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Abstract: With the construction of the urban rail transit (URT) network, the explosion of passenger
volume is more rapid than the increased capacity of the newly built infrastructure, which results
in serious passenger flow congestion (PLC). Understanding the propagation process of PLC is the
key to formulate sustainable policies for reducing congestion and optimizing management. This
study proposes a susceptible-infected-recovered (SIR) model based on the theories of epidemiological
dynamics and complex network to analyze the PLC propagation. We simulate the PLC propagation
under various situations, and analyze the sensitivity of PLC propagation to model parameters.
Finally, the control strategies of restricting PLC propagation are introduced from two aspects, namely,
supply control and demand control. The results indicate that both of the two control strategies
contribute to relieving congestion pressure. The propagating scope of PLC is more sensitive when
taking mild supply control, whereas, the demand control strategy shows some advantages in flexibly
implementing and dealing with serious congestion. These results are of important guidance for URT
agencies to understand the mechanism of PLC propagation and formulate appropriate congestion
control strategies.

Keywords: passenger flow congestion; propagation; control strategy; complex network theory

1. Introduction

Urban rail transit (URT) plays a critical role in the modern cities with its multiple advantages of
large capacity, high speed, and low energy consumption. At present, there are over 100 cities all over
the world that have been operating URT. As of December 31, 2016, a total of 4152.8 km of URT lines
have been put into operation in Mainland China [1], which is shown in Figure 1.
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1. Introduction 

Urban rail transit (URT) plays a critical role in the modern cities with its multiple advantages of 
large capacity, high speed, and low energy consumption. At present, there are over 100 cities all over 
the world that have been operating URT. As of December 31, 2016, a total of 4152.8 km of URT lines 
have been put into operation in Mainland China 1, which is shown in Figure 1. 
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Figure 1. Urban rail transit (URT) line operated in Mainland China up to December 2016.
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With the gradual construction of URT networks and rapid urbanization, many Chinese metro
lines have reached the designed long-term maximum passenger flow volume [2]. It brings various
problems to URT networks, among which the most visible symptom is passenger flow congestion.
The level of crowdedness is an important indicator to measure the performance of URT networks.
As passengers’ desire for better travel environment and quality gradually increases, passenger flow
congestion has become more of a concern in the literature. Most of the previous studies have focused
on the route choice modelling for passengers [3,4], the detection technologies for abnormal passenger
flow [5], and PLC organization schemes [6]; yet few researchers have investigated the propagation
characteristic of passenger flow congestion. In this context, it is necessary to analyze the propagation
of passenger flow congestion in the URT system and the effect of control strategies.

In this paper, we propose a model to simulate passenger flow congestion propagation based on
the theories of virus propagation dynamics and complex network theory. The rest of this paper begins
with reviewing prior work on analysis of congestion propagation. Section 3 develops a propagation
model and the parameters of the model are analyzed in depth. Simulation experiments are given in
the subsequent section. In Section 5, we analyze the passenger flow control strategy combined with
the simulation results. The last section draws conclusions and recommends future research.

2. Literature Review

2.1. Passenger Flow Congestion Propagation and Control Strategy

Although congestion is an intuitive phenomenon, the literature presents various definitions of
congestion, more complementary than distinct. According to the Transit Capacity and Quality of
Service Manual [7], the level of service (LOS) concept was used to describe passengers’ perceptions of
the quality of demand-responsive service. It is quantified with many factors, such as service coverage,
scheduling, capacity, reliability, travel time, safety, and so on. Among the factors, passenger loads
(density) is the most direct measurement to describe that if stations or transit vehicles are crowed.
Mokhtarian [8] proposed that congestion happens when the input volume (demand) exceeds the
output capacity (supply). Oliveira et al. [9] considered that a segment of a road system is congested
when the traffic demand approaches or exceeds the stable flow capacity of the road. In China, it is
generally considered to be congested when the value of standing density exceeds 5 passengers/m2 [10],
which is significantly larger than 1.4 passengers/m2 in the United States (i.e., LOS “D”) [7].

