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Abstract: Mathematical modeling represents a useful instrument to describe epidemic spread
and to propose useful control actions, such as vaccination scheduling, quarantine, informative
campaign, and therapy, especially in the realistic hypothesis of resources limitations. Moreover, the
same representation could efficiently describe different epidemic scenarios, involving, for example,
computer viruses spreading in the network. In this paper, a new model describing an infectious
disease and a possible complication is proposed; after deep-model analysis discussing the role of the
reproduction number, an optimal control problem is formulated and solved to reduce the number
of dead patients, minimizing the control effort. The results show the reasonability of the proposed
model and the effectiveness of the control action, aiming at an efficient resource allocation; the model
also describes the different reactions of a population with respect to an epidemic disease depending
on the economic and social original conditions. The optimal control theory applied to the proposed
new epidemic model provides a sensible reduction in the number of dead patients, also suggesting
the suitable scheduling of the vaccination control. Future work will be devoted to the identification
of the model parameters referring to specific epidemic disease and complications, also taking into
account the geographic and social scenario.

Keywords: epidemic diseases modeling; optimal control; vaccination and therapy; optimal
resource allocation

1. Introduction

In the last few years, the importance of epidemic modeling and control has increased in respect of
their capability to describe infectious disease and proposing suitable control strategies [1–8]; moreover,
the power of epidemic modeling has been used also in different fields, such as to study the propagation
effects of a virus outbreak on a network [9,10].

The scenario discussed in this paper considers a unique population in which an epidemic disease
is spreading and a second non-infectious disease is present. The non-infectious disease is assumed
not to be risky by itself, but it may be fatal when it becomes a complication of the epidemic disease.
Moreover, while the former yields an immunity, the latter could be caught repeatedly. This is a very
common scenario, and happens, for example, in measles and for the HIV/AIDS; if one thinks of an
age-structured model, a similar context occurs if referring to elderly subjects who could be at risk
when a complication is added to an infectious disease. This is the reason vaccination campaigns are
promoted especially among subjects in risky conditions.

The problem of controlling two epidemic spreads has been considered in different control
frameworks, depending on the specificity of the diseases considered and, in particular, on the

Information 2019, 10, 213; doi:10.3390/info10060213 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-9113-8608
https://orcid.org/0000-0003-3506-1455
http://dx.doi.org/10.3390/info10060213
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/10/6/213?type=check_update&version=2


Information 2019, 10, 213 2 of 17

modalities of contagiousness. A different point of view considers a unique epidemic disease and
two distinct but interacting populations, such as in [11], or as in [12], where a disease spreading among
two populations in interconnected regions is considered. It is shown that when there is only a partial
immunization, the best treatment action is to preferentially control the region with the lower level of
infection and only when there are resources left over it is advisable to treat the other population. In [13]
the interaction between two different diseases, tuberculosis and diabetes mellitus, is discussed, noting
that from a medical point of view diabetes mellitus is a risk factor for tuberculosis, and even that the
latter may be caused by diabetes. Also, social and economic aspects are discussed, demonstrating that
malnutrition, HIV, crowded living conditions and low level of standards in hospitals contribute to high
incidence of tuberculosis. The influence of one disease on the spread of the second is discussed in [14],
in which a complex pattern of epidemiological behavior is proposed. More than one complication,
with respect to the main disease, is considered in [15], where typhoid fever is modeled and many
complications are considered, along with data about the population.

Suitable strategies are introduced for trying to stop the epidemic spread; general possibilities are
vaccination, whenever possible, informative campaigns, quarantine, and therapy. More ad hoc actions
depend on specific disease, as in [2], where the most effective control is to improve the test to check for
HIV. Optimal control appears to be the natural framework to face an epidemic disease with the best
resource allocation [4,5,16–18].

In this paper, an improvement of the model introduced in [19] is proposed. A unique population
with two pathologies is considered: the first one is the dangerous disease that may be transmitted only
by contact with infected patients, and the second one may be fatal only if it becomes a complication
of the first. Moreover, the former yields an immunity, whereas the second one could be caught
repeatedly. The healthy population is partitioned into two classes—the subjects that can caught both
the pathologies, and the ones that have the immunity from the first contagious epidemic. Then, there
are three classes of patients: the first one of subjects with only the dangerous contagious disease; the
second class constituted of patients with both pathologies; then there is the class of individuals that
has the second disease and could caught also the first one, if not immunized.

