oversampling the minority class
using (1) random over-sampling, (2) SMOTE, and (3) Borderline-SMOTE. Then, the technique
that balanced the data with the best performance in terms of prediction was selected.

4. Moreover, the reduced feature items of training data were also undersampled by (1) Tomek links,
(2) edited nearest neighbors, and (3) repeated edited nearest neighbors. Then, the undersampling
technique with the best performance in terms of prediction was selected.

5. The best-performing oversampling and undersampling techniques from steps 3 and 4 were used
as a hybrid sampling approach. First, the random oversampling method was applied to generate
new samples by randomly sampling the current training data with replacement. The minority
class was oversampled, and a new balanced training dataset was created. Then, the Tomek links
undersampling method was applied to reduce the number of each class by removing unwanted
overlap between classes. This procedure was based on the assumption that random oversampling
with replacement in the minority class was used for balancing data. Then, Tomek links were used



Information 2020, 11, 519

to remove the majority data closest to real or synthetic data in the minority class. Thus, the majority
samples were deleted until a better boundary was provided for classifier decisions.

6. The new training data from step 5 were used to generate the depression prediction model with
the random forest classifier.

7. Then, the unseen testing data were used to evaluate the performance of the predicted

depression model.

3. Results and Performance Evaluation

3.1. Dataset Description

The data used in this paper were obtained from PHQ-9. It is a self-assessment questionnaire
developed from the Diagnostic and Statistical Manual of Mental Disorders fourth edition (DSM-1V) [3].
It assesses depression by asking questions related to symptoms over the past 2 weeks, as shown

in Table 1.

Table 1. Patient Health Questionnaire-9 depression assessment questions.

Question No.

During the Past 2 Weeks Including Today, How
Often Have You Had These Symptoms?

Q1
Q2

Q3

Q4
Q5

Q6
Q7

Q8

Q9

Little interest or pleasure in doing things

Feeling down, depressed, or hopeless

Trouble falling asleep, staying asleep, or sleeping too
much

Feeling tired or having little energy

Poor appetite or overeating

Feeling bad about yourself or that you are a failure or
have let yourself or your family down

Trouble concentrating on things, such as reading the
newspaper or watching television

Moving or speaking so slowly that other people could
have noticed. Alternatively, being so fidgety or
restless that you have been moving around a lot more
than usual

Thoughts that you would be better off dead or of
hurting yourself in some way

The scores for each question constitutes four levels: none (points = 0), some days or rarely
(points = 1), quite often (points = 2), and almost every day (points = 3). The total score of all questions
ranges from 0 to 27 points. There are 4 depression symptoms, and the detailed scores are described

in Table 2.

Table 2. PHQ-9 scores.

Depression Symptoms PHQ-9 Score N Proportion of Each Class (%)
No symptoms 0-6 821 53.04
Mild 7-12 567 36.63
Moderate 13-18 130 8.39
Severe 19-27 30 1.94

The data included 1549 examples collected from male and female undergraduate students of a
university in the south of Thailand [29]. There were four classes of depression symptoms: class 0
(no symptoms), class 1 (mild symptoms), class 2 (moderate symptoms), and class 3 (severe symptoms).
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3.2. Ethical Consideration

Permission for the study was obtained from the Ethics Committee of Walailak University, Thailand
(Protocol Number WUEC-18-060-01).

3.3. Assessment Matrices

In this paper, the performance of depression prediction was evaluated as a function of accuracy,
precision, and recall. The confusion matrix in Table 3 represents a summary of the prediction results
from the classification problem. The number of correct and incorrect predictions of each class are
summarized with count values. {P, N} represent the positive and negative testing data, and {Y, N}
represent the predicted results given by classifier for the positive and negative class [30].

Table 3. Confusion matrix.

Actual Positive (P) Actual Negative (N)
Predicted Positive (Y) TP (true positives) FP (false positives)
Predicted Negative (N) FN (false negatives) TN (true negatives)

According to Table 3, true positive (TP) is the number of correct predictions of a positive example,
true negative (TN) is the number of correct predictions of a negative example, false positive (FP) is
the number of incorrect predictions of a positive example, and false negative (FN) is the number of
incorrect predictions of a negative example. The evaluation metrics used to assess the depression
prediction from the datasets are defined below in Equations (4)—(7).

