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Abstract: To overcome the data sparseness in word embedding trained in low-resource languages, we
propose a punctuation and parallel corpus based word embedding model. In particular, we generate
the global word-pair co-occurrence matrix with the punctuation-based distance attenuation function,
and integrate it with the intermediate word vectors generated from the small-scale bilingual parallel
corpus to train word embedding. Experimental results show that compared with several widely
used baseline models such as GloVe and Word2vec, our model improves the performance of word
embedding for low-resource language significantly. Trained on the restricted-scale English-Chinese
corpus, our model has improved by 0.71 percentage points in the word analogy task, and achieved
the best results in all of the word similarity tasks.

Keywords: word embedding; word alignment probability; distance attenuation function;
Word2vec; GloVe

1. Introduction

Recently, textual data are mainly represented in the vector form: one-hot representation [1] and
distributed representation [2]. One-hot representation is a very simple way of counting the total
number of the whole words appeared in the text as N. Then each word is represented as a vector
of length N, with an element value of “1” corresponding to the target word ID and “0” for the rest.
Obviously, there is little syntactic or semantic information contained in vectors. At the same time,
the sparsity and high-dimension of data lead to huge computing overhead in the processing of massive
data. Distributed representation maps the attribute features of words into a set of consecutive dense
real vectors discretely, which commonly referred as word embedding. Word embedding is easier for
computer recognition, and is usually used in conjunction with distribution theory (words with the
same context will have the same or similar semantic relationship) for semantic relation mining, since it
contains some grammar and semantic information of the vocabulary. Therefore, word embedding is
widely utilized in research fields such as data mining, machine translation, automatic question and
answer, and information extraction.

At present, there are two types of word embedding models based on distributed theory, one is
based on the method of co-occurring statistical information of word pairs [3], and the other is based
on the method of neural network language model [4]. Methods based on word-pair co-occurrence
information could not avoid the problems of huge vector dimensions and severe data sparsity. Therefore,
researchers proposed several ways to reduce the dimension of the vector space and generate dense
low-dimensional continuous word vectors, such as LSA [5], SVD [6] or LDA [7]. Furthermore, GloVe [8]
captured semantic analogy information according to the co-occurrence probability of word pairs,
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and presented the model based on global matrix decomposition. Meanwhile, there is a more widely
used word embedding model derived from the neural network model, which is first proposed by
Bengio et al. [9] in 2003. Due to the low-efficiency training process of neural network language model
(NNLM), Mikolov et al. [10] proposed Word2vec, an efficient open-source word embedding tool,
by simplified the N-gram neural network model.

Both Word2vec and GloVe can satisfy the basic needs of simple tasks in natural language
processing, such as word analogy and word similarity tasks, but perform poorly in the tasks that are
oriented to special conditions and fields. There are two ways to improve the performance of word
embedding. One is to extract and combine more features from the context, such as morphological
features [11], dependency structures [12], knowledge base [13], semantic relations [14]. The other
is to combine the language model of large-scale corpus trained from the neural network, such as
ELMo [15], GPT [16], Bert [17], XLM [18]. Both the two ways improve the semantic expression of word
embedding significantly, yet they need much more extra-resources, including but not limited to the
corpus, encyclopedia dictionaries, semantic networks, morphology and dependency syntax analysis
tools, and GPU servers. Unfortunately, none of these resources is easily available that it limits the
improvement of low-resource language word embedding.

In this paper, we optimize the word embedding model for low-resource languages based on the
intra-sentence punctuations and an easy-to-obtain bilingual parallel corpus. We first generate the global
word-pair co-occurrence matrix, as well as reconstruct GloVe, according to the punctuation-based
distance attenuation that is based on the features of punctuation and relative distance. Then, get the
intermediate vectors of target language from the word alignment probability and intermediate vectors
of parallel language trained with GIZA++ and reconstructed GloVe separately on the bilingual parallel
corpus. Finally, constructing the low-resource word embedding model, which is constructed with the
global word-pair co-occurrence matrix, the intermediate vectors of target language and the models
form Word2vec. Experimental results show that our model effectively improves the word embedding
performance for low-resource languages with limited additional resources.

The rest of this paper is organized as follows. Section 2 is the related works, and Section 3 details
the specific theories and processes involved in our model. In Section 4, we evaluate and analyze the
performance of the word embedding model with two different tasks. Finally, Section 5 is about the
conclusion and further improvements for this work.