Spontaneous healing is assumed as well as different birth and death rates for each class; this is
the first difference with respect to the model in [19], in which it was not considered that a patient with
the infectious disease could become healthy again without an external action. The second novelty is
the deep-model analysis conducted to determine the existence of the equilibrium points and to discuss
their stability; the presence of a bifurcation value for the contagious rate, as well as its relationship
with the reproduction number, has been established. The two-epidemics model is controlled by using
an optimal control strategy that involves the vaccination and the therapy of infected patients, in the
realistic case of bounded resources; the introduction of these constraints represents a further novelty
with respect to the model in [19]; in the numerical section, these aspects are discussed. The paper is
organized as follows: in Section 2 the mathematical model proposed is discussed, whereas the optimal
control problem formulation is introduced in Section 3. Numerical simulations and discussions are
proposed in Section 4, and conclusions are in Section 5.

2. The Mathematical Model

The mathematical model proposed and discussed in this section describes the interactions
between subjects in a population where two different diseases are present. The most dangerous
one is an infectious disease; the other one is a complication that is a not particularly risky pathology
when it is the only one affecting the patients, but it may become fatal in combination with the
infectious one. Typical examples are HIV or pneumonia that weaken a patient that, consequently,
may become vulnerable to other diseases that, in general, are not so dangerous. This is also what
happens to the elderly population that is sensibly monitored and invited by the government to
participate to vaccination campaigns, especially to avoid complications. Another example involves
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immunosuppressed subjects and measles; it becomes a risky disease essentially because of possible
and frequent complications, such as diarrhea and pneumonia.

For an infectious disease, the basic model is the SIR one, considering the classical categories of
susceptible (S), infected (I), and removed (R) subjects; in this case, a susceptible individual can catch
the disease, thus becoming infectious, and then enters the class of removed people, having received
the immunization; the latter can also be obtained with a vaccination action. If a second non-infectious
disease is present in the population, the complete model must include other classes taking into account
the main characteristics of this second illness; in particular, a subject does not get immunization from
the complication. The infected patients can be divided according to two possible conditions, depending
on whether they are or are not affected by the second pathology. Moreover, the possibility of being
affected by the second pathology for susceptible subjects requires the introduction of a further class
for the patients with the second pathology, but not still immune from the epidemic disease. Then,
five states are introduced:

x1: the individuals than can be infected by the contagious illness;
x2: the individuals immune from the contagious illness;
x3: the patients infected but not affected by the second pathology;
x4: the patients affected by both the pathologies;
x5: the patients affected by the second pathology only, not immune from the infectious illness.

Some hypotheses are assumed:

i. individuals x1 and x2 can become affected by the second pathology;
ii. from the x5 class it is possible to become an x1 subject with probability ε or, if already immunized,

go in the x2 class;
iii. a subject in the x1 class can get the infectious disease from the x3 and the x4 subjects and enter in

the x3 class; successively, a subject could get also the second disease and transit in the x4 class.

The main control action, the vaccination applied on susceptible subjects x1, has already been
mentioned; also, therapy actions over patients in the classes x3, x4, x5 are introduced. More precisely,
four control actions are considered:

u1 represents the action devoted to vaccinating healthy non-immune individuals x1, making them
transition to the x2;

u2 is the therapy action over the patients in x3;
u3 is the therapy action over the patients in x4;
u4 the therapy for the second illness, applied to x5.

Defining X =
(

x1 x2 x3 x4 x5

)T
the state vector and with U =

(
u1 u2 u3 u4

)T
the

control vector, the following model, shown in Figure 1, is proposed:

Ẋ = F(X) + G(X)U (1)

where:

F =


f1

f2

f3

f4

f5

 =


−βx1x3 − βx1x4 − α15x1 + εα51x5 − δ1x1 + µ1

(1− ε)α51x5 − α25x2 − δ2x2 + µ2 + h3x3 + h4x4

βx1x3 + βx1x4 − α34x3 − δ3x3 + µ3 − h3x3

α34x3 + βx4x5 + βx3x5 − δ4x4 + µ4 − h4x4

α15x1 − α51x5 − βx4x5 − βx3x5 − δ5x5 + µ5 + α25x2

 (2)
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and

G =


−γ1x1 0 0 γ4x5

γ1x1 γ2x3 γ3x4 0
0 −γ2x3 0 0
0 0 −γ3x4 0
0 0 0 −γ4x5

 (3)

with initial condition X(t0) = X0. In the model (1), with (2) and (3), the parameters introduced are:

• β, the contagious rate;
• αij, which are the occurrence rates of the second non-infectious pathology; the subscripts denote

the transition from state i to state j; these rates can be assumed to be different, to put in evidence
the differences between healthy people and infected ones. It is assumed that recovery from the
second illness can also be spontaneous from the x5 class, and the rate of autonomous healing is
denoted again with the coefficients α51, being a natural transition proportional to the number
of subjects;

• γi, i = 1, ..., 4 representing the efficiencies of the control actions;
• hj, j = 3, 4, representing the spontaneous healing rate of the x3 and x4 patients respectively;
• µi, i = 1, ..., 5, the rate of new incomers in all the compartments;
• δi, i = 1, ..., 5, which are the percentages of removed people;
• ε, the percentage of subjects that from the x5 class enter in the x1 one.