Accuracy:

TP+ TN @

TP+ FP+FN+ TN’

Precision: P

TP+ FP’ ©®)
Recall: P

TP+ FN’ ©)
F-measure:

(1 + ﬁz) X Recall X Precision
7)

B% X Recall + Precision

where $ is a coefficient used to adjust the relative importance of precision versus the recall, which is
usually set to 1. The F-measure is high when both recall and precision are high, indicating the goodness
of a learning algorithm for the interest class [28,31].

3.4. Results

In this paper, all sampling techniques were included in the imbalance-learn python package [32].
To achieve the best performance in terms of prediction, the proposed method was applied several times
to determine the best parameters for all sampling techniques with k_neighbors = 5. For the random
forest classifier, we set the number of random trees to 100, and the maximum depth for all trees was built
until it attained a value of 10.

The results achieved when using the random forest to classify the dataset with only seven feature
items [29] are shown in Table 4. Questions no. 1 and 9 were less important according to all three
statistical weight measures of the feature selection methods.
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Table 4. Feature selection using chi-Square, Gini index, and information gain.

Chi-Square Gini Index Information Gain

Feature Item Weight Feature Item Weight Feature Item Weight

Q8 1 Q4 1 Q4 1

Q6 0.932 Q8 0.978 Q6 0.926
Q4 0.891 Q6 0.955 Q7 0.907
Q7 0.881 Q7 0.95 Q8 0.852
Q5 0.474 Q2 0.715 Q2 0.714
Q2 0.437 Q3 0.601 Q3 0.597
Q3 0.227 Q5 0.508 Q5 0.534
Q1 0.158 Q1 0.247 Q1 0.372
Q9 0 Q9 0 Q9 0

Table 5 shows the performance of depression prediction without handling the imbalanced
techniques, where the accuracy achieved was 91.26%. It can be seen that the precision of the model in the
prediction of class 3 (severe depression) was only 57.14% and the recall was only 66.67%. Furthermore,
although the efficiency (precision) of this model could predict class 2 (moderate depression) with
84.62% accuracy, the prediction recall of this class was only 42.31%. This shows that this model could
not effectively predict class 2 and class 3. Therefore, in this paper, oversampling and undersampling
techniques were applied to handle the imbalanced data in order to improve the predictive performance
of the minority class. Then, the best oversampling and undersampling techniques were applied
together according to the research of Batista et al. [33], which indicated that, although oversampling
minority class examples can balance class distributions, some skewed class distributions are not solved,
which can lead to an overfitting classifier problem. Thus, the undersampling technique was applied as
a data-cleaning method. Instead of removing only the majority class examples, examples from both
minority and majority classes were also removed.

Table 5. Performance of prediction without using imbalanced techniques.

Technique Class Accuracy (%)  Precision (%) Recall (%) F-Measure (%)
Random forest 0 96.39% 97.56% 96.97%
without 1 91.96% 86.66% 94.69% 90.50%
. 2 e 84.62% 42.31% 56.41%
sampling
3 57.14% 66.67% 61.54%

The oversampling techniques used in this paper were random oversampling, SMOTE,
and Borderline-SMOTE. For each technique, Table 6 presents the results in terms of accuracy, precision,
and recall. The results indicate that random oversampling was the best oversampling technique for
this data, with classes 2 and 3 predicted more efficiently in terms of precision and recall compared to
other oversampling methods with an accuracy of 93.53%.

Moreover, we used undersampling techniques to balance the class distribution via elimination of
the majority class examples. The undersampling techniques used were Tomek links, edited nearest
neighbors, and repeated edited nearest neighbors. Table 7 shows the performance in terms of prediction
using all three techniques. The results show that Tomek links produced predictions with the best
accuracy of 91.59%. Therefore, we applied random oversampling together with the Tomek links
technique to improve the efficiency of the depression prediction for both the majority class and the
minority class. Table 8 shows the number of samples after using the combined sampling techniques,
displaying almost the same or balanced fractions.
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Table 6. Performance in terms of prediction with oversampling techniques used to handle imbalanced
data. SMOTE, synthetic minority oversampling technique.