2. Related Works

2.1. Word Embeddings for Low-Resource Languages

Generally speaking, the performance of the word embedding model is mainly determined by
the following aspects, including the scale of training corpus, the mining of inner contextual semantic
information and the usage of external knowledge. Recently, the optimizations for low-resource
languages are usually carried out from the latter two aspects, because of the inherent shortage of
resources limits the effectiveness and practicability of most methods.

Chao Jiang et al. [19] argued that the zero entries in the word co-occurrence matrix constructed
from low-scale language could provide valuable information for training word embedding, especially
when the co-occurrence matrix is very sparse. They proposed a positive-unlabeled learning approach
to factorize the co-occurrence matrix and improved the performance compared with GloVe.

Gemma et al. [20] introduced a fast and efficient word embedding model with the weighted graph
from word association norms (WAN). Although this model works well for the low-resource language,
building WAN is still a difficult and time-consuming task.

Mikel et al. [21] summarized and proposed a robust self-learning method based on the cross-lingual
corpus. First, pre-training the monolingual word embedding for each language with frequently used
models. Then mapping them into a public space for adversarial learning to optimize the low-resource
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language with fully trained vectors from rich-resource language. In addition, seed dictionaries can
help further improve the performance of low-resource language word embedding.

In this paper, we improve the word embedding model by introducing both inner and external
knowledge. Internally, we focus on the impact of punctuation and relative distance on semantic
relevance. Externally, we introduce the bilingual parallel corpus for semantic expansion.

2.2. Applications of Punctuations in Natual Language Processing

Punctuations have important applications in natural language processing. They can be used
directly for sentence segmentation in tasks related to text processing and play a more critical role in
punctuation prediction and text analysis tasks.

Punctuation prediction refers to the recovery or prediction of punctuation marks in a text
generation task, usually closely related to sentence boundary detection. As in automatic speech
recognition, lack of punctuation can lead to ambiguity problems and confuses both the human reading
comprehension and subsequent natural language processing applications (e.g., semantic analysis,
automated question and answer, machine translation, etc.). Currently, punctuation prediction methods
mainly focus on deep and convolutional neural network models [22] combined with prosodic, acoustic
and, lexical features.

Punctuation-aware decoding that works with parsing models can also improve unsupervised
dependency parsing [23]. In sentiment analysis, punctuations are important for sentence segmentation
and emotional tone judgment, especially in short web text. First, negative words combined with the
subsequent punctuation can add negative labels to words between them when dealing with negative
sentences [24]. In addition, punctuations such as “!” and “?” can help determine the mood intensity of
the current sentence [25].

However, most of the current word embedding models pay little attention to punctuations and
even filter out punctuations during the data pre-processing phase. Because there are large enough
corpora for training, this defect does not affect high-resource languages, but causes serious waste
of semantic information for low-resource languages. Therefore, we focus on the punctuation-based
semantic balance mechanism to optimize the word embedding model for low-resource languages.

2.3. GIZA++Word Alignment

Word alignment is a key step in the statistical machine translation system, which mainly implements
word correspondence between source and target languages, and supports the follow-up processes
such as phrase extraction, phrase table construction and decoding.

Relatively speaking, the small-scale parallel corpus is an easy-to-obtain resource for resource-
scarce languages. So in this paper, we align the word pairs and acquire the word alignment probability
with GIZA++ [26], which is an extension of GIZA (an integral part of the statistical machine translation
toolkit EGYPT). The aligned parallel words are consistent in semantics with the source word according
to the theory of IBM Model 3. Therefore, we regard the aligned parallel words as the semantic extension
context of source word, and introduce them into the word embedding training process together.

2.4. Word-Pair Co-Occurrence Matrix

The general construction of a word-pair co-occurrence matrix is as follows:
Given a certain size of training corpus C, and construct the corresponding vocabulary V. N is the

size of table V, L is the size of sliding context window. The window orientation is bilateral (left, right or
bilateral). If wi∈[1,N] ∈ V, Context(wi) =

{
wi−L, . . . , wi−1, wi+1, . . . , wi+L

}
. Element Xi j in the word-pair

co-occurrence matrix XN×N represents the co-occurrence frequency between the key word wi and its
contextual words w j ∈ Context(wi) in the global corpus C.

The word-pair co-occurrence matrix is a basic but important feature function of statistic-based
word vector models. In general, the original matrix has large-scale dimensions and sparse data,
which obviously affects the computational efficiency. In order to reduce the matrix dimension and
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generate continuous real word vectors, statistical models based on the singular value decomposition
(SVD) theory had been widely used until GloVe was proposed.