Figure 1. Block diagram of the considered model.

This model represents an improvement of the one proposed in [19], in which the spontaneous
healing capability was not included.

2.1. The Model Analysis

The analysis of the model is proposed, referring to the absence of control action as well as
assuming no entries in the x3, x4, and x5 compartments, thus µ3 = µ4 = µ5 = 0 in (1). To determine
the equilibrium points the equation

F(X) = 0 (4)

is considered, thus obtaining the system:
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−βx1x3 − βx1x4 − α15x1 + εα51x5 − δ1x1 + µ1 = 0 (5)

(1− ε)α51x5 − α25x2 − δ2x2 + µ2 + h3x3 + h4x4 = 0 (6)

βx1x3 + βx1x4 − α34x3 − δ3x3 − h3x3 = 0 (7)

α34x3 + βx4x5 + βx3x5 − δ4x4 − h4x4 = 0 (8)

α15x1 − α51x5 − βx4x5 − βx3x5 − δ5x5 + α25x2 = 0 (9)

One solution is the virus-free equilibrium

Pe1 =



(α25δ5+α51δ2+δ2δ5+α25α51ε)µ1+α25α51εµ2
α15δ5(α25+δ2)+(1−ε)α15α51δ2+α25δ1(δ5+εα51)+δ1δ2(α51+δ5)

(1−ε)α15α51(µ1+µ2)+(α15δ5+α51δ1+δ1δ2)µ2
α15δ5(α25+δ2)+(1−ε)α15α51δ2+α25δ1(δ5+εα51)+δ1δ2(α51+δ5)

0
0

α15µ1(α25+δ2)+α25µ2(α15+δ1)
α15δ5(α25+δ2)+(1−ε)α15α51δ2+α25δ1(δ5+εα51)+δ1δ2(α51+δ5)


(10)

Please note that the non-null elements do not depend on β and are positive for any combination
of parameters; therefore, the point Pe1 in (10) is always an equilibrium point.

With regard to the other equilibrium points, the analytical solutions of the system (4) are rather
complicated, and they depend also on β, in addition to all the other model parameters; the only
acceptable points are those with non-negative components, if they exist. In the following, the model
parameters, with the exception of β, are all fixed, thus deducing, from a graphical point of view,
the dependence of the solutions of the system (5)–(9) on β. The following values of the parameters
are used:

• α15 = α34 = 0.1
• α51 = α43 = 0.05
• α25 = 0.01
• µ1 = µ2 = 10
• δ1 = δ2 = δ5 = 0.05, δ3 = 0.2, δ4 = 0.5
• ε = 0.7
• h3 = h4 = 0.01

These choices have been guided by similarity with respect to classical epidemic models, such as
the SIR one. By using these values, the system (5)–(9) has three solutions. They are not all feasible
equilibrium points; the only acceptable solutions are those with all the components not negative. With
these parameter values the virus-free equilibrium is:

Pe1 =
(

76 190 0 0 95
)T

(11)

There are two other solutions of the system (5)–(9), called P2 and P3; in Figures 2 and 3 they
are shown as function of β, by plotting together the five components of each solution. It can be
noted that in Figure 2 the component x4 of the solution P2 is negative up to a threshold value β̄ of β,
whereas from Figure 3 it can be observed that three components (x2, x3, and x5) are always negative,
and therefore P3 is not an equilibrium point for any β. For a small contact rate β < β̄, there exists
only one equilibrium point, Pe1, whereas for β > β̄ there exists also the second equilibrium point, now
indicated by Pe2, whose components evolve as in Figure 2. The value of β̄ corresponding to the chosen
parameters is equal to 0.0021, as can be deduced from Figure 2.
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To study the stability of the equilibrium points, Pe1 and, if it exists, Pe2, the Jacobian of the
system must be evaluated in each of these points and the corresponding eigenvalues calculated.
The Jacobian is:

J =


−β(x3 + x4)− 3

20 0 −βx1 −βx1
3

200
0 − 3

50
1

100
1

100
3

200
β(x3 + x4) 0 βx1 − 31

100 βx1 0
0 0 βx5 +

1
10 βx5 − 51

100 β(x3 + x4)
1

10
1

100 −βx5 −βx5 −β(x3 + x4)− 1
10

 (12)
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Figure 2. Evolutions of the five components of the point P2.
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Figure 3. Evolutions of the five components of the point P3.