In recent years, the study of topological and dynamical properties of traffic congestion and control
strategy in the traffic networks attracted much attention. Zhang and Yan [11] conducted a study on
the traffic congestion mechanism in big cities on the basis of economic theories. Zhang and Hua [12]
appraised the performance of congestion solving strategy in Kunming city based on analytic hierarchy
process (AHP). Wu et al. [13] analyzed the degree of congestion and the efficiency in different types of
networks. They obtained that the formation and evolution of traffic congestion are mainly resulted
from the increase of traffic demand. Based on the cell transmission model (CTM), Long et al. [14]
proposed a congestion propagation model for the urban traffic and applied it to simulate the formation
and dissipation of the traffic congestion. To the best of our knowledge, the first attempt to incorporate
traffic dynamics in epidemic spreading was made by Meloni et al. [15] who introduced a theoretical
approach to studying the result of an epidemic spreading process driven by the transport of a virus.
Gao et al. [16] analyzed the process of traffic congestion spreading with the epidemiological dynamics
model for a complex small-world network. It was found that the performance of the traffic system is
tightly related to the average rate of infection, the average recovery rate and the topological properties
of the traffic network.
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At present, many scholars have put forward abundant control methods for urban traffic congestion.
The existing methods of congestion control and prevention can be divided into four categories: traffic
flow control and signal control [17,18], traffic demand management (TDM) [19], timetable scheme
optimizing [20,21], and traffic guidance management [22].

2.2. Epidemiological Dynamics

Mathematical modelling of epidemic spreading has a long history of more than two hundred
years [23]. Generally, the population is divided into three types: susceptible, infected, and recovered
individuals. Susceptible individuals represent those who can contract the infection. Infected individuals
are previously susceptible individuals and got infected by the disease. Recovered individuals are
those who have recovered from the infection. In the susceptible–infected–susceptible (SIS) model [4],
infected individuals can recover from the disease and become susceptible individuals again. While in
the susceptible–infected–recovered (SIR) model [24], infected individuals no longer get infected after
recovery from the disease, which are assumed to get the permanent immunity.

For a long time, scholars have made a great deal of effort in exploring and understanding the
spreading processes on the field of epidemic, and the epidemic model has been used to simulate the
spread of human and animal diseases (such as SARS and H1N1) among different cities. Recently, the
focus has been transferred to a dynamic spreading process in temporal and multiplex networks [15,25].

Addition to diseases or viruses, there are usually many other substances spreading in networks
like information packets, traffic flow, ideas, etc., which depend on the specific types of the networks.
Epidemic spreading is often coupled with the delivery of these substances. For example, HIV spreads
through the exchange of body fluids among individuals in contact networks. Computer viruses
spread with the delivery of information packets in computer networks. Therefore, understanding
the mechanisms of these coupled spreading processes and how these processes affect each other is
significant for designing efficient epidemic immunization strategies. Meloni et al. [15] first studied
the effects of traffic flow on epidemic spreading. They found that the epidemic threshold in the SIS
model decreases as flow increases, and emergence of traffic congestion slows down the spread of
epidemics. Then, Yang et al. [26,27] further studied the relation between traffic dynamics and the
SIS epidemic model, and found that the epidemic can be controlled by fine tuning the local or global
routing schemes. Furthermore, they obtained that the epidemic threshold can be enhanced by cutting
some specific edges in the network [28].

3. Mathematical Model

3.1. Model Constructing

The susceptible-infected-recovered (SIR) model was formulated by Kermack and McKendrick [28],
which is a simple deterministic model predicting the behaviour of epidemic outbreaks. In this section,
we aim to describe and simulate the passenger flow congestion spreading progress with the classical
SIR model.

The classical SIR model takes the following nonlinear system of ordinary differential equations:
dS(t)

dt = −βS(t)I(t), β > 0
dI(t)

dt = βS(t)I(t) − λI(t)
dR(t)

dt = λI(t),λ > 0

(1)

Given the initial conditions:

S(0) = S0 ∈ R+, I(0) = I0 ∈ R+, and R(0) = R0 ∈ R+

where S(t) is the number of susceptible individuals, I(t) is the number of infectious individuals (i.e.,
individuals who are infected and capable of transmitting the disease), and R(t) is the number of
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recovered individuals at time t. The parameter β is infection rate (i.e., the infected probability for
susceptible individuals), and λ is recovery rate (i.e., the recover probability for infectious individuals).

