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Abstract: When the National Centre for Human Language Technology (NCHLT) Speech corpus
was released, it created various opportunities for speech technology development in the 11 official,
but critically under-resourced, languages of South Africa. Since then, the substantial improvements
in acoustic modeling that deep architectures achieved for well-resourced languages ushered in a new
data requirement: their development requires hundreds of hours of speech. A suitable strategy
for the enlargement of speech resources for the South African languages is therefore required. The first
possibility was to look for data that has already been collected but has not been included in an existing
corpus. Additional data was collected during the NCHLT project that was not included in the official
corpus: it only contains a curated, but limited subset of the data. In this paper, we first analyze
the additional resources that could be harvested from the auxiliary NCHLT data. We also measure
the effect of this data on acoustic modeling. The analysis incorporates recent factorized time-delay
neural networks (TDNN-F). These models significantly reduce phone error rates for all languages.
In addition, data augmentation and cross-corpus validation experiments for a number of the datasets
illustrate the utility of the auxiliary NCHLT data.

Keywords: automatic speech recognition; low-resource languages; speech data; speech technology;
Kaldi; time-delay neural networks

1. Introduction

The development of language and speech technology requires substantial amounts of appropriate
data. While huge volumes of text and speech data are available in some languages, others have
very little with which to work. Languages in the first category are commonly referred to as “highly
resourced”, while those in the second category are known as “under-resourced” (low-resourced
languages do have sufficient data for initial model development). The work we report on in this paper
is part of an ongoing effort to enlarge the resources that are available for technology development
in South Africa’s 11 official languages (three letter ISO codes in brackets): Afrikaans (Afr), South African
English (Eng), isiNdebele (Nbl), isiXhosa (Xho), isiZulu (Zul), Sepedi (Nso), Sesotho (Sot), Setswana
(Tsn), Siswati (Ssw), Tshivenda (Ven), and Xitsonga (Tso).

Work in this area has been supported by the South African government for a number of years.
Initial projects were funded by the Department of Arts, Culture, Science and Technology (DACST)
and subsequently by the Departments of Arts and Culture (DAC) and Science and Technology (DST),
respectively, after the two departments became separate entities. For instance, the African Speech
Technology (AST) project [1] was supported by DACST, while DAC funded projects like Lwazi [2,3]
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and the National Centre for Human Language Technology (NCHLT) speech [4,5] and text [6] projects.
The recently-established South African Centre for Digital Language Resources (https://www.sadilar.
org/) (SADiLaR) is funded by DST.

Various strategies have been proposed to collect speech and text resources for technology
development, for example harvesting existing data like broadcast news and online publications,
crowd-sourcing, web crawling, dedicated data collection campaigns, etcetera [7–13]. Both data types
are required for language and speech technology development, and constructing comprehensive text
corpora is just as important as creating speech resources. However, the work we report on here mainly
concerns speech data.

One of the most efficient ways to collect vast volumes of speech data is by means of speech
applications like voice search, where input speech is captured and used to improve system
performance [14]. Other strategies that have been proven to be successful include crowd sourcing
and transcribing or translating existing resources.

In the absence of these possibilities, dedicated data collection campaigns can be used to collect
representative samples of languages in their spoken form. In South Africa, the AST, Lwazi, and the first
NCHLT project relied on data collection to create speech resources for the indigenous languages.
During the Lwazi project, telephone speech was collected (between four and ten hours per language [2]),
while the aim of the first NCHLT project was to collect 50–60 h of orthographically-transcribed,
broadband speech in each of the country’s 11 official languages [4].

2. Background

Honest researchers and field workers can affirm that, despite careful design, meticulous planning,
and continuous monitoring of execution, data collection does not always happen the way it should.
No matter how carefully one goes about it, there always seems to be errors of one kind or another
in the collected data [15–17]. Unforeseen challenges or delays in data collection could be due to issues
related to the means of collection (e.g., telephone lines are out of order on the day that collection
was planned to start), logistics (e.g., the bus that was supposed to bring volunteers to a suitable
location broke down on the way), the attitude or literacy levels of potential participants, and so forth.
The NCHLT speech project was no exception in this regard, and despite the fact that the project was
successfully executed, not everything went exactly as planned.

During the project speech, data was collected using a smartphone application [11]. The initial
version of the app used a prompt counter to select a unique subset of prompts for each recording session.
However, this value was stored in memory and was sometimes accidentally reset as fieldworkers
cleared recording devices. This resulted in some subsets of the data being recorded multiple times
while other subsets were never selected. The app was subsequently updated to support random
selection of prompts from the larger vocabulary, and additional, more diverse data was collected
in some languages. To meet the project specifications, the majority of the repeated prompts were
excluded from the subset of the data that was released as the NCHLT Speech corpus.

It is often said that “there is no data like more data”, and given the modeling capabilities of some
recent acoustic modeling techniques, the question arose whether the data that was excluded from
the official NCHLT corpus could be used to improve modeling accuracy. In this paper, we therefore
investigate the potential of the additional or auxiliary data to improve acoustic models of the languages
involved, given current best practices.

While the results of many studies seem to confirm that “there really is no data like more data”,
the “garbage in, garbage out” principle also holds: using poor quality data will result in poor models,
no matter how much of it is available. Poor models will ultimately yield poor results. One of the aims
of our investigation was thus to quantify, to some extent, the quality of the utterances in the auxiliary
datasets and to exclude potential “garbage” from the pool of additional data.