Obviously, the eigenvalues of the Jacobian matrix J depends on the value of β, once the
components of the equilibrium point are substituted. Therefore, even if the virus-free equilibrium Pe1

components do not depend on β, as already noted, its stability does. The matrix (12), evaluated at
Pe1, is

J(Pe1) =


− 3

20 0 −76β −76β 3
200

0 − 3
50

1
100

1
100

3
200

0 0 76β− 31
100 76β 0

0 0 95β + 1
10 95β− 51

100 0
1
10

1
100 −95β −95β − 1

10

 (13)
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whose eigenvalues, as function of β, are:

ν1 = −0.0548 ν2 = −0.1714 ν3 = −0.0837 (14)

ν4 =
171β

2
− 41

100
−
√

731025β2 + 570β + 1
10

(15)

ν5 =
171β

2
− 41

100
+

√
731025β2 + 570β + 1

10
(16)

The eigenvalues ν1, ν2, and ν3 are negative and do not depend on β; the eigenvalues ν4 and ν5 are
negative only if β < 0.0021, a value that coincides, as expected, with β̄. It can be concluded that for
β < β̄ the unique equilibrium point Pe1 is locally asymptotically stable.

As for the second equilibrium point, Pe2, it has already been stated that it exists only for β > 0.0021;
the analysis of its stability is rather complicated from analytical point of view. In Figure 4 the real
part of the eigenvalues of the Jacobian matrix J, Equation (12), when evaluated for some values of
β > β̄, β = 0.0023, 0.003, 0.008, 0.014, 0.02 is shown. Please note that there exists a couple of complex
eigenvalues with, as expected, the same real part.

0.0023 0.008 0.014 0.02
-1

-0.8

-0.6

-0.4

-0.2

0

E
ig

en
va

lu
es

 (
re

al
 p

ar
t)

Figure 4. Eigenvalues of the Jacobian matrix evaluated for β = 0.0023, 0.003, 0.008, 0.014, 0.02.

Then, it is possible to conclude that for β < β̄, Pe1 exists and is locally stable, while P2 is not
admissible; on the other hand, when β > β̄, Pe1 is unstable while P2 is a locally stable equilibrium
point. This is the classical case of a Transcritical Bifurcation.

2.2. The Reproduction Number

The reproduction number R, as recalled in [20] and [21], is a useful parameter to describe the
capability of an infectious disease to invade a population. It is generally evaluated by using
the next-generation matrix; more precisely, from the dynamical model (1), considering only the
compartments of the subjects infected by the infectious disease, x3 and x4, the corresponding dynamical
evolutions can be split into two parts, M3 − N3 and M4 − N4 respectively, collected in the two vectors:

M =

(
βx1(x3 + x4)

βx5(x3 + x4)

)
(17)

N =

(
α34x3 + δ3x3 + h3x3

δ4x4 + h4x4 − α34x3

)
(18)

The matrix (17) accounts for the rate of appearance of new infections in the compartments x3 and
x4, whereas (18) describes the rate of other transitions between them. Now, the Jacobian of (17) and
(18) is:
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JM =

(
βx1 βx1

βx5 βx5

)

JN =

(
α34 + δ3 + h3 0
−α34 δ4 + h4

)

To evaluate the next-generation matrix, the matrix JM J−1
N must be evaluated at the virus-free

equilibrium (10), thus obtaining:

JM J−1
N =

(
0.63βx1 1.96βx1

3.86βx5 1.96βx5

)

that is, by substituting the coordinates of (11);

JM J−1
N (Pe1) =

(
48.07β 149β

366.54β 186.27β

)

The reproduction number is defined as the spectral radius of the matrix JM J−1
N (Pe1),

whose eigenvalues, as a function of β, are:

λ1 = −126.54β λ2 = 360.88β (19)

Therefore, the reproduction number for the proposed choice of parameters is R = 360.88β.
By definition, ifR = 360.88β < 1, the infection cannot grow, whereas ifR = 360.88β > 1 the disease
can spread over the population, [20]. The value of β that separates these two situations is 1

360.88 which
coincides, obviously, with β̄.