For a word wi and its contextual words w j and wk, Pi j = Xi j/Xi represents the probability that
w j appears in the context of wi throughout the corpus C when Xi =

∑
n∈[1,N]

Xin. As we can see, when

wi is related to w j but unrelated to wk, Pi j/Pik >> 1, on the contrary, Pik/Pi j << 1, and if wi is related
or unrelated to both w j and wk, Pi j/Pik ≈ 1. From these correspondences, we can train out word
vectors from the analogy between the semantic relationship of words and the ratio of word-pair
co-occurrence probability.

Therefore, we can analogize the relationship between semantic relation of words and the proportion
of word-pair co-occurrence probability, and then present the approximate relationship between word
vectors and co-occurrence matrix. In addition, GloVe uses a random gradient descent algorithm to
simplify the training process, further improving the computational efficiency. Formula (1) is the loss
function and Formula (2) is the weight function.

J =
V∑

i, j=1

f
(
Xi j

)(
wT

i w j + bi + b j − log
(
Xi j

))2
(1)

f (x) =
{

(x/xmax)
α, i f x < xmax

1, otherwise
(2)

The word-pair co-occurrence matrix in GloVe is a global statistical probability matrix extracted
from the monolingual corpus, which is important and easily available for resource-scarce languages.

2.5. Neural Network Word Embedding Models

Word2vec contains two word embedding models, as shown in Figure 1. The continuous
bag-of-words model (CBOW) aims to predict the current word from contextual words, while Skip-gram
predicts the contextual words from current word. In order to improve training efficiency, there are two
different accelerate algorithms, namely hierarchical soft-max and negative samples (NEG). Essentially,
hierarchical soft-max algorithm is a continuous classification problem based on Huffman theory.
It optimizes the traditional soft-max algorithm and avoids the all-words probability calculation for
each iteration. The training efficiency is greatly improved, and the time complexity is reduced
from O(N) to O

(
log2 N

)
. NEG is a simplified algorithm of noise contrastive estimation (NCE) [27].

It constructs the training set by weighted negative sampling and balances the distribution of words by
subsampling. In general, compared with hierarchical soft-max, NEG is faster because it avoids the
circular classification along the inner node path.
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Word2vec guarantees the performance of the model by training as much corpus as possible in
the shortest possible time. It simplifies the models and algorithms by multiple sampling as much as
possible to increase the training efficiency and evades the impact of word relative distance on semantic
relevance. Therefore, it is not suitable well for resource-scare languages, and we need to refactor its
models and algorithms.

3. Word Embedding Model Based on SOP and Parallel Corpus

In this section, we present a word embedding model based on semantic obstructing
punctuation (SOP) and parallel corpus, which integrates with the punctuation-based semantic balance
function, relative distance feature, bilingual alignment information, word-pair co-occurrence matrix,
and reconstructed Word2vec model together. Figure 2 shows the training process of this model.
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The whole flow diagram is summarized into three main stages that marked with shaded boxes:

1. Construct the global word-pair co-occurrence matrix. We integrate with the global vocabulary
frequency information, the punctuation-based semantic balance function, and relative distance
feature to generate the global word-pair co-occurrence matrix. We also adjust the GloVe model
with this re-constructed matrix, and use the optimized model to generate the intermediate vectors
in the next stage.

2. Generate the bi-lingual based intermediate word embedding. We obtain the word alignment
probability from bilingual parallel corpus CA:B trained with Moses and GIZA++, and get the
intermediate vectors of language B trained with the reconstructed model mentioned in Stage 1.
Then we combine the alignment probability with the intermediate vectors B to figure out the
intermediate vectors A.

3. Refactor the word embedding model. We refer to Word2vec and build the final word embedding
model, which combined with the word-pair co-occurrence matrix generated from Stage 1 and the
intermediate vectors A from Stage 2. Finally, calculating the word vectors of target language A by
using this model.
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3.1. Construct the Global Word-Pair Co-Occurrence Matrix

The re-constructed word-pair co-occurrence matrix proposed in this paper is calculated with the
SOP-based distance attenuation function.