Basic verification steps were included in the NCHLT data collection protocol to identify corrupt
and/or empty files. In the current study, we also used forced alignment to identify recordings
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that did not match their prompts. A phone string corresponding to the expected pronunciation
of each prompt was generated, and if a forced alignment between the phone string and the actual
acoustics failed, the utterance was not included in the auxiliary data. For the remaining prompts,
we used a phone-based dynamic programming (PDP) scoring technique [18,19] to quantify the degree
of acoustic match between the expected and produced pronunciations of each prompt and to rank them
accordingly. Consequently, transcription errors or bad acoustic recording conditions could be filtered
out based on an utterance level measure.

Baseline automatic speech recognition (ASR) results for both the Hidden Markov Model Toolkit
(HTK) [20] and Kaldi [21] toolkits were published when the NCHLT Speech corpus was released.
The Kaldi implementation of Subspace Gaussian Mixture Models (SGMMs) yielded the best results [4].
Subsequent experiments using one of the languages (Xho) showed that substantial gains can be
achieved over the initial baseline if the acoustic models are implemented using deep neural networks
(DNNs) [22]. Similar observations were made for the Lwazi telephone corpus [23] and DNNs optimized
using sequence-discriminative training within a state-level minimum Bayes risk criterion. However,
according to recent studies, time delay neural networks (TDNN) [24,25] and long short-term memory
(LSTM) acoustic models outperform DNN-based models [26].

A model architecture that combines TDNNs and bi-directional LSTMs (BLSTMs) yielded the best
results in a preliminary study on the auxiliary NCHLT data [19]. BLSTMs process input data in both
time directions using two separate hidden layers. In this manner, they preserve both past and future
context information [27]. The interleaving of temporal convolution and BLSTM layers has been shown
to model future temporal context effectively [28]. When BLSTMs are trained on limited datasets,
configurations with more layers (as many as five) outperform similar systems with fewer layers
(three or less). Larger training sets (approaching 100 h of data) obtain even better performance using
six layers [29].

Ongoing research aims to incorporate deeper TDNNs since it is known that more layers
have significantly improved the performance of image recognition tasks [30]. However, the gate
mechanism in LSTMs still seems to have utility to selectively train TDNNs by emphasizing
the more important input dimensions for a particular piece of audio [31]. In this paper,
we report results obtained using TDNN-F acoustic models, which have recently been demonstrated
to be effective in resource-constrained scenarios [32]. Apart from reducing the number of parameters
(and connections) of a single layer, the singular-value decomposition operation also proves effective
with deeper network architectures. In particular, it has been found that tuning the TDNN-F networks
resulted in networks with as many as 11 layers [32]. The best Kaldi Librispeech chain model example
recipe used in this study contained as many as 17 layers (Section 4.1).

The next section of the paper describes the NCHLT data, as well as the extent of repetition
in the auxiliary datasets. Subsequent sections introduce the techniques that were used to quantify
the quality of the auxiliary recordings and present TDNN-F results for all 11 languages. The paper
also includes experiments that were conducted to determine whether the acoustic models benefited
from the inclusion of the auxiliary data in the training set. The recognition performance of models
trained on different training sets was measured on out-of-domain datasets.

3. Data

As was pointed out in Section 1, the recordings that were made during the initial phase
of the NCHLT Speech project contained many repetitions of some prompts. Additional data was
therefore collected to ensure that the corpus met the acoustic diversity stipulated in the project
requirements. For a number of languages, this sequence of events resulted in two datasets being
collected: one set with many examples of the same prompts and one set with fewer examples of many
different prompts.

Participants in the NCHLT data collection campaign were asked to read text prompts displayed
on a smartphone screen. The prompts were compiled using a text selection algorithm that determined
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the most frequently-observed n-grams for each language. The algorithm was used to derive
prompts from the biggest text corpus that was available for each language (at the time) [6].
A mobile data collection tool was subsequently used to record the prompts while they were read
out by participants [11].

Given that participants were asked to read text displayed on a mobile device, a reasonable match
between the audio and text data can be expected. The recorded speech was therefore not transcribed
manually. However, poor matches between prompts and their recordings did occur, usually as a result
of reading errors, high levels of background noise, hesitations, etcetera. A confidence scoring technique
was used to identify recordings that did not match their associated transcriptions. Recordings that
had a high confidence score (well-matched with their associated transcriptions) and that contributed
most to lexical diversity were selected to be included in the final version of the corpus. An additional
specification stipulated that the corpus should contain an equal amount of data (±56 h of speech)
for all 11 languages. Due to this restriction, data that could be of a sufficiently good acoustic quality
was not included in the final corpus. To clarify exactly which part of the recorded data we refer to,
we adhere to the dataset definitions that were published with the first version of the corpus:

1. NCHLT-raw
The total set of usable data collected after all empty and otherwise unusable recordings were discarded.
This includes multiple sessions of some speakers and multiple examples of some prompts.

2. NCHLT-baseline
A subset of NCHLT-raw representing approximately 200 unique speakers per language and more
than 200 utterances per speaker. Recordings from the more diverse second batch of data were
given preference in cases where speakers participated in both data collection campaigns.

3. NCHLT-clean
A subset of NCHLT-baseline constituting the final deliverable of ±56 h of speech data
for all 11 official languages. For ASR evaluation purposes, this dataset was partitioned into
a training and test set. The test partitions consisted of eight speakers (equal numbers of male
and female speakers) that were manually selected. The development data was taken from
the training sets defined in [4] and was selected to contain another eight speakers each
(The composition of the test set is included in the official corpus. We used the development set
defined for the experiments in the 2014 corpus paper. The file lists can be downloaded here:
https://sites.google.com/site/nchltspeechcorpus/).