The corresponding differential equations can be written as:
∆S(t + 1) = −βS(t)I(t)
∆I(t + 1) = βS(t)I(t) − λI(t)
∆R(t + 1) = λI(t)

(2)

where S(t), I(t) and R(t) represent the number of individuals in three different states at time t,
respectively. Figure 2 illustrates the transition process of node state.

1 
 

 

Figure 2. The transition process of node state.

3.2. Parameter Analysis

(1) The number of new congested stations affected by passenger flow congestion

The number of new congested stations and the total number of congested stations which varies
over time are the main indicators of congestion propagation analysis.

At time t, the number of new stations in the network that will be affected by congestion can be
expressed as the expected value:

E(−∆S) = Nβ− λI(t) (3)

where N is the number of stations directly connected to the congested station. Based on the Equations (2)
and (3), the number of new congested stations can be deduced as:

∆I(t + 1) = (Nβ(t) − λ(t)I(t))I(t) − λ(t)I(t) (4)

Define I(t + 1) as the total number of infection stations at time t + 1. It can be expressed as:

I(t + 1) = ∆I(t + 1) + I(t) (5)

Besides, the infection rate β(t) and the recovery rate λ(t) are the variables that change over time,
however, the two variables are related to multiple actual factors which will be analyzed in more
detail below.

(2) Degree of congested station

The number of stations directly connected to the station i can be expressed by (N1, N2), where
N1 is the number of other stations in the line connected to the station i, N2 is the number of stations
in other lines connected to the station i. Based on the perspective of complex networks, the degree
of station i can be calculate as N = N1 + N2. When the congestion occurs at the departure station,
there are N = 1 and N1 = 1, N2 = 0; When the congestion occurs at the intermediate station, there are
N = 2 and N1 = 2, N2 = 0; When the congestion occurs at the transfer station of two lines, there are
N = 4 and N1 = 2, N2 = 2.
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(3) Infection rate β

Infection rate β is the probability that congestion occurs at stations adjacent to the congested
stations. It is a parameter to describe the diffusion phenomenon of PLC in the network. βi j defines
the infection rate for station j that is adjacent to i. Theoretically, βi j is a non-negative and dynamic
parameter which value is decided by the relative relationship between the number of passengers
stranded on the platform and the remaining capacity of the train at the station i. The greater the value
is, the greater impact the station i has on the station j.

For intermediate station, if there is a large number of passengers pouring into the train when
the kth train arrives at the station i, the train will be operating full. For the station j in the upstream
direction of the station i, the remaining capacity of the kth train is the number of alighting passengers
at the station j. The number of assembling passengers in station j is equal to that of the passengers
arriving within the interval between two trains.

Pint
new, j = K j

up ×

∫ Tk

Tk−1

Ω jdt (6)

where Pint
new, j is the assembling passengers in intermediate station j within the interval between two

trains, K j
up is the direction imbalance coefficient of passenger flow at intermediate station j, Tk is

the time for the kth train arriving at the station j, and Ω j is the distribution function of passenger
arrival rate.

For the transfer station j, there are two types of passengers gathered in the platform: one is the
passengers entering the station in the operation interval, and the other is the passengers transferred
from other lines to line l.

Ptrans
new, j = K j

up ×K j
up,l ×

∫ Tk

Tk−1

Ω jdt + K j
up

N j
−2∑

n=1

Cl, j,n
trans (7)

where Ptrans
new, j is the assembling passengers in transfer station j within the interval between two trains,

K j
up,l is the line imbalance coefficient of passenger flow at transfer station j, N j is the degree of station j

in the network, and Cl, j,n
trans is the number of interchange passengers from other lines to the line l within

the interval between two trains.
We assume that the actual cross-section passenger flow and the interval transmission capacity of

each section in the initial state are known conditions. The surplus capacity of the kth train at station j
can be calculated as:

Csurplus, j = Cmax,l −
Qi j

Ci j
×Cmax,l (8)

where Cmax,l is the maximum capacity of trains in line l, Qi j is the actual cross-section passenger flow
in section li j, and Ci j is the section transport capacity in section li j.