3. Formulation of the Optimal Control Problem

The problem of the containment of an epidemic spread could be efficiently solved by the
framework of optimal control theory; in this case, particular attention is devoted to patients with the
two pathologies. The optimal control approach suggests the best strategy to allocate the resources
properly, distinguishing between the different level of illness. The necessity of containing the number
of infected individuals and the cost of the intervention suggests the introduction of a cost index that
weights both the number of infected individuals and the control cost. Moreover, it is assumed that the
resources are bounded, in particular:

0 ≤ ui(t) ≤ UM
i , i = 1, ..., 4 (20)

For the sake of notation, it is useful to write them as follows:

q1 = −u1 ≤ 0 q2 = u1 − uM
1 ≤ 0 (21)

q3 = −u2 ≤ 0 q4 = u2 − uM
2 ≤ 0 (22)

q5 = −u3 ≤ 0 q6 = u3 − uM
3 ≤ 0 (23)

q7 = −u4 ≤ 0 q8 = u4 − uM
4 ≤ 0 (24)

The classical quadratic structure

J =
1
2

∫ t f

t0

(
a3x2

3 + a4x2
4 + a5x2

5 + r1u2
1 + r2u2

2 + r3u2
3 + r4u2

4

)
dt (25)
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is chosen for the cost function, where ai, i = 3, 4, 5, and ri, i = 1, ..., 4 are the weights of the state
variables and the controls, respectively. The final time t f is fixed while the final state value is left free.
From (1) and (25), the corresponding Hamiltonian is

H =
1
2

(
a3x2

3 + a4x2
4 + a5x2

5 + r1u2
1 + r2u2

2 +r3u2
3 + r4u2

4

)
−λ1 (βx1x3 +βx1x4 + α15x1 − α51x5 + γ1x1u1 −γ4x5u4 + δ1x1 − µ1 + εα51x5)

+λ2 (γ1x1u1 +γ2x3u2 + γ3x4u3 − δ2x2 + µ2 + (1− ε)α51x5 − α25x2 + h3x3 + h4x4)

+λ3 (βx1x3 + βx1x4 − α34x3 − γ2x3u2 −δ3x3 + µ3 − h3x3)

+λ4 (α34x3 + βx4x5 +βx3x5 − γ3x4u3 − δ4x4 + µ4 − h4x4)

+λ5 (α15x1 − α51x5 − βx4x5 − βx3x5 −γ4x5u4 − δ5x5 + µ5 + α25x2) (26)

The Hamiltonian function is constantly equal to zero along the optimal trajectories over the whole
control interval, since the final time t f is fixed.

With the introduction of the costate vector λ =
(

λ1(t) λ2(t)) λ3(t) λ4(t) λ5(t)
)T

, and ηi,
i = 1, 2, . . . , 8, real valued functions, the necessary conditions are:

λ̇i = −
∂H
∂xi

, i = 1, . . . , 5 (27)

0 =
∂H
∂uj

+
8

∑
k=1

∂qk
∂uj

ηk, j = 1, ..., 4 (28)

ηjqj = 0, j = 1, ..., 8 (29)

ηj ≥ 0, j = 1, ..., 8 (30)

with final conditions:
λi(t f ) = 0, i = 1, ..., 5 (31)

Please note that in (27) the independence of qj, j = 1, ..., 8 from the state X has been used.
The costate Equation (27) yields:

λ̇1 = βλ1x3 + βλ1x4 + α15λ1 + γ1λ1u1 + δ1λ1 − γ1λ2u1 − βλ3x3 − βλ3x4 − α15λ5 (32)

λ̇2 = δ2λ2 − λ5α25 (33)

λ̇3 = −a3x3 + βx1λ1 − γ2λ2u2 − λ2h3 + λ3h3 + γβx1λ3 + α34λ3 + γ2λ3u2

+δ3λ3 − α34λ4 − βλ4x5 + βλ5x5 (34)

λ̇4 = −a4x4 + βx1λ1 − γ3λ2u3 − λ2h4 − βx1λ3 − βλ4x5 + γ3λ4u3

+δ4λ4 + λ4h4 + βλ5x5 (35)

λ̇5 = −a5x5 − α51λ1 − γ4λ1u4 + λ1εα51x5 − λ2(1− ε)α51x5 − βx4λ4

−βx3λ4 + α51λ5 + βx4λ5 + βx3λ5 + γ4λ5u4 + δ5λ5 (36)

for which λi(t f ) = 0, i = 1, . . . , 5, hold since x(t f ) is not fixed. The control Equation (28) implies:
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0 =
∂H
∂u1

+
∂q1

∂u1
η1 +

∂q2

∂u1
η2 = r1u1 − γ1λ1x1 − η1 + η2 (37)

0 =
∂H
∂u2

+
∂q3

∂u2
η3 +

∂q4

∂u2
η4 = r2u2 − γ2λ3x3 − η3 + η4 (38)