The Aux1 dataset is comprised of the data in NCHLT-baseline that was not included in NCHLT-clean
(the same speakers therefore occur in Aux1 and the NCHLT-clean dataset). Aux2 refers to all the
NCHLT-raw utterances that are not in NCHLT-baseline. Table 1 presents the initial number of recordings
(init) in the Aux1 and Aux2 datasets for each language.

Table 1. Total number of initial (Init) auxiliary recordings (Aux1 and Aux2), number of failed phone
alignments (failed) and duration (dur) in hours of additional data per language.

Lang Aux 1 Aux 2
Init Failed Dur Init Failed Dur

Afr 54,117 2451 42.68 47,290 356 39.14
Eng 42,958 952 29.78 54,719 628 38.92
Nbl 37,669 3224 42.56 100,402 4202 120.07
Nso 65,224 2259 64.89 53,318 947 51.80
Sot 74,457 5858 73.86 47,938 700 43.51
Ssw 67,410 7172 78.41 136,422 9490 167.00
Tsn 69,655 1953 70.15 35,156 356 36.98
Tso 71,311 3781 83.67 2316 1489 0.65

https://sites.google.com/site/nchltspeechcorpus/
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Table 1. Cont.

Lang Aux 1 Aux 2
Init Failed Dur Init Failed Dur

Ven 82,895 4886 93.69 44,666 1220 54.94
Xho 90,560 8739 102.95 53,269 2549 54.95
Zul 77,833 3471 97.93 30,319 327 32.74

Total 734,089 6.1% 780.57 605,815 3.7% 640.70

The values in the failed column correspond to the number of utterances in each dataset for which
the alignment procedure described in Section 4.4 failed. The percentage values in the last row of Table 1
indicate that more than 90% of both the datasets could be aligned and could therefore be considered
for harvesting. This corresponds to 780.57 and 640.70 h of audio in the Aux1 and Aux2 sets, respectively.

3.1. Unique and Repeated Prompts

Shortly after the release of the NCHLT Speech corpus, an overview of the unique and repeated
prompts was reported in [33]. Tables 2 and 3 provide type and token counts for the prompts
in the NCHLT-clean, Aux1, and Aux2 datasets.

Table 2. Type and token counts for prompts only in NCHLT_TRN and only in NCHLT_TST. Aux1,
Aux2: Type and token counts for prompts repeated in auxiliary data.

NCHLT_TRN Aux1 Aux2 NCHLT_TST Aux1 Aux2

Language Type Token Type Token Type Token Type Token Type Token Type Token

Afr 9482 39,589 8268 30,494 996 29,224 44 44 44 299 0 0
Eng 6509 33,595 5724 22,425 1934 17,095 95 106 86 301 9 14
Nbl 9967 29,416 7056 20,639 9964 63,833 599 632 403 724 196 278
Nso 14,247 45,803 12,415 41,453 6787 34,699 223 291 194 556 28 61
Sot 9414 34,010 8273 42,105 3561 23,714 122 122 122 485 0 0
Ssw 9781 28,472 9097 33,662 9781 79,138 160 164 158 687 2 2
Tsn 13,230 40,994 11,206 41,768 1588 28,533 407 443 160 309 32 32
Tso 10,517 34,265 10,144 42,177 646 659 173 179 173 911 0 0
Ven 14,188 37,456 13,085 49,008 6738 34,037 436 439 434 1 527 0 0
Xho 11,416 26,713 9470 43,812 2190 11,651 511 511 201 818 0 0
Zul 7580 19,585 7220 34,330 1191 9760 277 299 276 1377 0 0

Table 3. Type and token counts for prompts in both NCHLT_TRN and NCHLT_TST. Aux1, Aux2: Type
and token counts for prompts repeated in auxiliary data. New unique: Type and token counts for new
prompts in Aux1 and Aux2.

NCHLT_TRN_TST Aux1 Aux2 New Unique Aux1 New Unique Aux2

Language Type Token Type Token Type Token Type Token Type Token

Afr 2463 23,328 2318 14,565 1089 16,697 1244 6378 80 1013
Eng 2804 40,673 2627 16,065 2455 35,894 583 3215 195 1088
Nbl 2269 9393 1696 4366 2269 16,326 2450 8716 2716 15,763
Nso 2082 10,258 1783 5818 1015 6466 3513 15,138 1969 11,145
Sot 1726 20,600 1680 15,111 814 18,998 2507 10,898 937 4526
Ssw 2292 11,898 2189 9219 2292 2546 3442 16,670 3448 22,376
Tsn 868 14,137 682 8316 528 3454 4596 17,309 223 2781
Tso 2476 10,626 2427 8505 6 6 2706 15,937 148 162
Ven 2331 8979 2193 7834 1041 3732 3987 19,640 1641 5677
Xho 1057 16,419 1500 15,081 1024 36,792 5636 22,110 490 2277
Zul 1814 21,844 1772 22,915 1040 19,296 2321 15,740 262 936

The values in the NCHLT_TRN Type column correspond to the number of unique prompts
in the NCHLT training set. The counts for prompt types that occur in the test set, but not in the training
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set are listed in the NCHLT_TST Type column. NCHLT_TRN_TST types correspond to unique prompts
that occur in both the training and the test sets (Type and token counts for the NCHLT_DEV set are
not included in the table. On average, the development sets contain around 3000 prompt tokens.).
The Aux1 and Aux2 columns indicate how many of these types also occur in the auxiliary data.
The type and token counts for the unique prompts that occur only in the auxiliary data are provided
in the last four columns of Table 3. These values indicate that the auxiliary data mostly contains
repetitions of prompts that are already in the NCHLT-clean corpus. Tables 4 and 5 contain word level
type and token counts for all the datasets.