Thus, the mathematical expression of infection rate βij can be obtained as:

βi j =

0 Pnew, j − Pboard, j < 0
Pnew, j−Pboard, j

Csurplus, j
Pnew, j − Pboard, j ≥ 0

(9)

where Pnew, j is the number of assembling passengers in intermediate or transfer station j within the
interval between two trains, and Pboard, j is the number of boarding passengers at station j.
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(4) Recovery rate λ

Recovery rate λ is the probability that infected station resumes as normal. It also is a non-negative
and dynamic variable. We can infer that the more significant effect the organization method has on
passenger flow, the greater value the recovery rate has. The main factors that affect λ are passengers’
scale, congestion duration, the capacity of the train, etc.

For the intermediate congested station m, the number of passenger gathered on the platform
when the kth train get in station m is the sum of the passengers arriving at station m within the interval
and the passengers who fail to get on the previous train.

Pint
new,m = Km

up ×

∫ Tk

Tk−1

Ωmdt + Pm
delay,k−1 (10)

where Pint
new,m is the assembling passengers in intermediate station m within the interval, Km

up is the
direction imbalance coefficient at intermediate station, Ωm is the distribution function of passenger
arrival rate, and Pm

delay,k−1 is the passengers who fail to get on the (k− 1)th train.
For the transfer station m, there are three types of passengers gathered on the platform when

the kth train arrived at the station: one is the passengers entering the station within the interval, the
second is the passengers transferred from other lines, the third is the passengers who fail to get on the
previous train.

Ptrans
new,m = Km

up ×Km
up,g ×

∫ Tk

Tk−1

Ωmdt + Km
up

Nm
−2∑

n=1

Cg,m,n
trans + Pm

delay,k−1 (11)

where Ptrans
new,m is the assembling passengers in intermediate station m within the interval between two

trains, Km
up,g is the line imbalance coefficient at transfer station m, Nm is the degree of station in the

network, and Cg,m,n
trans is the number of interchange passengers from other lines to the line g within the

interval.
Thus, the mathematical expression of λm can be obtained as:

λm =

0 Pnew,m − Pboard,m < 0
Csurplus,m−(Pnew,m−Pboard,m)

Csurplus,m
Pnew,m − Pboard,m ≥ 0

(12)

where Pnew,m is the number of assembling passengers in intermediate or transfer station m within the
interval between two trains, Csurplus,m is the surplus capacity of the kth train at station m, and Pboard,m is
the number of boarding passengers at station m.

(5) Propagation time t

In the SIR model, S(t), I(t) and R(t) are functions of time t. In the process of PLC propagation, it
will take some time for the congested state to spread to the adjacent stations.

∆t =
Li j

V
(13)

where Li j is the distance between adjacent stations i and j, and V is the average speed of the train in the
section.
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From Equations (9), (12), and (13), we can get the SIR model of PLC propagation.
dS(t)

dt = −
Pnew, j−Pboard, j

Csurplus, j
S(t)I(t)

dI(t)
dt =

Pnew, j−Pboard, j
Csurplus, j

S(t)I(t) −
Csurplus,m−(Pnew,m−Pboard,m)

Csurplus,m
I(t)

dR(t)
dt =

Csurplus,m−(Pnew,m−Pboard,m)

Csurplus,m
I(t)

(14)

4. Numerical Experiment

In this section, we designed several simulation experiment networks based on the above analyses
of the PLC propagation model in URT networks.

4.1. Sensitivity to Station Degree

The number of connected stations is a fundamental difference in the PLC propagation in the
network. To ensure the accuracy of simulation results we set a unified assumption on the parameters
of SIR model: I0 = 1, β = 0.3, λ = 0.25. I0 = 1 means that PLC occurs at a single station at initial time.
β is the proportion of stations adjacent to congested stations which become congested per unit time. λ
is the proportion of stations recovering from a congested state to a normal state per unit time. Before
the simulation, the value of N (the number of connecting stations to the initial station) also should be
first given. Considering the actual situation and the requirement for theoretical integrity, we assigned
different values (i.e., 1, 2, 3, 4, 5, 6, 8, 10) to the variable N. The simulation results are shown in the
Figure 3.