Technique Class Accuracy (%)  Precision (%) Recall (%) F-Measure (%)
0 97.53% 98.17% 97.85%
Random forest with 1 o 88.00% 96.76% 92.17%
random oversampling 2 93.53% 86.08% 73.76% 79.45%
3 83.33% 83.33% 83.33%
0 97.53% 96.34% 96.93%
Random Forest 1 92 56% 90.43% 92.04% 91.23%
with SMOTE 2 ’ 76.00% 73.08% 74.51%
3 71.43% 83.33% 76.92%
0 97.50% 95.12% 96.30%
Random Forest with 1 91.59% 87.60% 93.81% 90.60%
Borderline-SMOTE 2 ’ 77.27% 65.38% 70.83%
3 66.67% 66.67% 66.67%

Table 7. Performance in terms of prediction with undersampling techniques used to handle
imbalanced data.

Technique Class  Accuracy (%) Precision (%) Recall (%) F-Measure (%)
0 96.41% 98.17% 97.28%
Random forest with 1 91.59% 87.70% 94.69% 91.06%
Tomek links 2 ’ 84.62% 42.31% 56.41%
3 57.14% 66.67% 61.54%
0 94.12% 97.56% 95.81%
Random forest with edited 1 o 81.75% 91.15% 86.19%
nearest neighbors 2 88.35% 100.00% 19.23% 32.26%
3 71.43% 83.33% 76.92%
0 93.02% 97.56% 95.24%
Random forest with repeated 1 87,700 81.60% 90.27% 85.72%
edited nearest neighbors 2 R 100.00% 15.38% 26.66%
3 62.50% 83.33% 71.43%

Table 8. The number of samples after using hybrid sampling.

Depression Symptom Number of Data Fraction (%)
No symptoms 658 25.02%
Mild 658 25.02%
Moderate 658 25.02%
Severe 656 24.94%

To clarify the performance of the proposed prediction, a comparative study with random
oversampling and the Tomek links technique is summarized in Table 9. The results show that our
proposed method achieved the best performance in terms of depression prediction as a function of
accuracy, precision, recall, and F-measure evaluation indicators.
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Table 9. Performance of our hybrid sampling compared with random oversampling and Tomek
links techniques.

Technique Class Accuracy (%)  Precision (%) Recall (%) F-Measure (%)
0 97.53% 98.17% 97.85%
Random forest with 1 o 88.00% 96.76% 92.17%
random oversampling 2 93.53% 86.08% 73.76% 79.45%
3 83.33% 83.33% 83.33%
0 96.41% 98.17% 97.28%
Random forest with 1 91.59% 87.70% 94.69% 91.06%
Tomek links 2 ’ 84.62% 42.31% 56.41%
3 57.14% 66.67% 61.54%
Random forest 0 98.17% 98.17% 98.17%
combined with random 1 94.17% 95.58% 97.35% 96.46%
oversampling and 2 ) 87.62% 89.47% 88.54%
Tomek links 3 83.33% 83.33% 83.33%

In addition, a significant independent t-test was applied to these measures, i.e., precision,
recall, and F-measure, to evaluate and confirm the statistical significance of our performance
results. The different performance results were assumed as statistically significant when p < 0.05.
The evaluation indicates that our proposed method performed significantly better than random forest
with random oversampling and random forest with Tomek links in terms of precision and F-measure,
as shown in Table 10.

Table 10. Significance of precision, recall, and F-measure results using the proposed method and other
sampling techniques.

p-Value (Proposed Method vs. Other Sampling Techniques

Technique
Precision Recall F-Measure
Random forest with 0.0029 0.1117 0.0090
random oversampling
Random forest with 0.0045 0.0737 0.0310

Tomek links

4. Deployment and Discussion
4.1. Research Questions and Proposed Solutions

4.1.1. RQ1. Which Questions in PHQ-9 Were Involved in the Depression Prediction Performance of
University Students Who Responded to this Questionnaire? Is it Necessary to Use all 9 Questions?

We applied feature selection including chi-square, Gini index, and information gain [29] to identify
significant features. As shown in Table 4, only seven important questions were found to influence the
prediction of university student depression. Furthermore, the question with the least relevance to the
prediction of depression was Q9 (weight of 0), consistent with Lotrakul et al.’s research showing that
the least endorsed question item was thoughts of suicide (Q9) [34].

4.1.2. RQ2. Which Oversampling or Undersampling Techniques Should Be Used to Achieve Better
Depression Prediction Performance of University Students Who Responded to This Questionnaire?