Table 4. Type and token counts for words only in NCHLT_TRN and only in NCHLT_TST. Aux1, Aux2:
Type and token counts for words repeated in auxiliary data.

NCHLT_TRN Aux1 Aux2 NCHLT_TST Aux1 Aux2

Language Type Token Type Token Type Token Type Token Type Token Type Token

Afr 5189 34,893 4885 37,778 851 26,501 26 26 26 180 0 0
Eng 4644 28,647 4378 28,610 1781 18,780 56 62 53 212 3 5
Nbl 9985 45,265 8383 49,369 9982 125,433 421 455 316 837 105 153
Nso 8817 35,582 8497 57,178 2769 22,389 114 159 114 614 0 0
Sot 7924 37,274 7719 67,886 3307 27,505 90 93 90 474 0 0
Ssw 7929 34,531 7702 61,454 7929 12,281 134 136 134 1173 0 0
Tsn 4368 43,351 4238 74,935 1018 18,627 41 43 34 496 1 1
Tso 3819 16,087 3780 40,840 396 446 101 108 101 1270 0 0
Ven 4335 20,886 4266 55,577 2113 17,345 116 119 116 780 0 0
Xho 23,963 62,054 22,241 119,921 4823 24,540 826 831 570 2397 0 0
Zul 19,465 48,541 18,566 91,591 2915 19,334 742 804 742 3707 0 0

Table 5. Type and token counts for words in both NCHLT_TRN and NCHLT_TST. Aux1, Aux2: Type
and token counts for words repeated in auxiliary data. New unique: Type and token counts for new
words in auxiliary data.

NCHLT_TRN_TST Aux1 Aux2 New Unique Aux1 New Unique Aux2

Language Type Token Type Token Type Token Type Token Type Token

Afr 3377 146,834 3338 102,989 1971 102,981 775 6102 87 1331
Eng 3570 185,394 3536 88,421 3327 136,536 776 4617 257 1521
Nbl 4693 94,878 4387 63,962 4693 199,190 2402 13,014 2558 21,942
Nso 2238 244,606 2150 218,659 1285 229,884 2314 18,598 740 4347
Sot 2499 233,274 2488 213,721 1556 170,124 1923 13,289 702 4028
Ssw 3995 88,281 3967 100,213 3995 236,987 3241 25,506 3246 34,112
Tsn 1126 223,705 1115 202,301 959 132,632 1915 18,957 216 3766
Tso 2114 206,228 2110 248,341 684 3122 2858 26,475 234 272
Ven 3243 210,377 3231 293,293 2392 186,810 1783 17,528 895 3878
Xho 3892 65,194 3857 71,907 2369 117,731 9616 47,164 1042 4514
Zul 4446 72,926 4335 83,810 2374 68,684 7374 36,874 540 1671

3.2. Speaker Mapping

During the second phase of data collection, some speakers that were already in the initial dataset,
participated in the data collection again. Apart from ensuring vocabulary diversity and well-matched
transcriptions during the NCHLT-baseline subset selection, duplicate speaker sessions were avoided.
A rather conservative approach was followed to identify possible duplicate speakers from available
metadata. In particular, three data fields in the metadata were used to identify overlapping speaker
sessions: names, national identity and telephone numbers. Speaker duplication was flagged if any
of the fields were identical or differed by only one digit. The data corresponding to duplicate speakers
was subsequently clustered into a single set with a unique speaker identity.

As was mentioned in Section 3, the Aux1 data has exactly the same speaker numbers
as NCHLT-clean. However, speaker overlap with the NCHLT-baseline speakers can be expected
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for the Aux2 recordings (The test speaker overlap for Afr is an exception. According to the metadata,
it seems that two test speakers occur in the NCHLT-clean training data as well.). To quantify the extent
of the overlap, Table 6 shows the number of speaker clusters that were identified per language
following a similar metadata-based detection process.

Table 6. Claimed speaker overlap for matching and close matching metadata fields (names, ID, and
telephone numbers) of speakers in the predefined NCHLT development (dev) and test (tst) sets.

Language Aux2 Match Close Match
#spk clusters all dev tst clusters all dev tst

Afr 94 7 14 - 2 - - - -
Eng 113 14 30 - 1 3 6 - -
Nbl 208 20 46 - - 4 9 - -
Nso 105 15 31 - - 4 8 - 1
Sot 98 11 22 1 1 3 7 1 1
Ssw 226 26 53 1 1 4 9 - -
Tsn 75 4 9 - - - - - -
Tso 6 4 8 - - 1 2 - -
Ven 86 26 53 - 2 5 12 - -
Xho 107 16 33 - - 3 7 - -
Zul 63 5 10 - - 4 8 - -

In the table, a match is reported if any of the metadata fields were identical, while a difference
of one digit constituted close matches. The number of speakers in the Aux2 corpora is much higher
than the detected overlapping speakers (all). Therefore, Aux2 also contains data from additional
speakers who are not represented in the NCHLT-clean corpora. The table also indicates that, for six
languages, speakers whose data is included in the predefined NCHLT development (dev) and test (tst)
sets may have contributed to the Aux2 set as well.

3.3. Phone Representations

Our data analysis required phone level transcriptions of all the auxiliary data. Text pre-processing
was required to prepare the transcriptions for pronunciation extraction. All text was converted
to lowercase, and unwanted symbols (not within the list of graphemes for a particular language) were
removed. Since numerous additional words (see Table 4) occurred in the auxiliary data, the existing
NCHLT pronunciation dictionaries had to be extended before the data could be processed.