Figure 3 illustrates the process of change in the total amount of congested stations within 100-time
lags. From Figure 3a (N = 1), it is obvious that the PLC dissipates quickly from the terminal or
departure station. It may be explained by that the PLC at a single station can only spread in the
single-line unilaterally and has little influence on the URT network. Figure 3b (N = 2) shows PLC
spread in two directions within a single line. The number of congested stations increases before
20-time lags and then keep a stable state. Compare Figure 3a,b, it can be seen that when PLC occurs
at intermediate station, the impact of congestion caused by the intermediate station is significantly
greater than the terminal or departure station. Figure 3c–f illustrate that the number of congested
stations converges to higher value with larger initial N. Besides, the time to reach the peak is getting
shorter and shorter. The simulation results show that the higher the degree of the initial congested
station is, the faster the congestion will spread in the network, and the larger influence scope the
station has. When N = 8, the total number of crowded stations can reach peak value in a short period
of time. However, the number of congested stations will not be flat curve, but fluctuates between two
different levels. From Figure 3h (N = 10), it can be seen that the number of congested stations has
a significant random fluctuation, which is similar to the period doubling bifurcation. The random
fluctuation phenomenon indicates that the congestion in the network cannot be effectively controlled.
It may ultimately affect the entire URT network and even cause network paralysis.
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Figure 3. Simulation results for PLC propagation from a single station in different initial states.

4.2. Sensitivity to Initial Congested Stations

In this section, two different URT networks were selected to analysis the sensibility to the number
of initial congested stations—a URT network with β = 0.3, λ = 0.25, N = 4, and the other one with
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β = 0.35, λ = 0.15, N = 4. Six scenarios (I0 = 1, 2, 4, 5, 6, 7) were simulated and the simulation results
are shown in Figures 4 and 5, respectively.

Information 2019, 10, 258 9 of 16 

Figure 3 illustrates the process of change in the total amount of congested stations within 100-

time lags. From Figure 3a ( 1N = ), it is obvious that the PLC dissipates quickly from the terminal or 
departure station. It may be explained by that the PLC at a single station can only spread in the single-

line unilaterally and has little influence on the URT network. Figure 3b ( 2N = ) shows PLC spread 
in two directions within a single line. The number of congested stations increases before 20-time lags 
and then keep a stable state. Compare Figure 3a,b, it can be seen that when PLC occurs at intermediate 
station, the impact of congestion caused by the intermediate station is significantly greater than the 
terminal or departure station. Figure 3c–f illustrate that the number of congested stations converges 
to higher value with larger initial N. Besides, the time to reach the peak is getting shorter and shorter. 
The simulation results show that the higher the degree of the initial congested station is, the faster 

the congestion will spread in the network, and the larger influence scope the station has. When =8N
, the total number of crowded stations can reach peak value in a short period of time. However, the 
number of congested stations will not be flat curve, but fluctuates between two different levels. From 

Figure 3h ( 10N = ), it can be seen that the number of congested stations has a significant random 
fluctuation, which is similar to the period doubling bifurcation. The random fluctuation phenomenon 
indicates that the congestion in the network cannot be effectively controlled. It may ultimately affect 
the entire URT network and even cause network paralysis. 

4.2. Sensitivity to Initial Congested Stations 

In this section, two different URT networks were selected to analysis the sensibility to the 

number of initial congested stations—a URT network with 0.3β = , 0.25λ = , 4N = , and the 

other one with 0.35β = , 0.15λ = , 4N= . Six scenarios ( 0=1,2,4,5,6,7I ) were simulated and the 
simulation results are shown in Figures 4 and 5, respectively. 

0 2 4 6 8 10

1

2

3

4

5

6

7

I(t
+1

)

Time

 1
 2
 3
 4
 5
 6
 7

 
Figure 4. The convergence of the total number of congested stations with time when the urban rail 
transit (URT) network is not intensive. 