The distance attenuation function is used to determine the relative position feature weight of
a word pair in the context window. This weight reflects the semantic relevance between word pairs.
Intuitively, the further the distance between words in a sentence, the lower the semantic relationship
between them. At present, there are two representative distance attenuation functions, such as
DecayGloVe

(
wi, w j

)
=

(
L−

∣∣∣i− j
∣∣∣+ 1

)
/L in Word2vec and DecayWord2vec

(
wi, w j

)
= 1/

∣∣∣i− j
∣∣∣ in GloVe,

where L is the context window size and
∣∣∣i− j

∣∣∣ is the absolute distance between wi and w j. However,
due to the grammatical structure and punctuation marks used in the sentences, the simple distance
attenuation function does not match the actual semantic relationship satisfactorily. Figure 3 shows
the dependency analysis of a sentence, in which the directed arc connection path between the two
words indicates the semantic correlation of this word pair. As we can see, the semantic relation of
{answering, questions} is closer than {your, questions}, while the former has a longer word spacing
than the latter. Meanwhile, {I, questions} is also closer than {questions, while} because of the semantic
interrupt caused by punctuation “,”. Both of them show that the simple distance attenuation function
used in GloVe or Word2vec does not work well in actual contexts. A direct and effective strategy is to
replace the absolute distance with the span in the dependency tree between word pairs. Unfortunately,
this approach requires corresponding dependency treebanks or dependency analysis tools, which is
time-consuming and labor-intensive for low-resource languages.
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In this paper, we define the punctuations within the sentence as semantic obstructing punctuation
(SOP) which destroys the contextual semantic coherence of a sentence, such as “,”. In order to get the
preliminary assessment of the impact of SOP on semantic information, we count the distribution of
punctuation in the novel Don Quixote, and list the results in Table 1. Divide the punctuations into
two classifications based on whether they strongly interrupt the semantic continuity of the context:
SOP refers to those interrupted and N-SOP refers to the others. Sentences include SOP account for
88.02% of the whole novel, as well as, SOP accounts for 98.45% of the total number of punctuation
marks and 12.02% of the total number of words. It can be seen that SOP strongly participates in the
representation of sentences, so it is necessary to introduce the punctuation mechanism into the training
process of word embedding.

Table 1. Distribution of punctuation marks in novel: Don Quixote.
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include SOP account for 88.02% of the whole novel, as well as, SOP accounts for 98.45% of the total 
number of punctuation marks and 12.02% of the total number of words. It can be seen that SOP 
strongly participates in the representation of sentences, so it is necessary to introduce the punctuation 
mechanism into the training process of word embedding. 

Table 1. Distribution of punctuation marks in novel: Don Quixote. 

  Number Proportion 
Word 455,725  

N-SOP 
. ! ?   

8760  1.92% 
7159 652 949   

SOP 
, : ; ‘ “ 

54,774 98.45% 12.02% 
35,073 339 5906 3295 10,161 

Total Sentence 9240  
Sentence with SOP 8133 88.02% 

According to the researches above, we summarize two hypotheses: 
1. The semantic relationship decreases as the distance increases between words in the sentence. 
2. There is no semantic relationship between the words distributed on both sides of SOP.  
Constructing the SOP-based distance attenuation function: 

According to the researches above, we summarize two hypotheses:
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1. The semantic relationship decreases as the distance increases between words in the sentence.
2. There is no semantic relationship between the words distributed on both sides of SOP.
Constructing the SOP-based distance attenuation function:

Decay
(
wi, w j

)
=

 1/
∣∣∣i− j

∣∣∣, SOP <
[
wi, w j

]
1/L, SOP ∈

[
wi, w j

] (3)

When there is no SOP exists between words
(
wi, w j

)
in the sentence, the attenuation coefficient

is the reciprocal of the absolute distance. Otherwise, for data smoothing, we use the reciprocal of
the maximum window size instead of 0. Taking Figure 1 as an example, setting the context window
length L = 4. When the keyword is “questions”, the corresponded context is {“I”, “am”, “answering”,
“your”, “,”, “while”, “you”, “are”}. According to the original distance attenuation function in GloVe,
the distance weights of the word pair (answering, questions) and (while, questions) are both 1/2, which
is obviously not correspond to the semantic relationship. Because the comma symbol interrupts the
relationship between the word pair (while, questions). Therefore, we adjust the distance weight of
word pair (while, questions) by 1/4 according to Formula (3), which is obviously consistent with the
real semantic relationship better.

Traverse the whole text and construct the word-pair co-occurrence matrix based on Formula (3)
and (4), where xi j represents the number of times wi and w j appeared together in a sliding window.

Xi j =
∑
L⊂C

Decay
(
wi, w j

)
xi j (4)

3.2. Generate the Bi-Lingual Based Intermediate Word Embedding

Compared with the dependency treebank and semantic network, small-scale bilingual parallel
corpus is a relatively easy-obtained resource, because of the lower linguistic expertise requirements for
annotating staff. Therefore, we can optimize the performance of word embedding for low-resource
language with the potential semantic information extracted from the bilingual corpus. In this paper,
we first clean and normalize the bilingual parallel corpus with Moses and then get the word alignment
information trained with GIZA++.

