
 information

Article

Comparative Performance Evaluation of
an Accuracy-Enhancing Lyapunov Solver †

Vasile Sima

National Institute for Research & Development in Informatics, 011455 Bucharest, Romania; vsima@ici.ro
† This paper is an extended version of our paper published in 2018 22nd International Conference on System

Theory, Control and Computing (ICSTCC), Sinaia, Romania, 10–12 October 2018.

Received: 13 May 2019; Accepted: 16 June 2019; Published: 19 June 2019
����������
�������

Abstract: Lyapunov equations are key mathematical objects in systems theory, analysis and design of
control systems, and in many applications, including balanced realization algorithms, procedures for
reduced order models, Newton methods for algebraic Riccati equations, or stabilization algorithms.
A new iterative accuracy-enhancing solver for both standard and generalized continuous- and
discrete-time Lyapunov equations is proposed and investigated in this paper. The underlying
algorithm and some technical details are summarized. At each iteration, the computed solution
of a reduced Lyapunov equation serves as a correction term to refine the current solution of the
initial equation. The best available algorithms for solving Lyapunov equations with dense matrices,
employing the real Schur(-triangular) form of the coefficient matrices, are used. The reduction to
Schur(-triangular) form has to be done only once, before starting the iterative process. The algorithm
converges in very few iterations. The results obtained by solving series of numerically difficult
examples derived from the SLICOT benchmark collections for Lyapunov equations are compared to
the solutions returned by the MATLAB and SLICOT solvers. The new solver can be more accurate
than these state-of-the-art solvers and requires little additional computational effort.

Keywords: linear multivariable systems; Lyapunov equation; numerical algorithms; software; stability

1. Introduction

Lyapunov equations are key mathematical objects in systems theory, analysis and design
of (control) systems, and in many applications. Solving these equations is an essential step in
balanced realization algorithms [1,2], in procedures for reduced order models for systems or
controllers [3–7], in Newton methods for algebraic Riccati equations (AREs) [8–14], or in stabilization
algorithms [12,15,16]. Stability analyses for dynamical systems may also resort to Lyapunov equations.

Standard continuous-time or discrete-time Lyapunov equations,

ATX + XA = −Y, (1)

ATXA− X = −Y, (2)

respectively, with symmetric matrix Y, Y = YT , and T denoting the matrix transposition, are associated
to an autonomous linear time-invariant system, described by

δ(x(t)) = Ax(t), t ≥ 0, x(0) = x0, (3)

where x(t) ∈ IRn, and δ(x(t)) is either dx(t)/dt—the differential operator, or x(t + 1)—the advance
difference operator, respectively. A necessary and sufficient condition for asymptotic stability of
system (3) is that for any symmetric positive definite matrix Y, denoted Y > 0, there is a unique

Information 2019, 10, 215; doi:10.3390/info10060215 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0003-1445-345X
http://www.mdpi.com/2078-2489/10/6/215?type=check_update&version=1
http://dx.doi.org/10.3390/info10060215
http://www.mdpi.com/journal/information

Information 2019, 10, 215 2 of 22

solution X > 0 of the Lyapunov Equation (1), or (2). Several other facts deserve to be mentioned. If Y is
positive-semidefinite, denoted Y ≥ 0, and X > 0, then all trajectories of x(t) in system (3) are bounded.
If, in addition, the pair (Y, A) is observable, then system (3) is globally asymptotically stable. Another
sufficient condition for global asymptotic stability is that Y > 0 and X > 0. If Y ≥ 0 and X 6≥ 0,

then A is not stable. If V(x) = xTXx is a generalized energy, it follows that dV(x)
dt = −xTYx, in the

continuous-time case, and V(x(t + 1))− V(x(t)) = −xTYx, in the discrete-time case, that is, xTYx
is the associated generalized dissipation. The function V(x) is a quadratic Lyapunov function. If X > 0,
then V(x) = 0 implies x = 0.

For convenience, the often used notions and notation are given here.

• op(M) is either M or MT , for a matrix M.
• R(M) is the residual matrix obtained when the unknown matrix X is replaced by M in an equation.

For instance, for Equation (1),R(M) = AT M + MA + Y.
• Matrix M is (upper) quasi-triangular if it is block (upper) triangular with diagonal blocks of order 1

or 2.
• Matrix M is in a real Schur form if it is upper quasi-triangular and any 2× 2 diagonal block has

complex conjugate eigenvalues.
• Matrix M ∈ IRn×n is in Hessenberg form if it has zeros under the first subdiagonal, i.e., mij = 0, j =

1 : n := 1, 2, . . . , n, i = j + 2 : n.
• Matrix pair (M, N) is in a generalized real Schur form, also named real Schur-triangular form, if M is

in a real Schur form and N is upper triangular.

• Frobenius norm of a matrix M ∈ IRn×p is ‖M‖F :=
√

∑
p
j=1 ∑n

i=1 m2
ij =

√
∑

min{n,p}
i=1 σ2

i , where σi,

i = 1 : min{n, p} are the singular values of M. If M = MT , ‖M‖F =
√

∑n
i=1 λ2

i , where λi ∈ Λ(M),
i = 1 : n, are the eigenvalues of M.

• rcond: estimated reciprocal condition number.
• εM: relative machine precision, εM ≈ 2.22× 10−16, in double precision format (IEEE 754 standard).

This paper considers generalized continuous-time or discrete-time Lyapunov equations

op(A) TX op(E) + op(E) TX op(A) = −Y, (4)

op(A) TX op(A) − op(E) TX op(E) = −Y, (5)

respectively, where A, E ∈ IRn×n. The operator op(M) is often used in basic numerical linear algebra
software [17,18], for increased generality and flexibility. A necessary solvability condition is that both A
and E, for Equation (4), or either A or E, for Equation (5), are nonsingular. It will be assumed, without
loss of generality, that E in Equation (5) is nonsingular. If Λ(A, E) ⊂ IC−, where Λ(M, N) is the set of
eigenvalues of the matrix pencil M− λN, λ ∈ IC, and IC− is the open left half of the complex plane
IC, in the continuous-time case, or the open unit disk centered in the origin of IC, in the discrete-time

case, then Equations (4) or (5) are stable Lyapunov equations. If Y ≥ 0, a stable Lyapunov equation has
a unique solution X ≥ 0, that can be expressed and computed in a factored form, X = UTU, where U
is the Cholesky factor of X [19]. The standard Lyapunov Equations (1) or (2) are special cases of the
generalized Equations (4) or (5), where E is an identity matrix, E = In, and op(M) = M.

There are applications for which the availability of the op(·) operator is important.
Such an application is the computation of the Hankel singular values of a dynamical system,

Eδ(x(t)) = Ax(t) + Bu(t), y(t) = Cx(t), (6)

for which, two related Lyapunov equations are defined,

APET + EPAT = −BBT , ATQE + ETQA = −CTC, (7)

Information 2019, 10, 215 3 of 22

in the continuous-time case, and

APAT − EPET = −BBT , ATQA− ETQE = −CTC, (8)

in the discrete-time case.
The solutions P and Q of these equations are the controllability and observability Gramians,

respectively, of system (6). The Hankel singular values are the nonnegative square roots of the eigenvalues
of the matrix product QP. If the system (6) is stable, then P ≥ 0 and Q ≥ 0, and these properties imply
that QP ≥ 0. But these theoretical results may not hold in numerical computations if the symmetry
and semidefiniteness are not preserved by the solver. Some computed Hankel singular values may
be returned as negative or even complex numbers. Such an example is given in [20]. This proves
how important is to ensure the accuracy and reliability of the results. The recommended algorithm
for this application, proposed in [19], for E = In, and extended in [21] for a general matrix E, uses B
and C directly, without evaluating BBT and CTC, and computes the Choleky factors Rc and Ro of the
Gramians, P = RcRT

c , Q = RT
o Ro. The Hankel singular values are then obtained as the singular values

of the product RcRo, which are all real nonnegative.
Many algorithms have been proposed to solve Lyapunov and more general linear matrix equations.