Figures 4 and 5 present the propagation process of PLC from multiple stations in the initial state. 
The number of congested stations converges to a same fixed value under the same initial conditions 
including infection rate, recovery rate and topology structure, whereas, a larger number of initial 
congested stations can lead to a faster convergence process. It can be seen from Figure 4 that although 
a different number of stations are congested in the initial state, the eventual number of congested 
stations are the same, and a total of about 4 stations are affected by PLC. Figure 5 shows similar 

Figure 4. The convergence of the total number of congested stations with time when the urban rail
transit (URT) network is not intensive.

Information 2019, 10, 258 10 of 16 

characteristics with Figure 4. The number of eventually affected stations are the same among different 
scenarios, and a total of about 8 stations are affected by PLC. Compared with the final convergence 
results of Figures 4 and 5, it suggests that PLC propagation is more difficult to dissipate in the dense 
URT networks.  

0 5 10

1

2

3

4

5

6

7

8

9

I(t
+1

)

Time

 1
 2
 3
 4
 5
 6
 7

 
Figure 5. The convergence of the total number of congested stations with time when the URT network 
is dense. 

4.3. Sensitivity to Infection Rate and Recovery Rate 

In this section, we explored the impact of the infection rate and the recovery rate on the PLC 
propagation in the SIR model. Two scenarios of PLC propagation processes were simulated, and the 
numbers of the congested stations under the two scenarios were obtained as shown in Figures 6 and 

7. In the first case, we set the infection rate β  with a fixed value and the recovery rate λ  with 

different values; in the second case, we set the recovery rate λ  with a fixed value and the infection 

rate β  with different values.  

Value of infection rate

 

Figure 5. The convergence of the total number of congested stations with time when the URT network
is dense.

Figures 4 and 5 present the propagation process of PLC from multiple stations in the initial state.
The number of congested stations converges to a same fixed value under the same initial conditions
including infection rate, recovery rate and topology structure, whereas, a larger number of initial
congested stations can lead to a faster convergence process. It can be seen from Figure 4 that although a
different number of stations are congested in the initial state, the eventual number of congested stations
are the same, and a total of about 4 stations are affected by PLC. Figure 5 shows similar characteristics
with Figure 4. The number of eventually affected stations are the same among different scenarios, and
a total of about 8 stations are affected by PLC. Compared with the final convergence results of Figures 4
and 5, it suggests that PLC propagation is more difficult to dissipate in the dense URT networks.

4.3. Sensitivity to Infection Rate and Recovery Rate

In this section, we explored the impact of the infection rate and the recovery rate on the PLC
propagation in the SIR model. Two scenarios of PLC propagation processes were simulated, and the
numbers of the congested stations under the two scenarios were obtained as shown in Figures 6 and 7.
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In the first case, we set the infection rate β with a fixed value and the recovery rate λ with different
values; in the second case, we set the recovery rate λ with a fixed value and the infection rate β with
different values.

In the first scenario, the recovery rate was assigned with a fixed value of 0.25, and the assigned
values of infection rate are ordered from high to low: 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45.
From Figure 6, we can infer that the number of eventually congested stations increases with the
infection rate. The infection rate is determined by the number of passengers waiting on platform and
the operating speed of trains to some extent according to Equation (9). The trains in URT are usually
run at a fixed speed. In other words, the PLC can spread more widely throughout the network, if there
are more passengers waiting on the platform. The second scenario was given with β = 0.25, and the
assigned values of recovery rate are ordered from high to low: 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35,
0.40. From the Figure 7, it can be concluded that with increasing recovery rate, less stations will be
congested eventually. The number of congestion stations has a decreasing trend from the beginning if
there is λ > β. On the contrary, if there is λ < β, the number of congestion stations increase from the
initial state, and duration of PLC propagation process becomes longer with larger value of recovery
rate. Particularly, when λ < β, a little decrease in the value of recovery rate λ may contribute to great
serious congestion. It suggests that appropriate transport organization measures for the purpose of
increasing recovery rate λ is a useful method to prevent the proliferation of PLC in URT networks.

 

3 

 

 

Figure 6. The total number of congested stations with the increasing of infection rate β while the
recovery rate λ = 0.25.