During the NCHLT project, a set of grapheme-to-phoneme (G2P) rules was derived from
the so-called NCHLT-inlang dictionaries [4]. These rules were used to predict pronunciations for the new
words. No explicit procedure was followed to identify out-of-language words, but for some languages,
the in-language G2P rules did not contain rules for particular graphemes or the punctuation mark used
to indicate an apostrophe in English (Eng). For these words, the Eng G2P rules were used to generate
pronunciations, and the phones were mapped (The mappings were derived manually, employing the
closest Speech Assessment Methods Phonetic Alphabet (SAMPA) phone label from the same phone
category. During the NCHLT project, the SAMPA computer-readable phonetic script was used to
represent the phones of all 11 languages: https://en.wikipedia.org/wiki/SAMPA) to similar sounds
in the in-language phone set.

Eng was the only language for which a different procedure was followed. The G2P rules that
were used for Eng were derived from a version of the Oxford Advanced Learner’s dictionary,
adapted to South African Eng using manually-developed phoneme-to-phoneme rules [34].

4. Experiments

This section presents ASR results obtained using the NCHLT-clean training data, as well
as extended training sets that include auxiliary data. The development and test sets described

https://en.wikipedia.org/wiki/SAMPA
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in Section 3 were used throughout. Experiments were also conducted using cross-corpus validation
data so that more general conclusions could be drawn from the results. The validation data was
created during the Resources for Closely Related Languages (RCRL) project [35] and comprises 330
Afr news bulletins that were broadcast between 2001 and 2004 on the local Radio Sonder Grense
(RSG) radio station. The bulletins were purchased from the South African Broadcasting Corporation
(SABC) and transcribed to create a corpus of around 27 h of speech data. For the experiments in this
study, we used a previously-selected 7.9 h evaluation set containing 28 speakers (To obtain the phone
sequences from the RSG orthography, we implemented the same procedure as for the NCHLT Afr
system. After text pre-processing, G2P rules were applied to generate pronunciations for new words.).

Two acoustic modeling recipes were followed to build all acoustic models. Section 4.1 describes
the experimental setup. Since the focus of the current work was primarily on acoustic modeling,
recognition performance was quantified in terms of phone recognition results (Section 4.2)
in all experiments. In principle, improved phone recognition should translate to better word
recognition results for a well-defined transcription task. Word recognition experiments were not
included, because of the very limited amount of text corpora available for most of the NCHLT
languages. After establishing a new baseline (Section 4.3), further data augmentation work using both
Aux1 and Aux2 data was carried out. The selection criteria for auxiliary datasets (Sections 4.4 and 4.5)
allowed us to test the utility of the additional data with current acoustic modeling techniques.
This section ends with cross-corpus validation experiments for a specific set of models 4.6.

4.1. Acoustic Modeling

The development of TDNN-BLSTM baseline acoustic models for all 11 languages was described
in [19]. In this paper, the aim was to improve on the baseline by using TDNN-F acoustic models
(Section 2). To create the new models, the same standard triphone recognition systems that were used
in previous studies [19] were required to extract phone alignments for the training data.

A standard MFCC front-end with a 25-ms Hamming window and a 10-ms shift between
frames (16-kHz sampling frequency) was employed to train all models for the triphone recognition
systems. Mean and variance normalization operations, applied on a per speaker basis, followed
the extraction of 13 cepstra, which included C0. Delta and double delta coefficients were added.
These features were used to estimate three-state left-to-right HMM triphone models, incorporating
linear discriminant analysis (LDA), maximum likelihood linear transform (MLLT) training, and speaker
adaptive training (SAT).

Similar to the previous TDNN-BLSTM models, the TDNN-F recipes also require i-vectors [36]
and 40-dimensional high-resolution MFCC features for training. I-vector extractors were trained based
on the training parameters provided in the Kaldi Wall Street Journal (WSJ) example recipe without
adjustment. The high-resolution MFCCs were derived from speed (using factors of 0.9, 1.0, and 1.1 [37])
and volume (choosing a random factor between 0.125 and 2) perturbed data. Speed perturbing was
applied first, adding two speed-perturbed versions of the audio data used for training, after which volume
perturbation was applied to the complete set (including the speed-perturbed versions).

We generated two different TDNN-F networks with the nnet3 Kaldi setup and refer to these
TDNN-F recipes as the 1c [38] and 1d [39] recipes, respectively. Both recipes were taken from Kaldi
Librispeech chain model examples. The nnet3 component graph of the TDNN-F 1c recipe contained
11 TDNN-F layers. For all layers, the cell-dimension was kept at 1280 and the bottleneck-dimension
at 256, respectively. In contrast, the TDNN-F 1d recipe’s component graph implements 17 layers
of a larger cell-dimension (1536) and smaller bottleneck-dimension (160) each. It also implements
a dropout schedule of “0,0@0.2,0.5@0,0” defining a piecewise linear function f(x) that is linearly
interpolated between the points f(0) = 0, f(0.2) = 0, f(0.5) = 0.5, and f(1) = 0. Dropout schedules of this
form were recommended in [40] to guard against overfitting.
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4.2. Phone Recognition Measurement

A position independent phone configuration was used to convert the training transcriptions
to a phone-level representation. During system evaluation, this arrangement seamlessly converts
the standard Kaldi word error rate (WER) measurement to a phone error rate (PER). PERs were
calculated using only speech phone labels. Silence labels were not taken into consideration. Recognition
employed a flat ARPA language model consisting of equiprobable one-grams.

The best ratio between acoustic and language model contributions was determined by varying
the language-scale parameter (integer values in the range of 1–20) during scoring. The acoustic-scale
parameter was set to the default value of 0.1, and the best language-scale parameter was chosen using
the NCHLT-clean development datasets. The selected language-scale parameters were subsequently
used during data harvesting to gauge recognition performance.