The first numerically stable algorithm has been developed by Bartels and Stewart in [22] for Sylvester
equation, AX + XB = C, where A ∈ IRn×n, B ∈ IRm×m, and C ∈ IRn×m, and also specialized for
solving Lyapunov Equation (1). A transformation approach is used: AT and B are each reduced to
a quasi-triangular form, using orthogonal transformations U and V, Ã = UT ATU, B̃ = VT BV, and
C is updated, C̃ = UTCV. Then, a reduced equation, ÃTX̃ + X̃B̃ = C̃ is solved by a special back
substitution process, and its solution is transformed back to the solution of the original equation,
X = UX̃VT . For standard Lyapunov equations, A is reduced to a quasi-triangular form or a real Schur
form, but the rest of the procedure is similar. A more efficient algorithm for Sylvester equations with
n ≥ m is based on the Hessenberg-Schur method [23], which reduces BT to quasi-triangular form and
A to Hessenberg form. Clearly, this algorithm has no advantage for Lyapunov equations. Hammarling’s
algorithm [19] also uses the transformation approach for stable Lyapunov equations with Y ≥ 0,
and computes the Cholesky factor of the solution. Many algorithmic and computational details for
Sylvester and standard Lyapunov equations are given, e.g., in [12]. Computational improvements
for solving the reduced equations have been proposed in [24–26]. An extension of Bartels-Stewart
algorithm for generalized Lyapunov equations has been described in [21]. In this case, using two
orthogonal matrices, the pair (A, E) is reduced to the generalized real Schur form [27], also called real
Schur-triangular form, (Ã, Ẽ), with Ã in a real Schur form and Ẽ upper triangular. Then, the right hand
side Y is updated accordingly, the corresponding reduced Lyapunov equation is solved, and the result
is transformed back to the solution of the original equation. A comprehensive recent survey of the
theory and applications of linear matrix equations is [28].

It is worth to mention that solvers implementing Bartels-Stewart-like approaches can be used
for small and medium size Lyapunov equations, with n currently less than a few thousands, due to
their complexity of order n3. Large-order equations can be approached by iterative algorithms, usually
exploiting sparsity and/or the low-rank structure, see [28] and the references therein. A compact
conjugate-gradient algorithm is proposed in [29] for solving large-scale Equation (4) with factored,
low-rank Y and symmetric positive definite matrices A and E. Iterative methods recorded a fast
development in recent years for solving various linear and nonlinear problems. For instance,
Kyncheva et al. [30] analyze the local convergence of Newton, Halley and Chebyshev iterative methods
for simultaneous determination of all multiple zeros of a polynomial function over an arbitrary normed
field, while [31] presents a new semi-local convergence analysis for Newton’s method in a Banach
space for systems of nonlinear equations.

This paper investigates the accuracy and efficiency of several Lyapunov solvers for equations
with dense matrices. Specifically, the state-of-the-art solvers from the Control System Toolbox [32] and
SLICOT Library [20,33,34] (www.slicot.org), and a new accuracy-enhancing iterative solver, referred to

www.slicot.org

Information 2019, 10, 215 4 of 22

as ArLyap, are considered. As in [35], the ArLyap solver has been derived as a special case of an ARE
solver based on Newton’s method, with or without line search [13,14,36–38]. Actually, Lyapunov
equations are simplified AREs, without the quadratic or rational matrix term. All these solvers are
based on the best algorithms for Lyapunov equations with dense matrices: the algorithm in [22] and
its generalization [21], both available in SLICOT. Relatively straitforward modifications of the ArLyap
solver allow to use other algorithms for solving the reduced equations, for instance, Hammarling’s or
Penzl’s algorithms in [19] or [21], respectively, for stable equations with Y ≥ 0.

The ArLyap solver offers an option for specifying an initial approximation, X0. It is possible, for
instance, to use some upper or lower bounds of the solution, derived as described in [39]. Using tighter
estimates may reduce the number of iterations for convergence. Another option is to use the op operator,
enherited from the lower-level SLICOT solvers. This allows to compute the real Schur-triangular form
of the pair (A, E) (or the real Schur form of A, when E = In) only once for obtaining both controllability
and observability Gramians. It is not necessary to do these computations for (AT , ET) (or AT).

This paper extends the developments in [35] by using a specialized, more efficient algorithm,
which iterates directly on reduced Lyapunov equations, with A in a real Schur form, and E upper
triangular. The main computational modules involved, which are not available in BLAS [17] or
LAPACK [18] Libraries, are also discussed.

The paper is structured as follows. Section 2 presents the numerical results for solving series of
test examples from the SLICOT benchmark collections for Lyapunov equations, CTLEX [40] and
DTLEX [41]. Section 3 further discusses the relevance of these results. Section 4 describes the
underlying algorithm and the new computational modules. Section 5 concludes the paper.

2. Results

This section presents several results illustrating the performance of the accuracy-enhancing
Lyapunov solver, ArLyap, in comparison to the state-of-the art Control System Toolbox [32] and
SLICOT Library solvers. ArLyap solves reduced Lyapunov equations at each iteration. The same
computational environment as in [35] has been used (64-bit Intel Core i7-3820QM, 2.7 GHz, 16 GB RAM,
double precision, Intel Visual Fortran Composer XE 2015 and MATLAB 8.6.0.267246 (R2015b), Natick,
MA, USA). An executable MATLAB R© MEX-function has been linked using ten new subroutines,
several SLICOT subroutines, and optimized LAPACK and BLAS libraries included in MATLAB.
The results presented in this section and the next one are new, and complement those reported in [35].

2.1. Benchmark Examples

To make possible a comparison with previous results, obtained with the ALyap solver and
reported in [35], the same SLICOT benchmark collections for Lyapunov equations, CTLEX [40] and
DTLEX [41], have been used. These benchmarks allow to investigate the behavior of numerical
methods in difficult situations and assess their correctness, accuracy, and speed. The collections
contain parameter-dependent examples of scalable size (group 4). For convenience, the short notation
TLEX will be used for both collections and their examples. TLEX 4.1 and TLEX 4.2 define stable
standard Lyapunov equations, while TLEX 4.3 and TLEX 4.4 define generalized Lyapunov equations
(stable for TLEX 4.4). Moreover, the solutions of the equations for TLEX 4.1 and TLEX 4.3 are considered
known (being computable with machine accuracy).

TLEX examples are generated using several parameters: the order n, and parameters r, s, λ, and t,
which define the numerical condition of the problem, that influences the accuracy of the solution and its
sensitivity to small perturbations in the data matrices. Increasing the value of any of these parameters,
including n, makes the problem more ill-conditioned. Very ill-conditioned examples can be built even
for small values of n. The same values of these parameters as in [35] have been used (see Table 2
in [35]). Specifically, the sets of values for n, r, s, λ, and t are defined by the following lists:

Information 2019, 10, 215 5 of 22

list_n = 5 : 5 : 20 for TLEX 4.1 – TLEX 4.3; list_n = 15 : 15 : 60 for TLEX 4.4;
list_r = 1.1 : 0.2 : 1.9 for TLEX 4.1;
list_s = 1.1 : 0.2 : 1.9 for TLEX 4.1 and TLEX 4.2;
list_l = −2 : 0.2 : −0.2 for CTLEX 4.2 list_l = −0.9 : 0.2 : 0.9 for DTLEX 4.2;
list_t = 1 : 1 : 30 for TLEX 4.3 list_t = 1.1 : 0.2 : 9.9 for TLEX 4.4;

where the notation in MATLAB style i = k : l : m means that i takes the values k, k + l, k + 2l, . . . , m.
A series of equations has been generated for each TLEX example, using two or three nested loops.

The series for TLEX 4.1 is produced by a loop for n = list_n, incorporating a loop for r = list_r,
containing, in turn, a loop for s = list_s. The order of the loops is list_n, list_l, and list_s,
for TLEX 4.2, and list_n and list_t, for TLEX 4.3 and TLEX 4.4. Each abscissa value in the figures
below is the index of an example in a generated series. All figures in this paper are new.

2.2. Performance Analysis Issues

The accuracy of a computed solution, X̂, is assessed using the relative error,

e(X̂) := ‖X̂− X‖F/ max(1, ‖X‖F),

when the true solution, X, is known (i.e., for TLEX 4.1 and TLEX 4.3). In this formula, ‖M‖F denotes
the Frobenius norm of the matrix M. If X is unknown (i.e., for TLEX 4.2 and TLEX 4.4), the normalized
residual with respect to Xm, defined as

r(X̂) := ‖R(X̂)‖F/ max(1, ‖Xm‖F), (9)

is used by the performance analysis program, whereR(X̂) is the residual matrix at X̂ (see the definition
ofR(·) in Section 1), and Xm is the solution computed by the MATLAB functions lyap or dlyap, for
CTLEX and DTLEX examples, respectively. The usual definition of the normalized residual, used
internally by the ArLyap solver to decide if convergence has been achieved, has X̂ instead of Xm in its
denominator. The use of Xm in Equation (9) allows to make fair comparisons of the residual norms
corresponding to all these solvers.