 

3 

 

 

Figure 7. The total number of congested stations with the increasing of recovery rate λ while the
infection rate β = 0.25.
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5. Control Strategy

According to the type of object targeted at, the control strategies for URT networks can be divided
into two categories: supply control and demand control.

5.1. Supply Control

(1) Train marshalling plan

Train marshalling can be categorized into three types: large grouping, small grouping, and mixed
marshalling. For the rail transit lines, with long average travel distance and high travel demand,
the train transport capacity can be improved by increasing the marshalling number and departure
frequency of trains.

(2) Train routing plan

Train routing plan refers to the trace that the train operates on the rail lines. It has two different
modes: conventional routing and special routing. Conventional routing scheme refers that a train
travel along tracks between two terminal stations of the rail line. There are three typical kinds of
special routing scheme, as shown in Figure 8. Figure 8a represents junction routing scheme that is
able to take into account the various demands of different line sections. In the case of larger and more
concentrated half passenger flow at the end of one line, the nested routing scheme, which is shown in
Figure 8b, can reduce transportation costs and improve utilization of trains. Figure 8c is a staggered
routing scheme, which is suitable for connecting the suburbs and the urban areas, and the passenger
flow in each section is unbalanced and shows centripetal characteristic.
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Figure 8. Special routing scheme.

(3) Stopping schedule

In URT networks, stopping schedule mainly includes stopping at each station and a skip-stop
strategy. The skip-stop strategy represents that some determinate or stochastic trains could skip
one or more stations. Compared with stopping at each station, the skip-stop strategy is able to
reduce congested passengers’ travel time by eliminating under-saturated stations’ dwell time. It is
usually applied during peak periods or when there is outburst mass passenger flow such as large
sports tournaments.

As discussed above, supply control measures are able to increase the surplus capacity of trains
by increasing train departure frequency and operating speed. According to Equations (9) and (11),
the infection rate is negatively associated with the surplus capacity of trains, whereas the relationship
between the recovery rate and the surplus capacity of trains is positive. Figure 9 displays the changes
in infection rate and recovery rate versus different increased multipliers of surplus capacity given an
initial parameters pair (β = 0.45,λ = 0.1). It can be seen that both the curves of infection rate and
recovery rate tend to be flat with larger increased multiplier of surplus capacity. In other words, the
variation of these two parameters is more sensitive when the surplus capacity begins to change. We
conducted numerical tests here to assess the performance of the PLC propagation for four assumed
supply control scenarios that the increased multipliers of the surplus capacity equal to 0.1, 0.2, 0.3, and
0.4, respectively. The corresponding parameters are shown in Table 1. Figure 10 presents the simulation
process of these four scenarios. The simulation results indicate that supply control measures can not
only reduce passengers’ travel time but also relieve congestion pressure.
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Figure 9. Changes in model parameters versus increased multipliers of surplus capacity.

Table 1. The related parameters of supply control measures.

Supply Control Measures Infection Rate β Recovery Rate λ Max I (t + 1)

Without control measure 0.45 0.10 17.40
Control measure 1 0.41 0.18 8.40
Control measure 2 0.38 0.25 5.08
Control measure 3 0.35 0.31 3.52
Control measure 4 0.32 0.36 2.56
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5.2. Demand Control

When the inbound and outbound passenger flow increases, the capacities of automatic ticket
machines, security facilities, and tap-in/tap-out gates may be insufficient, where the bottleneck of PLC
evacuation will occur. The basic strategies of demand control in URT networks include: outbound
manual auxiliary and restricted entrance. The outbound manual auxiliary measures are as follows:
1Omanual ticket; 2Omanual fare collection; 3Oevacuation passenger flow through broadcasting. When

the phenomenon of PLC does not alleviate, we can take three additional levels of restricted entrance
measures to alleviate PLC pressure. The contents of the restricted entrance measures are shown in
Table 2.
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Table 2. The contents of the restricted entrance.