4.3. Baseline Systems

Table 7 compares the development (dev) and test (tst) set PER results of the TDNN-BLSTM
baseline [19] with the new TDNN-F acoustic models. Both the TDNN-F 1c and TDNN-F 1d recipes
(see Section 4.1) were evaluated for all 11 languages. The number of phone labels (#Phns) provides
an indication of the label complexity.

Table 7. PERs for TDNN-BLSTM and TDNN-F baseline systems per language (lowest PERs in bold).

TDNN-BLSTM TDNN-F 1c TDNN-F 1d
Lang #Phns dev tst dev tst dev tst

Afr 37 5.89 6.64 3.92 4.73 3.63 4.39
Eng 44 7.69 7.24 6.32 5.76 6.10 5.64
Nbl 49 10.04 10.77 10.66 12.07 11.09 11.29
Nso 44 9.29 9.64 5.88 7.18 5.48 7.00
Sot 39 11.44 11.92 8.87 10.04 8.17 9.72
Ssw 39 9.17 8.70 6.71 7.52 6.17 7.35
Tsn 34 8.24 7.17 5.71 5.65 5.33 5.24
Tso 55 7.10 6.67 5.87 5.45 5.02 4.76
Ven 39 8.61 9.10 7.42 8.17 7.03 7.51
Xho 53 11.20 11.25 10.12 9.26 9.42 8.51
Zul 46 10.18 10.72 7.71 8.85 7.87 8.48

The results in Table 7 show that, except for Nbl, the PERs of all the languages improved
substantially compared to the TDNN-BLSTM baseline. Furthermore, in all cases, the TDNN-F 1d
recipe yielded better results than the TDNN-F 1c recipe.

4.4. Acoustic Ranking

Not all the Aux1 and Aux2 data could be used as training or test data. The auxiliary data was
screened to detect acoustically-compromised recordings using the TDNN-BLSTM acoustic models [19]
(the data harvesting procedure was not repeated with TDNN-F models). The screening procedure
required each utterance to be decoded twice.

First, standard free phone decoding implementing an ergodic phone loop generated a
sequence of phone labels, purely based on the acoustics. Next, Kaldi’s functionality to compute
training alignments from lattices for nnet3 models was used. This algorithm generates a decoding
graph for a single fixed sequence of phone labels, which directly corresponds to the reference
transcription. In the event that the acoustics are not a good match for the forced sequence of phone
labels, this constraint can result in the decode operation exiting without producing any output.
Such unsuccessful decodes served as a first selection criterion to filter out large transcription errors.
The number of utterances that were discarded for the Aux1 and Aux2 datasets is shown in the failed
columns in Table 1.
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As was explained in Section 2, PDP scoring matched the free phone decode and forced phone
label sequences. It is possible to adjust the PDP algorithm using a cost matrix so that string
edit operations (substitution, deletion, and insertion) contribute differently for the various phone
labels [41]. A flat phone matrix was chosen where the contributions of the edit operations are the same
for all phone labels. Insertions and deletions contributed half as much to the score as substitutions and
correctly-recognised labels.

4.5. Data Selection

The first data augmentation experiment was conducted with only the Aux1 data added
to the NCHLT training sets. This meant that the speaker labels agreed with those of NCHLT-clean
and secondly that the vocabulary of the augmentation data would be similarly diverse. To select
suitable subsets of additional training data, we estimated local PERs for 400 utterances at a time.

Figure 1 depicts graphs of the local PERs. These values were computed for non-overlapping
subsets of utterances, ordered according to PDP scores. Figure 1 reveals a large range of PER scores
for different subsets of utterances. In a few estimations, PERs of higher than 100% occur, which can
be explained in terms of the PER estimation formula. PERs of higher than 100% can occur due to,
for example, runaway insertions during free phone recognition. At an operating point of 50% PER,
more than 20 h and for some languages even more than 60 h of additional data can be selected. In [19],
it was decided to use a conservative estimate of 30% PER. This selection strategy resulted in some
improvement given the TDNN-BLSTM baseline.

Figure 1. Local phone error rates (PERs) for 400 utterance subsets of the Aux1 data.

Repeating the experiment for more languages, using the new TDNN-F models, generated the set
of results given in Table 8. For each language, the amount of augmentation data (in hours) for the 30%
selection criterion is displayed. With the exception of English, results for seven other languages
with more than 20 h of acceptable Aux1 data were obtained. Comparing the TDNN-F baseline (base)
results with those obtained for the systems trained on the augmented data (30%) showed that using
the additional data did not result in improved system performance. The within-corpus modeling
capability of the TDNN-F models remained similar.



Information 2019, 10, 268 11 of 16

Table 8. PERs for TDNN-F baseline (base) and 30% PER selection criterion systems per language
(lowest PERs in bold).

TDNN-F 1c TDNN-F 1d
Lang Auxdur (h) base 30% base 30%

Afr 27.8 4.73 4.87 4.39 4.59
Eng 17.7 5.76 5.83 5.64 5.16
Ssw 40.0 7.52 9.63 7.35 9.48
Tsn 38.4 5.65 6.31 5.24 6.14
Tso 52.0 5.45 6.53 4.76 5.38
Ven 47.2 8.17 9.54 7.51 8.26
Xho 42.2 9.26 9.88 8.51 10.56
Zul 47.4 8.85 9.38 8.48 9.19

4.6. Cross-Corpus Validation

Measuring recognition performance on a well-matched test set provides an indication of modeling
efficiency, but in practice, ASR systems have much more utility if generalization to speech databases
from other domains can be achieved. To simulate this scenario for acoustic modeling based on NCHLT
data, the performance of the Afr models was evaluated on a different test set, the radio news data
introduced at the beginning of the section.