First, our research was conducted using oversampling. It was found that random oversampling
was an effective technique for predicting the depression data, achieving an accuracy of 93.53%,
as shown in Table 6. Next, we applied undersampling techniques to our dataset. The results in Table 7
indicate that the Tomek links technique produced the best prediction among other undersampling
methods with an accuracy of 91.59%. However, the Tomek links technique was less effective in
predicting class 2 and 3 depression, producing lower precision and recall values than the random
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oversampling technique. Although the random oversampling technique showed good predictive
performance, using only random oversampling for minority classes encountered problems of a skewed
class distribution, leading to overfitting [35]. For this reason, our research applied a combination of
random oversampling and Tomek links to handle our imbalanced depression data. Thus, Tomek links
were also applied to remove the majority class examples. The proposed method showed an improved
predictive performance for all classes, as shown in Tables 9 and 10. When considering the p-value,
it was found that our model showed the best performance in terms of precision and f-measure among
other sampling techniques.

4.1.3. RQ3. Is Using Only One Dataset of Depression Enough to Predict University Student Depression
Effectively?

The dataset in this paper included 1549 examples to predict university student depression.
Furthermore, 165 examples were collected from students in accounting courses over four years,
unrelated to the original dataset, to test the performance of the model. The details of the examples are
shown in Table 11.

Table 11. Details of new unseen data for external validity.

Depression Symptom Number of Data Fraction (%)
No symptoms 113 68.48%
Mild 42 25.45%
Moderate 9 5.45%
Severe 1 0.62%

The performance in terms of prediction is shown in Table 12. It can be seen that our proposed
method was capable of predicting unseen depression data with an accuracy of up to 93.33%.
The precision and recall remained satisfactory, and this model could also precisely predict severe
depression. It can be concluded that our proposed method is effective in correctly predicting each class.

Table 12. Performance in terms of prediction of unseen new data for external validity.

Accuracy 93.33%
Actual 0 Actual 1 Actual 2 Actual 3 Precision (%)
Pred.0 112 7 0 0 94.12%
Pred.1 1 34 2 0 91.90%
Pred.2 0 1 7 0 87.50%
Pred.3 0 0 0 1 100%
Recall (%) 99.12% 80.95% 77.78% 100%

Through the feature selection methods, we found that feature items Q8, Q4, Q6, and Q7 were the
most important items in predicting depression. These features are related to cognition and physical
change [33] when negative self-consciousness affects physical expression. It was found that physical
symptom change always appears at the severe depression level [36]. When delving into items Q8, Q4,
Q6, and Q7, it was evident that severe depression had a score level of 3 (almost every day) for these
four items. It was seen that these four items must be considered or given special importance when
screening for and predicting depression in university students. Moreover, the questions identified
were consistent with the research of Lotrakul et al. [34], which showed that the most important item
affecting depression was related to low energy, i.e., Q4 and Q8 in our paper. This is also consistent
with the results from [25], whereby depressed patients mostly emphasized somatic symptoms and
emotional symptoms, corresponding to Q6 and Q7 in our research.

Predicting university student depression is very important and must be the first step of primary
care. Empirical research was conducted using data collected from the university in the south of
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Thailand. The results show that our proposed method can be applied to correct identification of
depression in a screening process. It can also reduce the time consumption and increase the accuracy
of the assessment, while allowing practitioners to choose appropriate depression assessments that are
sensitive and effective for screening of university students.

5. Conclusions

Sampling techniques are effective methods for resolving the class imbalance problem. The concept
of the proposed method involved applying random oversampling to minority class examples and Tomek
links to majority class examples, thereby removing unwanted overlap between classes. The proposed
method generated a relatively balanced dataset, without losing significant information. This balanced
dataset was classified using random forest. The predictive depression performance of the proposed
method was evaluated in terms of accuracy, precision, recall, and F-measure. The experimental
results show that our proposed method outperformed the individual sampling techniques. Moreover,
our proposed method can be used for effectively predicting university student depression, which is the
primary step in screening for depression symptoms.

The limitation of this work is related to the depression prediction model using the PHQ-9
questionnaire. This research involved predicting depression among university students, discovering
that only seven questions were important in depression prediction. Another dataset, e.g., involving
patients of working age or the elderly, may use different prediction models for depression. Therefore,
this model is only suitable for university students using PHQ-9.

Future studies will be carried out using other assessment methods; we also intend to use additional
information provided by university students’ social media posts to help improve the performance of
depression prediction.
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