In order to avoid too ill-conditioned examples, which cannot be reliably solved by any solver,
the performance analysis program also estimates the reciprocal condition number, rcond, of Lyapunov
equations, and may bound its value. The SLICOT-based MATLAB functions lyapcond and steicond
are used as condition estimators for standard continuous- and discrete-time Lyapunov equations,
respectively. The same functions are called for generalized Lyapunov equations, by replacing the
matrices A and Y by E−1 A and E−TYE−1, respectively. These estimators are using the exact solution X,
when known, or the MATLAB computed solution Xm, otherwise. The chosen sequence of parameter
values for each example produces a zigzaggy variation of rcond.

As in [35], the equations with an estimated rcond smaller than ε1/2
M ≈ 1.49× 10−8, where εM is the

relative machine precision, have been excluded for TLEX 4.1 and CTLEX 4.4 series of examples. Similarly,
the equations with rcond < 10−14 have been omitted from the TLEX 4.2 generated series. Moreover,
the examples with ‖Xm‖F > 0.4/εM ≈ 1.8× 1015 have been excluded from the DTLEX 4.4 series.

2.3. Continuous-Time Lyapunov Equations

Figure 1 shows the relative errors for CTLEX 4.1 series of examples generated as mentioned
in Section 2.1. The MATLAB and SLICOT solvers are compared with the ArLyap solver. Figure 2
depicts the number of iterations for ArLyap, the estimated reciprocal condition numbers, rcond, of
the equations, and the Frobenius norms of the true solutions. Almost all examples needed less than
four iterations. Figure 3 plots the elapsed CPU times of the three solvers for this series of examples.
The SLICOT solver is the fastest, and it is closely followed by the ArLyap solver. The accuracy results
(Figure 1) for well-conditioned equations, i.e., with rcond close to 1, are slightly worse than those

Information 2019, 10, 215 6 of 22

reported in [35], for reasons explained in detail in Section 3. However, for several ill-conditioned
examples, such as those numbered 50, 54, 55, or 63, the relative errors for ArLyap are much smaller
than for the ALyap solver.

0 10 20 30 40 50 60 70 80

Example #, depending on parameters

10-16

10-15

10-14

10-13

10-12

10-11

R
el

at
iv

e
er

ro
rs

Relative errors for Example 4.1 from CTLEX collection

MATLAB
SLICOT
ArLyap

Figure 1. Relative errors for CTLEX 4.1 series of examples.

0 10 20 30 40 50 60 70 80
0

5

ite

ra
tio

ns

Number of iterations for Example 4.1 from CTLEX collection

0 10 20 30 40 50 60 70 80
10-10

10-5

100

rc
on

d

Reciprocal condition for Example 4.1 from CTLEX collection

0 10 20 30 40 50 60 70 80

Example #, depending on parameters

10-5

100

105

||
X

 ||
F

Solution Frobenius norm for Example 4.1 from CTLEX collection

Figure 2. Number of iterations for ArLyap solver, reciprocal condition numbers, and the known
solution norms for CTLEX 4.1 series of examples.

0 10 20 30 40 50 60 70 80

Example #, depending on parameters

10-5

10-4

10-3

C
P

U
 ti

m
e

(s
ec

)

CPU times for Example 4.1 from CTLEX collection

MATLAB
SLICOT
ArLyap

Figure 3. Elapsed CPU time for CTLEX 4.1 series of examples.

Information 2019, 10, 215 7 of 22

Table 1 shows the values, rounded to three significant digits, of the normalized residuals for three
examples of the CTLEX 4.1 series, using ALyap and ArLyap. The ArLyap solver obtained smaller
normalized residuals, possibly in fewer iterations, than the ALyap solver. But the difference is that
the pairs of the sets of values in Table 1 are for the solutions of original Lyapunov equations, and for
reduced Lyapunov equations, respectively.

Table 1. Normalized residuals during iteration of ALyap and ArLyap solvers for three examples of the
CTLEX 4.1 series.

Parameters Algorithm Normalized Residuals

n = 5, r = s = 1.1 ALyap 47.1, 1.49× 10−15, 2.39× 10−16

ArLyap 47.1, 2.20× 10−16, 1.58× 10−16

n = 10, r = s = 1.3 ALyap 188, 9.86× 10−15, 2.47× 10−15, 1.50× 10−15

ArLyap 188, 1.26× 10−15, 8.54× 10−16

n = 20, r = 1.5, s = 1.3 ALyap 852, 1.37× 10−11, 9.36× 10−13, 6.06× 10−13, 5.77× 10−13

ArLyap 852, 3.79× 10−14, 3.65× 10−14

As shown in Figure 1, the MATLAB function lyap sometimes obtained smaller normalized
residuals than the other solvers for the CTLEX 4.1 series of examples. But lyap and dlyap use
a balancing procedure before computing the real Schur(-triangular) form. The current results for
SLICOT and ArLyap solvers are computed without any balancing. Moreover, lyap is in advantage
in a comparison since all computations are done on the given data, while the other solvers get the
matrices from the MATLAB context. But even this transfer involves a loss of accuracy. For instance,
for CTLEX 4.1 with n = 3, and r = s = 1.9, the relative error between the MATLAB and Fortran
representations of the matrix A is about 1.47× 10−15, that is, almost one digit of accuracy has been
lost. The matrix Y lost less accuracy, since its relative error is about 8.52× 10−16. Therefore, the data
matrices used by the solvers are not exactly the same.

The normalized residuals for CTLEX 4.2 series of examples are slightly worse than in [35].
Figures 4 and 5 plot other performance results, as for CTLEX 4.1 series. Very few iterations are made.
The rcond values can be even smaller than 10−10, and the solution can have a large Frobenius norm.
The ArLyap solver is faster than the MATLAB function lyap, with few exceptions, and slightly slower
than the SLICOT solver.

0 20 40 60 80 100 120 140 160 180
1

2

3

ite

ra
tio

ns

Number of iterations for Example 4.2 from CTLEX collection

0 20 40 60 80 100 120 140 160 180
10-20

10-10

100

rc
on

d

Reciprocal condition for Example 4.2 from CTLEX collection

0 20 40 60 80 100 120 140 160 180

Example #, depending on parameters

10-20

100

1020

||
X

 ||
F

Solution Frobenius norm for Example 4.2 from CTLEX collection

Figure 4. Number of iterations for ArLyap solver, reciprocal condition numbers, and computed solution
norms for CTLEX 4.2 series of examples.

Information 2019, 10, 215 8 of 22

0 20 40 60 80 100 120 140 160 180

Example #, depending on parameters

10-5

10-4

10-3

10-2

C
P

U
 ti

m
e

(s
ec

)

CPU times for Example 4.2 from CTLEX collection

MATLAB
SLICOT
ArLyap

Figure 5. Elapsed CPU time for CTLEX 4.2 series of examples.

Figure 6 plots the relative errors for CTLEX 4.3 series of examples. The ArLyap solver has almost
identical errors as the SLICOT solver, clearly (much) smaller than lyap for most examples.

0 20 40 60 80 100 120

Example #, depending on parameters

10-16

10-14

10-12

10-10

10-8

10-6

10-4

R
el

at
iv

e
er

ro
rs

Relative errors for Example 4.3 from CTLEX collection

MATLAB
SLICOT
ArLyap

Figure 6. Relative errors for CTLEX 4.3 series of examples.

The normalized residuals for the three solvers have comparable values for CTLEX 4.4 series,
see Figure 7. For most examples, one iteration has been taken, as shown in Figure 8. The normalized
residuals are clearly influenced by the condition numbers.

0 10 20 30 40 50 60 70 80 90

Example #, depending on parameters

10-14

10-12

10-10

10-8

10-6

10-4

N
or

m
al

iz
ed

 re
si

du
al

s

Normalized residuals for Example 4.4 from CTLEX collection

MATLAB
SLICOT
ArLyap

Figure 7. Normalized residuals for CTLEX 4.4 series of examples.

Information 2019, 10, 215 9 of 22

0 10 20 30 40 50 60 70 80 90
1

2

3

4

ite

ra
tio

ns

Number of iterations for Example 4.4 from CTLEX collection

0 10 20 30 40 50 60 70 80 90

Example #, depending on parameters

10-10

10-5

100

rc
on

d

Reciprocal condition for Example 4.4 from CTLEX collection

Figure 8. Number of iterations for ArLyap solver and reciprocal condition numbers for CTLEX 4.4
series of examples.