Table 9 provides an overview of different acoustic models created by augmenting the NCHLT Afr
training data with various selections of Aux1 and Aux2 data. The first entry (NCHLT-clean) corresponds
to the TDNN-F baseline results for both recipes (see Table 7) and adds the new PERs that were obtained
when validating on broadcast data (Radio). Here, the baseline result for the TDNN-F 1c recipe showed
approximate agreement with the earlier findings in [19]. However, cross-corpus results for the TDNN-F
1d recipe improved even further.

Table 9. PERs for two Afr test sets and TDNN-F systems trained on different augmented training sets
(lowest PERs in bold).

System Auxdur (h) TDNN-F 1c TDNN-F 1d
NCHLT Radio NCHLT Radio

NCHLT-clean 0 4.73 27.73 4.39 23.29
Aux1 39.90 4.71 27.68 4.52 23.49
Aux2 39.14 4.94 29.53 4.29 24.56

Aux1 + Aux2 79.04 4.93 26.57 3.98 22.80

Aux1 (30%) 27.79 4.87 25.55 4.59 23.68
Aux1 (0.85 PDP) 8.17 4.64 28.09 4.48 22.87
Aux2 (0.85 PDP) 19.74 5.06 25.47 4.22 22.65

Aux1 + Aux2 (0.85 PDP) 28.56 4.89 27.04 4.23 22.06

To obtain the next three results, all auxiliary data passing the original alignment (cf. Table 1)
was simply added to the NCHLT training data. Adding another 10 h of data increased the total
amount of Aux1 augmentation data to 39.90 h, but did not further improve PERs. The same holds
true when validating these models with RSG data (Aux1). Similarly, an attempt to augment training
data with the entire set of Aux2 data did not improve recognition performance. Finally, more than
doubling the training data by adding all 79.04 h of auxiliary data (Aux1 + Aux2) reduced the PER on
cross-corpus data.

The bottom part of Table 9 shows the results of four experiments based on more refined selection
efforts. Firstly, we added the radio data validation results for the Aux1 (30%) experiment. Interestingly,
augmenting with this selection of higher quality Aux1 data did improve PER for the TDNN-F 1c recipe.
The 30% selection criterion for the Aux1 Afr data approximately corresponded to selecting all harvested
utterances with a PDP score higher than 0.53. With our setup, the PDP scoring resulted in a value of
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1.00 for matching transcriptions. Applying an even more strict threshold (a PDP score of 0.85), selected
only 8.17 h of Aux1 data, but provided another indication of improved PER for the TDNN-F 1d model.
In fact, this effect holds when augmenting with 19.74 h of Aux2 data and the 0.85 PDP score threshold.
For this configuration, both TDNN-F 1c and TDNN-F 1d model validations achieved lower PERs.
The trend continued when these high confidence-based selections of auxiliary data were combined in
experiment Aux1 + Aux2 (0.85 PDP).

4.7. Discussion

As mentioned in Section 2, BLSTM training with six or more layers requires at least 100 h of
speech data. However, the separate language components of the NCHLT corpus of the South African
languages consist of about half (56 h) this amount of data. A pure BLSTM model was not experimented
with since improved TDNN-BLSTM networks were available. Previously, these TDNN-BLSTM
networks were successfully applied to all language components, resulting in significant improvement,
even with the limited data [19].

With standard parameters, the more recent TDNN-F acoustic model recipes produced models
capable of modeling NCHLT speech data even better than TDNN-BLSTMs. It was verified that the latest
Kaldi example TDNN-F recipes, employing deeper networks, a smaller bottleneck-dimension, and higher
cell-dimensions, outperformed previous baselines. Overall, the TDNN-F 1d recipe seemed to produce
more consistent results with improved generalization to different datasets. This might not only be
because of the deeper network and parameter settings, but also points out the importance of drop-out
during training. Furthermore, drop-out combined with the deeper architecture of the TDNN-F 1d recipe
seems to generate significantly improved results for all cross-corpus experiments.

Unfortunately, with the limited auxiliary data, it is clear that the modeling capacity of the TDNN-F
models did not increase beyond that of training on NCHLT-clean data only. In fact, within-corpus
variability seemed to increase slightly: The Aux1 data augmentation experiment based on the 30%
selection criterion consistently produced lower PERs across all languages. Possibly, more data
of a comparable quality may be required for further improvement since adding all 79.04 h of auxiliary
data (Aux1 + Aux2) to the training data generalized better to the broadcast news data. An absolute
reduction of 0.49 PER was achieved, which might not be statistically significant.

Using a stricter threshold (0.85 PDP) did improve the TDNN-F 1d model’s generalization
in all three experiments: Aux1, Aux2, and Aux1 + Aux2. Interestingly, the Aux2 data did show
utility even though this data contains high numbers of repeated prompts and therefore only represents
a limited vocabulary.

5. Conclusions

The aim of the study presented in this paper was to determine whether imperfect speech data
could be used to improve the performance of ASR systems in under-resourced languages. The specific
case considered involved data that was collected but not released because it did not meet project
requirements. Given the severe lack of data in the languages under consideration, it was crucial
to determine if acoustic modeling accuracy could be improved by adding this data to existing resources.