0 =
∂H
∂u3

+
∂q5

∂u3
η5 +

∂q6

∂u3
η6 = r3u3 + γ3λ2x4 − γ3λ4x4 − η5 + η6 (39)

0 =
∂H
∂u4

+
∂q7

∂u4
η7 +

∂q8

∂u4
η8 = r4u4 − γ4λ1x5 − γ4λ5x5 − η7 + η8 (40)

By taking into account the conditions (29) and (30), 28 cases are possible, but they are reduced by
eliminating the contrasting conditions. The control equations with conditions (29) and (30), along with
the costate and the state equations, yield the expressions for the controls:

u1 = max{min{γ1

r1
λ1x1, uM

1 }, 0} (41)

u2 = max{min{γ2

r2
λ3x2, uM

2 }, 0} (42)

u3 = max{min{−γ3

r3
(λ2 − λ4) x4, uM

3 }, 0} (43)

u4 = max{min{−γ4

r4
(λ1 − λ5) x5, uM

4 }, 0} (44)

for which it is necessary to compute X(t) and λ(t), from t = t0 to t = t f , making use of Equation (1),
to be integrated from the initial condition X(t0) = X0, and Equations (32)—(36) to be integrated
backwards in time from λi(t f ) = 0, i = 1, ..., 5.

4. Simulations Results

In this Section, the proposed model and the optimal control strategy are analyzed numerically.
The algorithm adopted for the optimal control problem is based on a sequential quadratic programming
method: at each iteration, a quadratic programming subproblem is solved by using a quasi-Newton
approximation of the Hessian of the Lagrangian function. The parameters of the model are the ones
proposed in Section 2; the initial conditions assumed reflect the situation in which the population is
mostly composed of susceptible subjects and a small number of infected individuals: x1(0) = 1000,
x2(0) = 0, x3(0) = 10, x4(0) = 0, and x5(0) = 0. The state terms aix2

i in the cost index can be
interpreted as the number of dead individuals among the three groups of patients; the result is
obtained by setting ai = δ2

i , i = 3, 4, 5. The time control period is set equal to 5 years. To study the
effectiveness of the model as well as the reasonability of the optimal control strategy, some case studies
are proposed. To evaluate the advantages of the different strategies, some quantities are calculated:

• the variation V of the sum of the number of dead people in the classes x3 and x4, the ones in which
the patients are more at risk, normalized with respect to the same quantity in absence of control;

• the cost Ci of the control ui, i = 1, ..., 4;
• the efficacy E of the control action measured as the product of the total number of dead people (in

all the classes) multiplied by the total cost applied.

As Case 1, a first choice of the β parameter is β = 0.001 < β̄; this means that the epidemic will not
spread, being the correspondingR = 0.3609 < 1. The same analysis is performed in Case 2 by choosing
β = 0.01 > β̄; the corresponding reproduction number isR = 3.6088 > 1 thus leading to an endemic
condition. All the control weights in the cost function (25) are set equal to r1 = r2 = r3 = r4 = 10.

In Figures 5–9 the evolutions of the states xi(t), i = 1, ..., 5 are shown along with the same
quantities when no control is applied, comparing Case 1 and Case 2. The state evolutions corresponding
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to the immune subjects x2(t) do not vary significantly in the two situations, whereas the dangerousness
of Case 2 is evident in the non-controlled case for the evolution of x3(t) and x4(t) patients, reaching
higher values than in Case 1, Figures 7 and 8. Nevertheless, the control actions can reduce the peaks
significantly.
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Figure 5. Evolution of the number of x1(t) subjects in Case 1 (black line) and Case 2 (grey line) with
(continuous line) and without control (dotted line).
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Figure 6. Evolution of the number of x2(t) subjects in Case 1 (black line) and Case 2 (grey line) with
(continuous line) and without control (dotted line).

0 1 2 3 4 5
Time

0

200

400

600

800

1000

x 3
(t

)

Case 1 - Controlled
Case 1 - Uncontrolled
Case 2 - Controlled
Case 2 - Uncontrolled

Figure 7. Evolution of the number of x3(t) subjects in Case 1 (black line) and Case 2 (grey line) with
(continuous line) and without control (dotted line).
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Figure 8. Evolution of the number of x4(t) subjects in Case 1 (black line) and Case 2 (grey line) with
(continuous line) and without control (dotted line).
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Figure 9. Evolution of the number of x5(t) subjects in Case 1 (black line) and Case 2 (grey line) with
(continuous line) and without control (dotted line).