2.4. Discrete-Time Lyapunov Equations

Figures 9 and 10 show the relative errors and the number of iterations plus reciprocal condition
numbers, respectively, for the DTLEX 4.1 series. A smaller internal tolerance, ε2

M, has been used for
deciding the convergence of the iterative process. This allowed to make additional iterations than
usual in several cases, and reduce the errors. As for the CTLEX 4.1 series (see Figure 1), ArLyap and
SLICOT solvers have comparable relative errors for well-conditioned equations, and hence worse
than those reported in [35], but for several ill-conditioned examples, such as those numbered 55, 62,
65, 70–73, the relative errors for ArLyap are (much) smaller than those for the SLICOT solver and
sometimes also than for ALyap. Figure 11 plots the elapsed CPU times for the three solvers.

0 10 20 30 40 50 60 70 80

Example #, depending on parameters

10-16

10-15

10-14

10-13

10-12

10-11

R
el

at
iv

e
er

ro
rs

Relative errors for Example 4.1 from DTLEX collection

MATLAB
SLICOT
ArLyap

Figure 9. Relative errors for DTLEX 4.1 series of examples; tolerance ε2
M.

0 10 20 30 40 50 60 70 80
0

2

4

6

ite

ra
tio

ns

Number of iterations for Example 4.1 from DTLEX collection

0 10 20 30 40 50 60 70 80

Example #, depending on parameters

10-10

10-5

100

rc
on

d

Reciprocal condition for Example 4.1 from DTLEX collection

Figure 10. Number of iterations for ArLyap solver and reciprocal condition numbers for DTLEX 4.1
series of examples; tolerance ε2

M.

Information 2019, 10, 215 10 of 22

0 10 20 30 40 50 60 70 80

Example #, depending on parameters

10-5

10-4

10-3

10-2

C
PU

 ti
m

e
(s

ec
)

CPU times for Example 4.1 from DTLEX collection

MATLAB
SLICOT
ArLyap

Figure 11. Elapsed CPU time for DTLEX 4.1 series of examples.

Figures 12 and 13 illustrate the performance of the solvers for the DTLEX 4.2 series. The ArLyap
solver returned after the first iteration in most cases. Consequently, its accuracy is comparable to
that of the SLICOT solver. Again, ArLyap is generally more accurate than ALyap for ill-conditioned
equations, but not for well-conditioned ones.

Figure 14 shows the relative errors for the DTLEX 4.3 series of examples. The SLICOT and ArLyap
solvers have comparable errors, which are often better, and sometimes much better, than the errors
of the MATLAB function dlyap. However, the ALyap solver was more accurate than ArLyap for
many examples.

0 20 40 60 80 100 120 140

Example #, depending on parameters

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

No
rm

al
ize

d
re

sid
ua

ls

Normalized residuals for Example 4.2 from DTLEX collection

MATLAB
SLICOT
ArLyap

Figure 12. Normalized residuals for DTLEX 4.2 series of examples.

0 20 40 60 80 100 120 140
1

1.5

2

2.5

3

ite

ra
tio

ns

Number of iterations for Example 4.2 from DTLEX collection

0 20 40 60 80 100 120 140

Example #, depending on parameters

10-20

10-10

100

rc
on

d

Reciprocal condition for Example 4.2 from DTLEX collection

Figure 13. Number of iterations for ArLyap solver and reciprocal condition numbers for DTLEX 4.2
series of examples.

Information 2019, 10, 215 11 of 22

0 20 40 60 80 100 120

Example #, depending on parameters

10-16

10-14

10-12

10-10

10-8

10-6

10-4

Re
la

tiv
e

er
ro

rs

Relative errors for Example 4.3 from DTLEX collection

MATLAB
SLICOT
ArLyap

Figure 14. Relative errors for DTLEX 4.3 series of examples.

Almost always, the ArLyap solver obtained much smaller relative residuals for the DTLEX 4.4
series of examples, as shown in Figure 15. In this case, the matrix X0 has been chosen as Xm, the solution
computed by dlyap, in order to test the behavior for an initialization different from a zero matrix.
In addition, the tolerance τ has been set to ε2

M. This resulted in a larger number of iterations than usual
for several examples, see Figure 16. The maximum number of iterations has been set to kmax = 10.
It should be mentioned that ‖Xm‖F is very big for the examples needing ten iterations. For instance,
‖Xm‖F ≈ 1.58× 1015 for the last example in the series. If ‖Xm‖F is limited to about 10−3/εM ≈
4.5× 1012, the maximum number of iterations is seven (for two examples only) and the maximum
normalized residual is 9.7× 10−13.

0 20 40 60 80 100 120 140

Example #, depending on parameters

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

No
rm

al
ize

d
re

sid
ua

ls

Normalized residuals for Example 4.4 from DTLEX collection

MATLAB
SLICOT
ArLyap

Figure 15. Normalized residuals for DTLEX 4.4 series of examples; tolerance ε2
M. The ArLyap solver is

initialized by dlyap solution.

0 20 40 60 80 100 120 140
0

5

10

ite

ra
tio

ns

Number of iterations for Example 4.4 from DTLEX collection

0 20 40 60 80 100 120 140

Example #, depending on parameters

10-10

10-5

100

rc
on

d

Reciprocal condition for Example 4.4 from DTLEX collection

Figure 16. Number of iterations for ArLyap solver, initialized by dlyap solution, and reciprocal
condition numbers for DTLEX 4.4 series of examples; tolerance ε2

M.

Information 2019, 10, 215 12 of 22

3. Discussion

The ArLyap solver differs from its previous version, ALyap, dealt with in [35], by solving reduced
Lyapunov equations at each iteration, without back transforming their solutions. This implied the
use of the real Schur form of the matrix A, or of the real Schur-triangular form of the matrix pair
(A, E) for residual matrix computation, which provided gains in efficiency, and expected gains in
accuracy, by exploiting the (almost) triangular structure of these matrices. More details will be given in
Section 4. However, the numerical results have shown slightly worse accuracy for some equations in
TLEX 4.1–TLEX 4.3 series of examples. To discover the reason for this abnormal behavior, the ArLyap
solver has been modified to return the normalized residual computed for the original Lyapunov
equation corresponding to the last iteration, in addition to the normalized residual for the reduced
Lyapunov equation. The trajectories for both types of normalized residuals are plotted in Figures 17–21,
for CTLEX 4.1, CTLEX 4.2, CTLEX 4.4, DTLEX 4.2, and DTLEX 4.3 series, respectively. The allowed
reciprocal condition numbers have not been restricted for CTLEX 4.1 examples, and therefore more
(also more ill-conditioned) equations have been solved. A similar behavior has been seen for the other
TLEX series of examples. Clearly, there is a significant difference, usually of one, and sometimes even
more, orders of magnitude between the corresponding points of the two trajectories for each series.

0 10 20 30 40 50 60 70 80 90 100

Example #, depending on parameters

10-16

10-14

10-12

10-10

10-8

N
or

m
al

iz
ed

 re
si

du
al

s

Normalized residuals for Example 4.1 from CTLEX collection

Reduced eq.
Original eq.

Figure 17. Normalized residuals for reduced and original Lyapunov equations for CTLEX 4.1 series of
examples, using the ArLyap solver.

0 20 40 60 80 100 120 140 160 180

Example #, depending on parameters

10-20

10-18

10-16

10-14

10-12

10-10

N
or

m
al

iz
ed

 re
si

du
al

s

Normalized residuals for Example 4.2 from CTLEX collection

Reduced eq.
Original eq.

Figure 18. Normalized residuals for reduced and original Lyapunov equations for CTLEX 4.2 series of
examples, using the ArLyap solver; tolerance ε2

M.

Information 2019, 10, 215 13 of 22

0 10 20 30 40 50 60 70 80 90

Example #, depending on parameters

10-14

10-12

10-10

10-8

10-6

10-4

N
or

m
al

iz
ed

 re
si

du
al

s

Normalized residuals for Example 4.4 from CTLEX collection

Reduced eq.
Original eq.

Figure 19. Normalized residuals for reduced and original Lyapunov equations for CTLEX 4.4 series of
examples, using the ArLyap solver.

0 20 40 60 80 100 120 140

Example #, depending on parameters

10-20

10-18

10-16

10-14

10-12

10-10

N
or

m
al

iz
ed

 re
si

du
al

s

Normalized residuals for Example 4.2 from DTLEX collection

Reduced eq.
Original eq.

Figure 20. Normalized residuals for reduced and original Lyapunov equations for DTLEX 4.2 series of
examples, using the ArLyap solver; tolerance ε2

M.

0 20 40 60 80 100 120

Example #, depending on parameters

10-15

10-14

10-13

10-12

10-11

N
or

m
al

iz
ed

 re
si

du
al

s

Normalized residuals for Example 4.3 from DTLEX collection

Reduced eq.
Original eq.

Figure 21. Normalized residuals for reduced and original Lyapunov equations for DTLEX 4.3 series of
examples, using the ArLyap solver.