Defining CA is the monolingual corpus of language A, and CA:B is the parallel corpus of languages
A and B. We use GIZA++ to align CA:B and extract the bidirectional word alignment file FA→B, and sort
out the word alignment relationship Pwi =

{
wi

∣∣∣wi0, pi0; wi1, pi1; . . . ; wim, pim
}
, where word wi ∈ A,

word wim ∈ B and is aligned to A, pim is the alignment probability between word wi and wim.
We can map the sematic information from language B to language A based on the word alignment

probability Pwi . Replacing the original word-pair co-occurrence matrix in GloVe with the adjusted
one mentioned in Section 3.1 to reconstruct the original GloVe model, and training the intermediate
word vectors of language B from the parallel corpus CA:B. And then generating the intermediate word
vectors of language A with the alignment probability and the word-alignment- based vector mapping
function shown in Formula (5), where v′i represents the vector of word wi and vim represents the vector
of word wim.

v′i =
∑

m vimpim∑
m pim

(5)

3.3. Refactor the Word Embedding Model

The final word embedding model is combined with the results of the two processes detailed
above: the global word-pair co-occurrence matrix constructed by the SOP-based distance attenuation
function in Section 3.1, and the intermediate word vectors of language A generated from the word
alignment file in Section 3.2. Taking CBOW model and hierarchical soft-max algorithm as examples in
Figure 4, the intermediate vectors A are used as the initial values of language A for corpus CA in the
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Input Layer. Then, combing the Formulas (2), (3) and (5) to construct the contextual representation
function of word vi in the Project Layer, i.e.,

vi =
1
2
(

∑
j∈L v′jXi j∑

j∈L Xi j
+ v′i )

where the element Xi j in word-pair co-occurrence matrix is used as the association weight between
words vi and v j in the same context window.
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Finally, taking CBOW and hierarchical soft-max as an example, we used the gradient descent
algorithm to calculate and iteratively update the word vectors of language A until the gradient
converges and get the final result. In addition, we remove the random sampling process used in the
Word2vec, because it limits the semantic extraction for low-resource language despite improving the
operating efficiency for rich-resource language.

4. Experiments and Results

4.1. Corpus, Model and Parameter Settings

In this paper, we take an English-Chinese parallel corpus as the training set, which is consisted
with the news of official UN documents, and oral conversations of English learning websites and
movie subtitles shared by AI Challenger 2018. To simulate low-resource text, we randomly sample 1M
couples of sentences with the sentence length limited to 15 words. We tokenize the Chinese corpus
with HIT LTP [28], and extract the word alignment probability with GIZA++.

In order to verify the contributions of the SOP-based distance attenuation function, word-pair
co-occurrence matrix and word alignment probability in this paper, we take Word2vec and GloVe
as the baseline standard, and construct other three word embedding models: “G+SOP+Distance”,
“W+SOP+Distance”, “W+SOP+Distance+Align”. The first model is GloVe with SOP-based distance
attenuation function. Compared with Word2vec with no attenuation function used, “W+SOP+ Distance”
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is combined with SOP-based word-pair co-occurrence matrix only, while “W+SOP+ Distance+Align”
is combined with all of the features.

Refer to the prior knowledge in other papers [8], for all of our experiments, we set the word vector
dimension as 200, minimum word frequency as 0 or 5, bilateral context, and the slide window size
is 5, 8 or 10. For GloVe and “G+SOP+Distance”, we set χmax = 100, α = 3/4, and choose the initial
learning rate of 0.05. For Word2vec, “W+SOP+Distance” and “W+SOP+Distance+ Align”, we train
the word vectors by use of CBOW and hierarchical soft-max, since they work better when canceling
the multiple sampling for small-scale corpus.

4.2. Evaluation Tasks

Evaluation on this work is word analogy task described in Mikolov et al. [29]. The structure of the
questions in the task is described as follows: A is to B as C is to _. The data set consists of a semantic
subset and a syntactic subset. The answer of this question is predicted by cosine similarity calculation,
and will be the only correct result when it is consistent with the word provided from the data set.
We also evaluate our models with Pearson product-moment correlation coefficient (PCC) on variety of
word similarity data sets listed in Table 2: RG [30], MC [31] (subset of RG), WordSim [32], SCWS [33]
(with part-of-speech tagging and sentential contexts), RW [34] (for rare words).