Level of Restriction Action Position Detailed Content

Level I Platform/Platform channel Intercept passenger flow, close channel or
change escalator running direction

Level II Subway hall/Gate Control passenger flow continued to enter
the payment area

Level III Station entrances Control passenger flow into the station

As distinct from supply control measures, demand control measures can lead to a reduction of the
net platform-passenger variation (i.e., the assembling passengers minus boarding passengers within
the interval between two trains). Based on Equations (9) and (11), there is positive correlation between
the infection rate and the net platform-passenger variation, and the station with less crowed platform
has a larger recovery rate. Although demand control measures can generate similar effects, namely less
impact of congested stations and easier recovery to the normal state, both the two parameters present
linear correlation with the net platform-passenger variation, as shown in Figure 11, which is different
from the inverse proportion relationship for supply control measures. To evaluate the performance
of demand control measures, four assumed universal demand control scenarios were simulated and
compared with the initial parameters pair β = 0.45, λ = 0.1. For each of the scenarios, we reduced
the same number of net platform-passenger variation for all stations. The related parameters of the
assumed demand control scenarios are shown in Table 3, and the effect of demand control measures
on PLC propagations is shown in Figure 11. The results indicate that demand control measures can
significantly reduce the propagating scope of PLC.
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Table 3. The related parameters of universal demand control measures.

Demand Control Measures Infection Rate β Recovery Rate λ Max I (t + 1)

No control measure 0.45 0.10 17.40
Control measure 1 0.40 0.15 9.92
Control measure 2 0.35 0.20 6.05
Control measure 3 0.30 0.25 3.80
Control measure 4 0.25 0.30 2.33

Compared with the simulation results in Table 1 and Figure 10, the decrease in maximum number
of congested stations in demand control scenarios is smaller than that in supply control scenarios,
when taking mild control measures. However, with evenly strengthening control measures, demand
control measures can achieve better congestion control performance than supply control measures.
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It suggests that supply control measures have advantages under the situation, when there is slight
congestion. Nevertheless, demand control measures should be more effective if a serious congestion
occurs at the metro network.

What is more, demand control measures can be implemented exactly to control specific stations,
whereas supply control measures can only be applicable to rail lines or long routing sections. For
example, we can only conduct demand control measures to the congested stations. It means that the
infection rate will be fixed and the recovery rate will increase. We simulated four specific demand
control scenarios that only have different recovery rates. The corresponding parameters and simulation
results are given in Table 4. As shown in Table 4, the maximum numbers of congested stations for
different specific demand control measures are approximate to the values for universal demand control
measures. That is, the specific demand control measures are also effective in reducing congestion.
Besides, the specific demand control measures are more easily implemented because it need less staff

and management adjustment.

Table 4. The related parameters of specific demand control measures.

Demand Control Measures Infection Rate β Recovery Rate λ Max I (t + 1)

No control measure 0.45 0.10 17.40
Control measure 1 0.45 0.20 8.35
Control measure 2 0.45 0.30 5.20
Control measure 3 0.45 0.40 3.58
Control measure 4 0.45 0.50 2.61

6. Conclusions

This study focuses on the analysis of PLC propagation and the effect of control strategies to
alleviate congestion for URT networks. Based on theories of epidemiological dynamics and complex
network, an SIR-based model is established to simulate the propagation process of PLC in URT
networks. Combined with the characteristics of passenger flow and train operation organization in
URT, the mechanism of each parameter in SIR model is discussed deeply in this paper. We simulated
the process of PLC propagation under various situations and analyze the sensitivity of PLC propagation
to model parameters. Finally, the control strategies of PLC propagation were discussed from two
aspects, namely supply control and demand control, and the effectiveness of control measures was
verified with the proposed model.

The results indicate that both of the two control strategies are able to contribute to relieving
congestion pressure by reducing the infection rate and increasing the congestion recovery rate.
The propagating scope of PLC is more sensitive when taking mild supply control, whereas the demand
control measures show advantages in dealing with serious congestion. Besides, demand control
measures can be flexibly implemented to specific stations with less staff and management adjustment.
This work can help the URT agencies in understanding the mechanism of PLC propagation process
and providing a helpful decision for congestion management.

Future work will concentrate on making the main characteristic parameters in the model
more meticulous, as well as establishing the function of infection rate and recovery rate with time.
Furthermore, the new model should also be tested with actual and dynamic situations.
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