Currently, the ArLyap solver uses the normalized residuals for the reduced Lyapunov equations
to decide convergence. While these residuals should theoretically coincide to those for the original

Information 2019, 10, 215 14 of 22

equations, there is a big discrepancy between their numerical values. In addition, less iterations
are needed for deciding that the convergence has been achieved. These issues could make the final
errors or residuals (computed by the external MATLAB program, not by the solver) to be sometimes
larger than those obtained using the ALyap solver. It can be seen that in most cases the trajectories
of the normalized residuals for the original equations are comparable in shape and magnitude to
the trajectories of the relative errors or normalized residuals computed externally, and shown in the
previous section. It should be emphasized that this increase in the normalized residual values is
produced just by the back transformation (with orthogonal matrices!) of the solutions of reduced
Lyapunov equations obtained at the end of the iterative process, and by recomputing the residuals
using A (or A and E) in Equations (1) or (2) (or in (4) or (5)).

Even in computations with orthogonal matrices, rounding errors can significantly perturb
the results. For instance, using the first CTLEX 4.1 example in the generated series, with n = 5,
r = s = 1.1, if Q is the orthogonal matrix reducing A to a real Schur form, Ã = QT AQ, and
Ỹ = QTYQ is the transformed matrix Y in Equation (1), then ‖QỸQT − Y‖F ≈ 4.32× 10−14, and
‖QỸQT − Y‖F/‖Y‖F ≈ 9.17× 10−16, while these values should theoretically be zero. If X̃ is the
solution of the corresponding reduced Lyapunov equation, ÃTX̃ + X̃Ã = −Ỹ, computed using
MATLAB function lyap, its normalized residual is about 3.39× 10−16, but the normalized residual of
the solution of the original equation, X = QX̃QT is about 1.67× 10−15, i.e., about five times bigger
than for X̃. This increase is produced by the two multiplications, with Q and QT . Similarly, for the last
CTLEX 4.1 example in the generated series, with n = 20, r = 1.9, s = 1.1, the normalized residual for
X is over 307 times bigger than for X̃. Such residual magnification could be attenuated only by using
computations with extended precision.

To prove that the back transformation step increases the normalized residuals, the CTLEX 4.1
series of examples has been solved by ArLyap with the additional condition to exit after the first
iteration. The ratios between the corresponding normalized residuals for the original and reduced
equations have been computed. While the normalized residuals in these two cases should theoretically
coincide, the computed values had ratios in the interval [4.62, 420.43], with a mean value of about 54.78.
This proves that the back transformation step always increased the normalized residuals, possibly
by more than two orders of magnitude. However, the relative errors of the two solvers for this test
are comparable. Specifically, the ratios of these errors for the ArLyap and SLICOT solvers are in the
interval [0.203, 2.67], with a mean value of about 1.04. There are 38 examples for which ArLyap was
more accurate, and 37 examples for which it was less accurate.

As shown before, even if the normalized residual of the last iterate computed by ArLyap, X̃k,
is very small, the normalized residual of the computed solution of the original equation, QX̃kQT ,
can be much larger. The previous version of the accuracy-enhancing solver, ALyap, could sometimes
achieve more accurate results, with some additional computational effort, by iterating directly on the
matrices QX̃jQT , j = 0 : k. Usually, the residual matrices of its iterates, and hence the corrections
applied in the process, have larger norms than for the ArLyap solver (see Table 1).

For most of the tests, the default tolerance has been used, to make comparisons with [35] possible.
However, the ArLyap solver produces smaller normalized residuals during iterations than the ALyap
solver. Consequently, ArLyap can often return after one or two iterations. Indeed, with the default
tolerance, all 75 examples generated for the CTLEX 4.1 series needed a total of 124 iterations, hence the
mean value is about 1.65 iterations. This suggested to use a smaller tolerance, hoping for more accurate
final results. With a tolerance τ = 10−6ε, 165 iterations were required, i.e., the mean value increased to
2.17. For both tolerance values above, the maximum number of iterations was five. Some results have
been slightly improved, but not the global statistics, such as the mean of normalized residuals for the
series of examples. Exactly the same results have been obtained with τ = 10−14ε. The reason is that
there is an internal test preventing further iterations if the normalized residual increased from one
iteration to the next one. In such a case, the previous iterate is restored and returned as the solution.
Such an increase is often a sign that the limiting accuracy has been attained, and further iterations

Information 2019, 10, 215 15 of 22

could be purposeless. Even if the residual could be further decreased by chance, such a decrease
will be rather small and will not justify spending additional computational effort. Further numerical
experiments confirmed this conclusion. Indeed, the calculations have been repeated using a test which
enabled the iterative process to continue if the current normalized residual is smaller than ten times
the previous normalized residual value. But then, the normalized residual trajectory may either arrive
to a constant value, or behave periodically, or have all further values in a small range. An exception
occurred for the CTLEX 4.2 example, with n = 10, λ = −0.6, s = 1.5. The normalized residual had the
following values during iterations

6.72 · 10−1, 1.04 · 10−16, 1.90 · 10−16, 9.72 · 10−17, 2.45 · 10−17, 1.91 · 10−16,

1.92 · 10−17, 1.91 · 10−16, 6.73 · 10−18, 9.07 · 10−18, 5.67 · 10−18,

showing that it increased three times. After each increase, the values decreased in the next one or two
iterations. The last value is the smallest. The typical situation is, however, that the normalized residual
at the iteration before the first such increase is either the minimum, or at most four times larger than
the minimum, but often it is much closer.

It is almost impossible to find the best strategy for deciding when to stop. Sometimes, after a local
increase of the normalized residual, the next few iterations will continuously decrease its value,
but then another increase could appear, and the previously found minimum value could not be
further reduced. Since the normalized residuals trajectory is optionally returned by the ArLyap solver,
one possible strategy would be to find the minimum normalized residual value, and call the solver
again with the maximum number of iterations, kmax, set to the corresponding value. Such a strategy
could be useful when accuracy is very important.

There are several directions in which this research can continue. One direction is to combine the
previous and current versions of the accuracy-enhancing solver. Specifically, after two-three iterations
with ArLyap, one can switch to the computations updating the solution of the original equation at each
of the next iterations. Another direction is to refine the stopping strategy, by allowing the iterative
process to continue if the normalized residual at a certain iteration exceeds its value at the previous
iteration by more than, e.g., two times, but stop the process by restoring the previous iterate at the
second detection of a residual increase. Finally, it could be tried to perform the back transformation
in quadruple precision. The IEEE standard 754-2008 specifies quadruple and even octuple precision,
and some Fortran compilers allow quadruple precision. Moreover, it could be worth trying to make
full computations in Fortran, including data input and evaluation of the results. It is expected that
better accuracy will be obtained this way.

4. Materials and Methods

The fact that Lyapunov equations retain only the linear part of AREs suggested that some ARE
solvers might be specialized for solving them. Previous successful experience with the algorithms
for AREs based on Newton’s method, with or without line search [36–38], recommended them as
good candidates. Recently, the author adapted the Newton-based ARE solver to Lyapunov equations.
The conceptual algorithm in [35] is briefly discussed in following subsection and further improved in
the next subsections for achieving the highest efficiency.

4.1. Conceptual Algorithm Description

Starting from a given initial solution, X0, or with X0 = 0, the algorithm computes the current
residual matrix (at iteration k),R(Xk), defined as

R(Xk) := op(A) TXk op(E) + op(E) TXk op(A) +Y, (10)

R(Xk) := op(A) TXk op(A)− op(E) TXk op(E) +Y, (11)

Information 2019, 10, 215 16 of 22

for a continuous- or discrete-time equation, respectively. Then, a generalized (or standard, if E = In)
Lyapunov Equation (12) or (13), respectively, which has the current residual matrix in the right
hand side,

op(A) T Lk op(E) + op(E) T Lk op(A) =−R(Xk), (12)

op(A) T Lk op(A) − op(E) T Lk op(E) =−R(Xk), (13)

is solved in Lk, and the current solution is updated, Xk+1 = Xk + Lk.
The main termination criterion for the iterative process is defined based on the normalized residual,

rk := r(Xk), and a tolerance τ. Specifically, if

rk := ‖R(Xk)‖F/ max(1, ‖Xk‖F) ≤ τ, (14)

the computations are terminated with the computed solution Xk. A default tolerance is used if τ ≤ 0 is
given on input. Its value is defined by one of the formulas below for Equations (4) and (5), respectively,

τ = min { εM
√

n
(
2 ‖A‖F‖E‖F + ‖Y‖F

)
,
√

εM/103 },
τ = min { εM

√
n
(
‖A‖2

F + ‖E‖2
F + ‖Y‖F

)
,
√

εM/103 }. (15)

Another termination criterion is the MATLAB-style relative residual, rr(Xk), defined as the ratio
between ‖R(Xk)‖F and the sum of the Frobenius norms of the matrix terms in Equation (4) or (5).
In addition, if ‖Lk‖F ≤ εM‖Xk‖F the iterative process terminates with the computed solution Xk.