Table 2. Word similarity data sets.

Data Set WS353 MC RG SCWS RW

Word Pairs 353 30 65 2003 2034
Subjects 38 51

Human Judgements 10 10 10

4.3. Results

We present results of word analogy task for all of the 5 models with 2 minimum Min-Count
frequencies and 3 window sizes in Table 3. Model “W+SOP+Distance+Align” achieves a total
accuracy of 21.30%, better than other models, with window size 5 and Min-Count 5. Meanwhile,
both “G+SOP+Distance” and “W+SOP+Distance” have a slight improvement in most cases compared
with their original models. The results show significantly that SOP-based distance attenuation function
and word alignment probability can effectively improve the performance of word embedding on the
small-scale corpus.

Table 3. Results of word analogy task.

Models Win-Size
Accuracy (%)

Min-Count 0 Min-Count 5

Semantic Syntactic Total Semantic Syntactic Total

GloVe

5

4.12 4.13 4.12 12.82 7.19 8.29
G+SOP+Distance 3.92 4.41 4.06 13.25 7.10 8.30

Word2vec 5.38 20.37 14.49 15.02 21.94 20.59
W+SOP+Distance 5.64 20.08 14.75 13.97 22.29 20.67

W+SOP+Distance+Align 6.47 21.09 15.03 15.66 22.67 21.30

GloVe

8

4.71 5.73 5.33 14.68 9.23 10.30
G+SOP+Distance 4.43 6.02 5.40 14.22 9.62 10.52

Word2vec 5.98 18.31 13.48 14.81 19.47 18.56
W+SOP+Distance 6.58 18.29 13.70 15.07 20.61 19.53

W+SOP+Distance+Align 6.65 19.17 14.27 15.49 21.12 20.02

GloVe

10

5.13 5.48 5.34 16.42 9.53 10.87
G+SOP+Distance 4.86 5.78 5.42 14.94 10.30 11.20

Word2vec 6.76 17.24 13.13 16.38 18.13 17.79
W+SOP+Distance 6.10 18.28 13.51 15.83 19.02 18.40

W+SOP+Distance+Align 6.35 18.20 13.56 14.05 20.10 18.92
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Table 4 shows the results of word similarity tasks. For each model, we get the word vectors with 6
different values of window size and Min-Count, and obtain 6 groups of cosine similarity scores for
each word pairs in a certain word similarity data set. Computing the PCC between human judgements
and 6 groups of scores separately. Then the item in the table is the average of 6 different PCC values
corresponded to each model. As we can see, “W+SOP+Distance+Align” performs overall optimum
compared with Word2vec, but lost to GloVe and “G+SOP+Distance” on MC and RG. Considering the
number of word pairs in MC and RG in Table 2, the consistency of the lexical distribution between
the training corpus and the task sets may be too low since the number of samples is too small, which
affects the model performance evaluation. In addition, “W+SOP+Distance +Align” is optimal when
“W+SOP+Distance” drags the hind legs, which indicates that the word alignment probability can bring
more word similarity information for word embedding.

Table 4. Results of word similarity task.

Models WS353 MC RG SCWS RW

GloVe 0.305479 0.5839 0.413497 0.512328 0.248499
G+SOP+Distance 0.303055 0.584324 0.395285 0.513127 0.252304

Word2vec 0.366863 0.377726 0.27572 0.563772 0.3066
W+SOP+Distance 0.397485 0.489595 0.326235 0.560381 0.272034

W+SOP+Distance+Align 0.417886 0.578809 0.397712 0.568058 0.316167

5. Conclusions and Future Works

In this paper, we present a low-resource oriented word embedding model learned from Word2vec
and GloVe. We focus on the impacts of the punctuation and relative distance on the word-pair
co-occurrence matrix, as well as the word alignment information trained from the bilingual parallel
corpus with GIZA++. Then, refer to the framework of Word2vec, we integrate the co-occurrence matrix
and the word alignment information to reconstruct the final word embedding model. The results
evaluated on a small scale of 1 million parallel corpus show that both the SOP-based distance attenuation
function and bilingual word alignment information can raise the performance of Word2vec and GloVe
effectively. For future works, we will build the relevant test sets for low-resource languages and verify
the actual effectiveness of our model in other languages. In addition, considering the cross-lingual
word embedding based on adversarial learning can map the semantic information from rich–source
language to low-resource language, we will try to improve the performance of our model by replacing
word alignment information with cross-lingual transfer knowledge.
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