Results indicate that the additional data added very little to modeling capacity when the acoustic
models were evaluated on matched test sets. In fact, recognition rates decreased slightly for some
languages when the augmented datasets were used for training. In contrast, results obtained for a test
set from a different corpus showed that the additional data did improve the models’ ability to maintain
performance across different datasets. However, it remains clear that substantially more high quality
data is required to improve ASR for South Africa’s 11 official languages.
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The following abbreviations are used in this manuscript:

Afr Afrikaans
AST African Speech Technology
ASR Automatic speech recognition
Aux auxiliary
BLSTM bi-directional LSTM
DAC Departments of Arts and Culture
DACST Department of Arts Culture Science and Technology
DNN deep neural network
DST Department of Science and Technology
Eng English
G2P grapheme-to-phoneme
HTK Hidden Markov Model Toolkit
LDC linear discriminant analysis
LSTM long short-term memory
MLLT maximum likelihood linear transform
Nbl isiNdebele
NCHLT National Centre for Human Language Technology
Nso Sepedi
PDP phone-based dynamic programming
PER phone error rate
SABC South African Broadcasting Corporation
RCRL Resources for Closely Related Languages
RSG Radio Sonder Grense
SADiLaR South African Centre for Digital Language Resources
SAMPA Speech Assessment Methods Phonetic Alphabet
SAT speaker adaptive training
SGMM subspace Gaussian mixture models
Sot Sesotho
Ssw Siswati
TDNN time delay neural networks
TDNN-F factorized time delay neural networks
Tsn Setswana
Tso Xitsonga
Ven Tshivenda
WER word error rate
WSJ Wall Street Journal
Xho isiXhosa
Zul isiZulu
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acoustic model on low and high resource languages. In Proceedings of the 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018;
pp. 5789–5793.

30. Huang, X.; Zhang, W.; Xu, X.; Yin, R.; Chen, D. Deeper Time Delay Neural Networks for Effective Acoustic
Modeling. J. Phys. Conf. Ser. 2019, 1229, 012076, doi:10.1088/1742-6596/1229/1/012076. [CrossRef]

31. Chen, K.; Zhang, W.; Chen, D.; Huang, X.; Liu, B.; Xu, X. Gated Time Delay Neural Network for Speech
Recognition. J. Phys. Conf. Ser. 2019, 1229, 012077, doi:10.1088/1742-6596/1229/1/012077. [CrossRef]

32. Povey, D.; Cheng, G.; Wang, Y.; Li, K.; Xu, H.; Yarmohammadi, M.; Khudanpur, S. Semi-Orthogonal
Low-Rank Matrix Factorization for Deep Neural Networks. In Proceedings of the Interspeech 2018,
Hyderabad, India, 2–6 September 2018; pp. 3743–3747.

33. van der Westhuizen, E.; Niesler, T.R. Technical Report SU-EE-1501 An Analysis of the NCHLT Speech Corpora;
Technical Report; Stellenbosh University of Zurich, Department of Electrical and Electronic Engineering:
Stellenbosch, South Africa, 2015.

34. Loots, L.; Davel, M.; Barnard, E.; Niesler, T. Comparing manually-developed and data-driven rules for P2P
learning. In Proceedings of the 20th Annual Symposium of the Pattern Recognition Association of South
Africa (PRASA), Stellenbosch, South Africa, 30 November–1 December 2009; pp. 35–40.

35. de Wet, F.; de Waal, A.; van Huyssteen, G.B. Developing a broadband automatic speech recognition system
for Afrikaans. In Proceedings of the INTERSPEECH 2011, 12th Annual Conference of the International
Speech Communication Association, Florence, Italy, 27–31 August 2011; pp. 3185–3188.

http://htk.eng.cam.ac.uk//
http://dx.doi.org/10.1109/29.21701
http://dx.doi.org/10.1109/LSP.2017.2723507
https://doi.org/10.1088/1742-6596/1229/1/012076
http://dx.doi.org/10.1088/1742-6596/1229/1/012076
https://doi.org/10.1088/1742-6596/1229/1/012077
http://dx.doi.org/10.1088/1742-6596/1229/1/012077


Information 2019, 10, 268 16 of 16

36. Peddinti, V.; Chen, G.; Povey, D.; Khudanpur, S. Reverberation robust acoustic modeling using i-vectors
with time delay neural networks. In Proceedings of the INTERSPEECH 2015 16th Annual Conference
of the International Speech Communication Association, Dresden, Germany, 6–10 September 2015;
pp. 2440–2444.

37. Ko, T.; Peddinti, V.; Povey, D.; Khudanpur, S. Audio augmentation for speech recognition. In Proceedings
of the INTERSPEECH 2015 16th Annual Conference of the International Speech Communication Association,
Dresden, Germany, 6–10 September 2015; pp. 3586–3589.

38. Povey, D. Kaldi Librispeech TDNN-F 1c Chain Model Example Recipe. Availible online: https://github.
com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1c.sh (accessed on
27 June 2019).

39. Povey, D. Kaldi Librispeech TDNN-F 1d Chain Model Example Recipe. Availible online: https://github.
com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh (accessed on
27 June 2019).

40. Cheng, G.; Peddinti, V.; Povey, D.; Manohar, V.; Khudanpur, S.; Yan, Y. An exploration of dropout with lstms.
In Proceedings of the Interspeech, 2017, Stockholm, Sweden, 20–24 August 2017; pp. 1586–1590.

41. Jurafsky, D.; Martin, J. Speech Lang. Process.; Prentice Hall: Upper Saddle River, NJ, USA, 2000; pp. 153–199.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1c.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1c.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Data
	Unique and Repeated Prompts
	Speaker Mapping
	Phone Representations

	Experiments
	Acoustic Modeling
	Phone Recognition Measurement
	Baseline Systems
	Acoustic Ranking
	Data Selection
	Cross-Corpus Validation
	Discussion

	Conclusions
	References