For increased efficiency, A and E are reduced at iteration k = 0 to the real Schur-triangular form,
using two orthogonal transformations, Q and Z, namely

Ã = QT AZ, Ẽ = QTEZ, (16)

where Ã is block upper triangular with diagonal blocks or order 1 and 2, corresponding to real and
complex conjugate eigenvalues, respectively, and Ẽ is upper triangular. Then, the right hand side
of Equation (12) or (13) is transformed

R̃(Xk) := ZTR(Xk)Z, if op(M) = M, or R̃(Xk) := QTR(Xk)Q, if op(M) = MT . (17)

A so-called reduced equation, Equation (18) or (19),

op(Ã) T L̃k op(Ẽ) + op(Ẽ) T L̃k op(Ã) = −R̃(Xk) , (18)

op(Ã) T L̃k op(Ã) − op(Ẽ) T L̃k op(Ẽ) = −R̃(Xk) , (19)

respectively, is solved for L̃k. Finally, L̃k is back transformed,

Lk = QL̃kQT , if op(M) = M, or Lk = ZL̃kZT , if op(M) = MT , (20)

and used to improve the current solution estimate, Xk.

4.2. New Algorithm

It will now be shown that it is not necessary to transform the solution of the reduced Lyapunov
equations, L̃k, back to Lk, except for the final iteration. Indeed, using the notation introduced above,
let X̃k := QTXkQ, if op(M) = M, and X̃k := ZTXkZ, if op(M) = MT . For brevity, only the first case
will be considered, since the second case is similar. From Equation (16), it follows that A = QÃZT ,
and E = QẼZT , so that replacing A and E in Equation (4), we get

ZÃTQTXQẼZT + ZẼTQTXQÃZT = −Y,

Information 2019, 10, 215 17 of 22

and premultiplying by ZT , postmultiplying by Z, and setting X̃ := QTXQ, Ỹ := ZTYZ, this
formula becomes

ÃTX̃Ẽ + ẼTX̃Ã = −Ỹ. (21)

Similarly, Equations (10) and (17) imply

R̃(Xk) := ZTR(Xk)Z = ÃTX̃kẼ + ẼTX̃k Ã + Ỹ. (22)

But from Equation (18),
−R̃(Xk) = ÃT L̃kẼ + ẼT L̃k Ã.

Adding the last two equations, it follows that X̃k+1 := X̃k + L̃k solves Equation (21), hence Xk+1 =

Xk + Lk theoretically solves Equation (4). Since Xk and X̃k are related by a similarity transformation
(X̃k := QTXkQ or X̃k := ZTXkZ), which preserves their eigenvalues, it follows that ‖Xk‖F = ‖X̃k‖F.
The same is true forR(Xk) and R̃(Xk). Therefore, the normalized residuals for Xk and X̃k also coincide
(from Equation (9) with X̂ and Xm replaced by Xk). The same argument shows that the tolerance τ

in Equation (15), computed for the given matrices, A, E, and Y, coincides with its value computed for
the transformed matrices, Ã, Ẽ, and Ỹ. This proves that the whole iterative process can be performed
solving only reduced Lyapunov equations. Just at the final iteration, after convergence, the solution of
the reduced equation should be used for computing Q(X̃k + L̃k)QT .

The same arguments as above can be used for solving Equation (4) with op(A) = AT , or for
solving discrete-time Lyapunov Equation (5).

It is important to emphasize that, in theory, there is no need for an iterative process, but
this can be useful in practice, due to numerical errors and possibly bad numerical conditioning
of a Lyapunov equation.

The new algorithm can be stated as Algorithm 1.

Algorithm 1 Algorithm ArLyap: Accuracy-enhancing Lyapunov solver

Input: The matrices A, E, and Y, and an integer kmax; optionally, initial X0 and a tolerance τ.
Ensure: The solution Xk of Equations (4) or (5).

1: Compute Ã = QT AZ, Ẽ = QTEZ, and Ỹ = ZTYZ, if op(M) = M, or Ỹ = QTYQ, if op(M) =

MT .
2: If X0 is given, evaluate X̃0 = QTX0Q, if op(M) = M, or X̃0 = ZTX0Z, if op(M) = MT .
3: Otherwise, set X̃0 = 0.
4: for k = 0, 1, . . . , kmax do
5: Compute the residual matrix R̃(Xk)

R̃(Xk) := op(Ã) TX̃k op(Ẽ) + op(Ẽ) TX̃k op(Ã) +Ỹ,

R̃(Xk) := op(Ã) TX̃k op(Ã)− op(Ẽ) TX̃k op(Ẽ) +Ỹ,

6: for Equation (4) or (5), respectively.
7: If rk := ‖R̃(X̃k)‖F/ max(1, ‖X̃k‖F) ≤ τ, exit the loop.
8: Solve in L̃k the reduced Lyapunov Equation (18) or (19), respectively.
9: Update X̃k+1 = X̃k + L̃k.

10: end for
11: Compute Xk = QX̃kQT , if op(M) = M, or Xk = ZX̃kZT , if op(M) = MT and return Xk.
12: If k = kmax, “Convergence has not been achieved.”

4.3. Computational Modules for Improving Efficiency

Solving only reduced Lyapunov equations decreases the computational effort with about 1.5n3

floating point operations (flops) per iteration, by avoiding the back transformation of L̃k to Lk
in Equation (20). (This evaluation assumes that the symmetry is exploited.) Additional gains in

Information 2019, 10, 215 18 of 22

efficiency can be obtained by simplifying the computation of residuals, since Ã is in a Schur form,
and Ẽ is upper triangular. Before commenting on how these improvements could be obtained, few
remarks come in order. It is worth mentioning that high-quality numerical software makes references
only to the needed part of an array storing a matrix. For instance, only the entries of an upper (or
lower) triangle of a symmetric matrix are referenced. All elements on the first subdiagonal of a real
Schur matrix are also referenced, and the position of its zero values defines the 1× 1 or 2× 2 blocks
(needed, e.g., for computing the eigenvalues). Note that a matrix in upper Schur form is a special case
of an upper Hessenberg matrix which has no two consecutive nonzero subdiagonal elements.

A professional implementation of the ArLyap solver would need to consider several basic
computational modules, which are not available in BLAS [17], LAPACK [18], or SLICOT libraries.
Specifically, such modules are described below.

1. Compute R := αR + β(op(H) TX + X op(H)), with H an upper Hessenberg matrix and X
a symmetric matrix. This is a special symmetric “rank 2k operation” (a specialized version of the
BLAS 3 routine syr2k), needed, e.g., for solving standard continuous-time reduced Lyapunov
Equation (18), with Ẽ = In.

2. Compute R := αR + β op(H) TX op(H) , with H an upper Hessenberg matrix and X a symmetric
matrix. This operation is necessary for solving standard or generalized discrete-time reduced
Lyapunov Equation (19). Let diag(X), triu(X), and tril(X) denote the diagonal, upper and lower
triangles of X, respectively, and define two, upper and lower, respectively, triangular matrices

U := triu(X)− diag(X)/2, if op(H) = H,

L := tril(X)− diag(X)/2, if op(H) = HT .

Since
X = U + L, U = LT , (23)

it follows that

HTXH = HT(UH) + (UH)T H,
HXHT = (HU)HT + H(HU)T ,

}
if upper triangular part of X is used,

HTXH = HT(LT H) + (LT H)T H,
HXHT = (HLT)HT + H(HLT)T ,

}
if lower triangular part of X is used.

Above, UH, HU, LT H, and HLT are again upper Hessenberg matrices. Therefore, all four
formulas above are special cases of symmetric rank 2k operations, where both matrices involved
are in upper Hessenberg form. Note that one could define, e.g.,

HTXH = (LH)T H + HT(LH), if lower triangular part of X is used,

but then the matrix LH would be a full matrix, hence more computational effort would be needed
to evaluate HTXH.

3. Compute R := αR + β(op(H) op(G) T + op(G) op(H) T), with H and G upper Hessenberg
matrices. This module is called by the module 2.