As for the evolution of the subjects x5(t), it can be noted that they increase more in the Case 1 than
in Case 2; this is reasonable since in Case 1, the epidemic disease is not spreading and therefore the
subjects will transit mainly in the x1, x2, and x5 classes.

In Figure 10 the optimal controls ui(t), i = 1, ..., 4 are shown for Case 1. The epidemic spread is
not a risky one, the value of β being small; nevertheless, the control actions allow the decrease of the
number of subjects x3(t), x4(t), x5(t), as well as of the x1(t) individuals, which also decreases without
control, but less rapidly.

The control actions show a strong effort in vaccination up to about 1 year, while, as expected,
the therapy action on the subjects in the most risky condition of the patients in the x4 class must be
applied for almost all the control periods. Please note that the control u4 does not reach the maximum
value allowed. This is an example of an efficient allocation strategy: it appears more convenient to
vaccinate the subjects with maximum effort at the beginning of the control period and then, while u1

decreases, the therapy must reach its maximum.
In Case 2 a stronger control action is required than in Case 1, Figure 11: maximum effort of the

vaccination up to almost 2 years, the therapy on the x3 subjects up to the fourth year and the therapy
over the x4 subjects for almost all the control period. The control over the x5 subjects must be applied
at its maximum value only for the first year, and then it decreases.
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Figure 10. Case 1: evolution of the optimal control actions.

0 1 2 3 4 5
Time

0

0.2

0.4

0.6

0.8

1

u(
t)

u1(t)

u2(t)

u3(t)

u4(t)

Figure 11. Case 2: evolution of the optimal control actions.

The effectiveness of the control procedure is evaluated also by considering the indicators V, Ci,
i = 1, ..., 4 and E introduced; an efficient control would yield a strong decrease of dead patients (and
therefore a negative V, as small as possible), a low control cost C, and also a low value of E.

In Table 1 the sensible decrease of the number of dead patients is shown, once the control is
applied; the cost is obviously higher in Case 2, since the epidemic spread is more dangerous and thus
requires a greater effort. As far as the E parameter, it increases sensibly in Case 2 with respect to Case 1
since, as said, it is costlier than the control, and there are a higher the number of dead patients. Leaving
β = 0.01 as in Case 2, if a stronger weight is assigned to the vaccination u1 with respect to the other
ri, say r1 = 10, ri = 1, i = 2, 3, 4, the consequence is that the vaccination effort should be maximized
more than the other controls aiming at the same goal; this condition is referred to as Case 3 in Table 1.
Please note that to compensate for the smaller vaccination effort, the other controls must be increased.
The symmetric situation is analyzed in Case 4, by assigning r1 = 1, ri = 10, i = 2, 3, 4; this means that
the increase of the vaccination effort is allowed; the higher cost C1, even if the global parameter E
slightly decreases can be noted, since costs ui, i = 2, 3, 4 are lower.

Table 1. Comparison.

Case V (%) C1 C2 C3 C4 E

Case 1 −73.73 2.46 3.68 4.25 2.57 551.69
Case 2 −83.27 2.70 4.60 4.84 3.02 2067
Case 3 −83.40 2.10 4.96 4.95 4.65 2325
Case 4 −83.27 4.34 4.53 4.83 3.09 2276
Case 5 −70.65 2.24 3.29 3.91 2.12 868
Case 6 −95.18 4.03 5.06 5.67 3.03 762
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As already noted, the proposed model introduces some innovation with respect to the one
presented in [19]; in particular, the possibility of spontaneous healing of x3 and x4 patients is allowed;
in the considered Cases 1–4 they have been fixed equal to 0.01, of the same order of magnitude of the
parameters for the mortality. If they are increased sensibly, for example up to 1, a strong capability
of the patients in the x3 and x4 classes to recover is assumed; this could be the realistic situation of
a population in a good general healthy condition. In this case, as denoted in Case 5 and obtained
with the other parameters as the ones in Case 2, the very low value of the E parameter can be noted,
denoting a small number of dead people, as well as a decreased value of control costs. Moreover, all
the cost efforts are decreased with respect to all the other cases, also compared to the Case 1. The results
of Case 5 are shown in Figures 12–17. It can be noted that the introduction of the optimal control
strongly reduces the peaks of infections for the x3 and x4 patients with a lower value of all the costs
with respect to the previously discussed cases. What is suggested in Case 5 is the maximum effort
for the controls ui, i = 1, 2, 3 up to the first year for the vaccination and to the second year for the
other two controls u2 and u3. The therapy u4 does not reach the maximum effort allowed. This result
must be compared with the corresponding one of Figure 11 where a stronger effort is required for all
the control period. Case 5 highlights the obvious fact that if a population is in general good health
conditions, usually related to economic and social wellness, it has stronger healing capability and it is
less expensive to face an epidemic disease and its complications.
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Figure 12. Case 5: evolution of the number of x1(t) with (continuous line) and without control (dotted line).
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Figure 13. Case 5: evolution of the number of x2(t) with (continuous line) and without control (dotted line).