Information 2019, 10, 215 19 of 22

4. Compute R := αR + β op(E) TX op(E) , with E an upper triangular matrix and X a symmetric
matrix. This operation is needed for solving generalized discrete-time reduced Lyapunov
Equation (19), and it can be performed using the formulas:

ETXE = ET(UE) + (UE)TE,
EXET = (EU)ET + E(EU)T ,

}
if U is used,

ETXE = ET(LTE) + (LTE)TE,
EXET = (ELT)ET + E(ELT)T ,

}
if L is used.

Note that UE, EU, LTE, and ELT are all upper triangular matrices. Hence, each of these four
formulas involve a special symmetric rank 2k operation on an upper triangular pair. This module
needs the product of two upper triangular matrices, expressed as UE, or EU, or LTE, or ELT ,
with U and E upper triangular, and L lower triangular. This is easily done internally using BLAS
2 function trmv in a loop with n cycles.

5. Compute R := αR+ β(op(E) op(U) T + op(U) op(E) T), with E and U upper triangular matrices.
This module is called by the module 4.

6. Compute
P = HX, if op(M) = M,

P = XH, if op(M) = MT ,
(24)

with H an upper Hessenberg matrix and X a symmetric matrix, given either the upper triangle
U or the lower triangle L of X. This module is needed for computing the relative residual for
standard continuous-time reduced Lyapunov equations, since it allows to evaluate the Frobenius
norm of this matrix product (which is a term of that equation). Using X = U + ŨT , or X = LT + L̃,
where Ũ and L̃ = ŨT are strictly upper and lower triangular, respectively, the module evaluates
the product using BLAS 2 trmv function and other routines. Clearly, both HU and LT H are upper
Hessenberg, but the results of this module are full matrices. Using Equation (24), the function of
the module 1 becomes R := αR + β(P + PT). However, this formula should only be used when
relative residual is needed, and hence P should be computed.

7. Compute
R := αR + β(op(H) TX op(E) + op(E) TX op(H)), (25)

with H an upper Hessenberg matrix, X a symmetric matrix, and E an upper triangular
matrix. This operation is needed for solving generalized continuous-time reduced Lyapunov
Equation (18). Using Equation (23), it follows that

HTXE + ETXH = HT(UE) + (UE)T H + (UH)TE + ET(UH),
HXET + EXHT = (HU)ET + E(HU)T + H(EU)T + (EU)HT ,

}
if U is used,

HTXE + ETXH = HT(LTE) + (LTE)T H + (LT H)TE + ET(LT H),
HXET + EXHT = (HLT)ET + E(HLT)T + H(ELT)T + (ELT)HT ,

}
if L is used.

where X = U + L, and U = LT . Note that UE, EU, LTE, and ELT are all upper triangular, and
UH, HU, LT H, and HLT are all upper Hessenberg. Consequently, each of these four formulas
involve two special symmetric rank 2k operations for upper Hessenberg-triangular pairs.

8. Compute R := αR + β(op(H) T op(E) + op(E) T op(H)), with H an upper Hessenberg matrix
and E an upper triangular matrix. This operation is called by the module 7.

9. Compute either P or PT , where P := op(H) TX op(E) , with H an upper Hessenberg matrix, X a
symmetric matrix, and E an upper triangular matrix. This module is needed for evaluating the
Frobenius norm of P, used to obtain the relative residual for generalized continuous-time reduced

Information 2019, 10, 215 20 of 22

Lyapunov equations. The matrix R in Equation (25) becomes R := αR + β(P + PT). However,
this formula should only be used when relative residual is needed. Note that P is a general
matrix, with no structure. The computations can be performed as follows: using the module 6,
compute W = HX, if op(M) = M, or W = XH, if op(M) = MT ; then, compute P = WET ,
if op(M) = M, or P = ETW, if op(M) = MT , using a BLAS 3 trmm operation. Note that the
Frobenius norms of P and PT coincide, and R can be obtained having either P or PT .

All modules operating with a symmetric matrix must use either the upper, or the lower triangle
of an array storing that matrix. Similarly, for an upper Hessenberg matrix, the entries below the
first subdiagonal should not be referenced. The modules discussed above represent an extension
of the BLAS library, extension which is important for the ArLyap solver, but can be used for other
applications as well.

For large order Lyapunov equations, it would be necessary to provide block variants for some
of the modules above. As an example, consider the operation HX, with H upper Hessenberg, and X
symmetric. Since in the ArLyap solver, H is actually in a real Schur form, let us partition,

HX =

[
H11 H12

0 H22

] [
X11 X12

XT
12 X22

]
=

[
H11X11 + H12XT

12 H11X12 + H12X22

H22XT
12 H22X22

]
, (26)

where Hii ∈ IRni×ni , i = 1, 2, n1 + n2 = n, and Hn1+1,n1 = 0. Clearly, H11X11 and H22X22 can be
computed with the module 6, H12XT

12 requires a BLAS 3 operation gemm, H11X12 and H22XT
12 can be

evaluated with an easy extension of the BLAS 3 operation trmm, and H12X22 is obtained by BLAS 3
operation symm. These ideas can be generalized for finer partitions and for other modules above.

5. Conclusions

A new accuracy-enhancing solver for standard and generalized continuous- and discrete-time
Lyapunov equations, has been proposed and investigated. The underlying algorithm and some
technical details have been summarized. The best available algorithms for solving Lyapunov equations
with dense coefficient matrices, based on the orthogonal reduction to the real Schur(-triangular) form
are used in the implementation. The Schur(-triangular) reduction is performed only once, before
starting the iterative process. During the iterations, reduced Lyapunov equations are solved. The result
of the last iteration is back transformed to obtain the solution of the original equation. How the
computations can be organized to increase the efficiency by exploiting the structure and symmetry
is also detailed. The numerical results found when solving series of numerically difficult examples
generated using SLICOT benchmark collections CTLEX and DTLEX are compared to the solutions
computed by the MATLAB and SLICOT solvers. The ArLyap solver can be more accurate than the
other solvers, especially for ill-conditioned equations, without a significant additional computational
effort. Actually, with very few exceptions, the ArLyap solver is faster than the MATLAB solvers,
and close to the SLICOT solvers regarding the elapsed CPU times.

Funding: This research was partially funded by the Ministry of Research and Innovation, Romania, Institutional
research programme PN 1819, project PN 1819-01-01.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ARE algebraic Riccati equation
CTLEX continuous-time Lyapunov equation
DTLEX discrete-time Lyapunov equation
TLEX continuous or discrete-time Lyapunov equation

Information 2019, 10, 215 21 of 22

References

1. Green, M. Balanced Stochastic Realization. Linear Algebra Appl. 1988, 98, 211–247. [CrossRef]
2. Peeters, R.; Hanzon, B.; Olivi, M. Balanced Realizations of Discrete-time Stable All-pass Systems and the

Tangential Schur Algorithm. In Proceedings of the European Control Conference, Karlsruhe, Germany,
31 August–3 September 1999.

3. Badía, J.M.; Benner, P.; Mayo, R.; Quintana-Ortí, E.S. Parallel Algorithms for Balanced Truncation Model
Reduction of Sparse Systems. In Applied Parallel Computing: State of the Art in Scientific Computing, Proceedings
of the 7th International Workshop, PARA 2004, Lyngby, Denmark, 20–23 June 2004; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3732, pp. 267–275.

4. Lin, C.A.; Chiu, T.Y. Model Reduction via Frequency-weighted Balanced Realization. Control Theory Adv.
Technol. 1992, 8, 341–351.

5. Liu, Y.; Anderson, B.D.O. Singular Perturbation Approximation of Balanced Systems. Int. J. Control 1989,
50, 1379–1405. [CrossRef]

6. Safonov, M.G.; Chiang, R.Y. A Schur Method for Balanced-truncation Model Reduction. IEEE Trans. Autom.
Control 1989, AC–34, 729–733. [CrossRef]

7. Tombs, M.S.; Postlethwaite, I. Truncated Balanced Realization of a Stable Non-minimal State-space System.
Int. J. Control 1987, 46, 1319–1330. [CrossRef]

8. Kleinman, D.L. On an Iterative Technique for Riccati Equation Computations. IEEE Trans. Autom. Control
1968, AC–13, 114–115. [CrossRef]

9. Hewer, G.A. An Iterative Technique for the Computation of the Steady State Gains for the Discrete Optimal
Regulator. IEEE Trans. Autom. Control 1971, AC–16, 382–384. [CrossRef]

10. Mehrmann, V.L. The Autonomous Linear Quadratic Control Problem. Theory and Numerical Solution; Thoma, M.,
Wyner, A., Eds.; Lecture Notes in Control and Information Sciences; Springer: Berlin, Germany, 1991;
Volume 163.

11. Lancaster, P.; Rodman, L. The Algebraic Riccati Equation; Oxford University Press: Oxford, UK, 1995.
12. Sima, V. Algorithms for Linear-Quadratic Optimization; Taft, E.J., Nashed, Z., Eds.; Pure and Applied

Mathematics: A Series of Monographs and Textbooks; Marcel Dekker, Inc.: New York, NY, USA, 1996;
Volume 200.

13. Benner, P. Accelerating Newton’s Method for Discrete-time Algebraic Riccati Equations. In Mathematical
Theory of Networks and Systems, Proceedings of the MTNS-98 Symposium, Padova, Italy, 6–10 July 1998; Beghi, A.,
Finesso, L., Picci, G., Eds.; The Hong Kong University of Science and Technology: Hong Kong, China, 1998;
pp. 569–572.

14. Benner, P.; Byers, R. An Exact Line Search Method for Solving Generalized Continuous-time Algebraic
Riccati Equations. IEEE Trans. Autom. Control 1998, 43, 101–107. [CrossRef]

15. Kleinman, D.L. An Easy Way to Stabilize a Linear Constant System. IEEE Trans. Autom. Control 1970,
AC-15, 692. [CrossRef]

16. Armstrong, E.S.; Rublein, G.T. A Stabilization Algorithm for Linear Discrete Constant Systems. IEEE Trans.
Autom. Control 1976, AC-21, 629–631. [CrossRef]

17. Dongarra, J.J.; Du Croz, J.; Duff, I.S.; Hammarling, S. Algorithm 679: A Set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Softw. 1990, 16, 18–28. [CrossRef]

18. Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.;
Hammarling, S.; McKenney, A.; et al. LAPACK Users’ Guide, 3rd ed.; Software Environments Tools, SIAM:
Philadelphia, PA, USA, 1999.

19. Hammarling, S.J. Numerical Solution of the Stable, Non-Negative Definite Lyapunov Equation. IMA
J. Numer. Anal. 1982, 2, 303–323. [CrossRef]

20. Van Huffel, S.; Sima, V.; Varga, A.; Hammarling, S.; Delebecque, F. High-Performance Numerical Software
for Control. IEEE Control Syst. Mag. 2004, 24, 60–76.

21. Penzl, T. Numerical Solution of Generalized Lyapunov Equations. Adv. Compup. Math. 1998, 8, 33–48.
[CrossRef]

22. Bartels, R.H.; Stewart, G.W. Algorithm 432: Solution of the matrix equation AX + XB = C. Comm Ass
Comput. Mach. 1972, 15, 820–826.

http://dx.doi.org/10.1016/0024-3795(88)90166-8
http://dx.doi.org/10.1080/00207178908953437
http://dx.doi.org/10.1109/9.29399
http://dx.doi.org/10.1080/00207178708933971
http://dx.doi.org/10.1109/TAC.1968.1098829
http://dx.doi.org/10.1109/TAC.1971.1099755
http://dx.doi.org/10.1109/9.654908
http://dx.doi.org/10.1109/TAC.1970.1099612
http://dx.doi.org/10.1109/TAC.1976.1101295
http://dx.doi.org/10.1145/77626.77627
http://dx.doi.org/10.1093/imanum/2.3.303
http://dx.doi.org/10.1023/A:1018979826766

Information 2019, 10, 215 22 of 22

23. Golub, G.H.; Nash, S.; Van Loan, C.F. A Hessenberg-Schur Method for the Problem AX + XB = C.
IEEE Trans. Autom. Control 1979, AC–24, 909–913. [CrossRef]

24. Sorensen, D.C.; Zhou, Y. Direct Methods for Matrix Sylvester and Lyapunov Equations. J. Appl. Math. 2003,
2003, 277–303. [CrossRef]

25. Jonsson, I.; Kågström, B. Recursive Blocked Algorithms for Solving Triangular Systems—Part I: One-Sided
and Coupled Sylvester-Type Matrix Equations. ACM Trans. Math. Softw. 2002, 28, 392–415. [CrossRef]

26. Jonsson, I.; Kågström, B. Recursive Blocked Algorithms for Solving Triangular Systems—Part II: Two-Sided
and Generalized Sylvester and Lyapunov Matrix Equations. ACM Trans. Math. Softw. 2002, 28, 416–435.
[CrossRef]

27. Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore,
MA, USA, 1996.

28. Simoncini, V. Computational Methods for Linear Matrix Equations. SIAM Rev. 2016, 58, 377–441. [CrossRef]
29. Kaabi, A. A Compact Algorithm for Solving Generalized Lyapunov Matrix Equations. Int. Math. Forum

2011, 6, 3293–3304.
30. Kyncheva, V.K.; Yotov, V.V.; Ivanov, S.I. Convergence of Newton, Halley and Chebyshev Iterative Methods

as Methods for Simultaneous Determination of Multiple Polynomial Zeros. Appl. Numer. Math. 2017,
112, 146–154. [CrossRef]

31. Argyros, I.K.; Magreñán, Á.A.; Orcos, L.; Sarría, Í. Advances in the Semilocal Convergence of Newton’s
Method with Real-World Applications. Mathematics 2019, 7, 299. [CrossRef]

32. MathWorks R©; Control System Toolbox
TM

, R2015b; MathWorks: Natick, MA, USA, 2015.
33. Benner, P.; Mehrmann, V.; Sima, V.; Van Huffel, S.; Varga, A. SLICOT—A Subroutine Library in Systems

and Control Theory. In Applied and Computational Control, Signals, and Circuits; Datta, B.N., Ed.; Birkhäuser:
Boston, MA, USA, 1999; Volume 1, pp. 499–539.

34. Benner, P.; Kressner, D.; Sima, V.; Varga, A. Die SLICOT-Toolboxen für Matlab (The SLICOT Toolboxes for
Matlab). Automatisierungstechnik 2010, 58, 15–25. [CrossRef]

35. Sima, V. Performance of Lyapunov Solvers on Dedicated SLICOT Benchmarks Collections. In Proceedings
of the 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC 2018), Sinaia,
Romania, 10–12 October 2018; pp. 158–163.

36. Sima, V.; Benner, P. Numerical Investigation of Newton’s Method for Solving Continuous-time Algebraic
Riccati Equations. In Proceedings of the 11th International Conference on Informatics in Control, Automation
and Robotics (ICINCO-2014), Vienna, Austria, 1–3 September 2014; Ferrier, J.L., Gusikhin, O., Madani, K.,
Sasiadek, J., Eds.; SciTePress: Setúbal, Portugal, 2014; pp. 404–409.

37. Sima, V. Computational Experience with a Modified Newton Solver for Continuous-Time Algebraic Riccati
Equations. In Informatics in Control, Automation and Robotics; Ferrier, J.L., Gusikhin, O., Madani, K., Sasiadek, J.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 55–71.

38. Sima, V.; Benner, P. Numerical Investigation of Newton’s Method for Solving Discrete-time Algebraic Riccati
Equations. In Proceedings of the 15th International Conference on Informatics in Control, Automation
and Robotics (ICINCO-2018), Porto, Portugal, 29–31 July 2018; Madani, K., Gusikhin, O.Y., Eds.; SciTePress:
Setúbal, Portugal, 2018; pp. 66–75.

39. Savov, S. Solution Bounds for Algebraic Equations in Control Theory; Professor Marin Drinov Academic
Publishing House: Sofia, Bulgaria, 2014.

40. Kressner, D.; Mehrmann, V.; Penzl, T. CTLEX—ACollection of Benchmark Examples for Continuous-Time
Lyapunov Equations; SLICOT Working Note 1999-6; Katholieke Universiteit Leuven: Leuven, Belgium, 1999.

41. Kressner, D.; Mehrmann, V.; Penzl, T. DTLEX—A Collection of Benchmark Examples for Discrete-Time Lyapunov
Equations; SLICOT Working Note 1999-7; Katholieke Universiteit Leuven: Leuven, Belgium, 1999.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TAC.1979.1102170
http://dx.doi.org/10.1155/S1110757X03212055
http://dx.doi.org/10.1145/592843.592845
http://dx.doi.org/10.1145/592843.592846
http://dx.doi.org/10.1137/130912839
http://dx.doi.org/10.1016/j.apnum.2016.10.013
http://dx.doi.org/10.3390/math7030299
http://dx.doi.org/10.1524/auto.2010.0814
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results
	Benchmark Examples
	Performance Analysis Issues
	Continuous-Time Lyapunov Equations
	Discrete-Time Lyapunov Equations

	Discussion
	Materials and Methods
	Conceptual Algorithm Description
	New Algorithm
	Computational Modules for Improving Efficiency

	Conclusions
	References