Information 2019, 10, 213 15 of 17

0 1 2 3 4 5
Time

0

100

200

300

400

500

600

x 3
(t

)

Controlled
Uncontrolled

Figure 14. Case 5: evolution of the number of x3(t) with (continuous line) and without control (dotted line).
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Figure 15. Case 5: evolution of the number of x4(t) with (continuous line) and without control (dotted line).
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Figure 16. Case 5: evolution of the number of x5(t) with (continuous line) and without control (dotted line).

Finally, in the last row of Table 1, Case 6 is proposed, considering the same situation as Case 2
but with the control effort not bounded, as in [19]. Obviously, the possibility of using unbounded
control allows r sensible reduction of the number of dead patients (−95%) but with a stronger control
effort; in particular, the cost of the control u1(t), the vaccination, is almost doubled, thus confirming
the importance of a fast prevention action.
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Figure 17. Case 5: evolution of the optimal control actions.

5. Conclusions

The epidemiological scenario considered in this paper regards a homogeneous population
threatened by an epidemic disease; a possible complication, not risky by itself, could become fatal
if in conjunction with the infectious disease. This represents a realistic scenario, such as in measles,
or in HIV/AIDS, where an already weakened patient could be at risk of complications. Similar
considerations may be applied to the elderly population invited to be vaccinated to avoid the flu, for
example, and consequently also to avert other diseases that, together with the main epidemic, can be
fatal. The problem is current in the globalized world as well as in society with elderly individuals.
Some correlations among different diseases have been studied in the last ten years (such as between
tuberculosis and diabetes) showing the importance of a suitable modeling in view of predicting
possible epidemic scenarios. The optimal control theory confirms its effectiveness in an efficient
resource allocation in trying to prevent (by vaccination) and to limit (by therapy) epidemic spread.
The principal role of vaccination and, most of all, of a coordinated global control action able to strongly
reduce (more than halve) the peak of the number of patients also in case of severe epidemic spread
is confirmed.

Future work will be devoted to the identification of the model parameters referring to specific
epidemic disease and complications, as well as to a geographic and social scenario.

Author Contributions: Conceptualization, P.D.G. and D.I.; Data curation, P.D.G. and D.I.; Formal analysis,
P.D.G. and D.I.; Funding acquisition, P.D.G. and D.I.; Investigation, P.D.G. and D.I.; Methodology, P.D.G. and
D.I.; Project administration, P.D.G. and D.I.; Resources, P.D.G. and D.I.; Software, P.D.G. and D.I.; Supervision,
P.D.G. and D.I.; Validation, P.D.G. and D.I.; Visualization, P.D.G. and D.I.; Writing—original draft, P.D.G. and D.I.;
Writing—review & editing, P.D.G. and D.I.

Funding: This research was funded by Sapienza University of Rome, grant number 643-009-18 and 729-009-19

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Di Giamberardino, P.; Iacoviello, D. LQ control design for the containment of the HIV/AIDS diffusion.
Control Eng. Pract. 2018, 77, 162–173. [CrossRef]

2. Di Giamberardino, P.; Iacoviello, D. Modeling the effects of prevention and early diagnosis on HIV/AIDS
infection diffusion. IEEE Trans. Syst. Man Cybern. Syst. 2017, 99, 1–12. [CrossRef]

3. Yan, X.; Zou, Y. Optimal and sub-optimal quarantine and isolation control in SARS epidemics.
Math. Comput. Model. 2008, 47, 235–245. [CrossRef]

4. Ledzewicz, U.; Schattler, E. On optimal singular controls for a general SIR-model with vaccination and
treatment. Discret. Contin. Dyn. Syst. 2011, 2, 981–990.

5. Behncke, H. Optimal control of deterministic epidemics. Opt. Control Appl. Methods 2000, 21, 269–285.
[CrossRef]

http://dx.doi.org/10.1016/j.conengprac.2018.05.011
http://dx.doi.org/10.1109/TSMC.2017.2749138
http://dx.doi.org/10.1016/j.mcm.2007.04.003
http://dx.doi.org/10.1002/oca.678


Information 2019, 10, 213 17 of 17

6. Joshi, H.R. Optimal control of an HIV immunology mode. Opt. Control Appl. Methods 2002, 23, 199–213.
[CrossRef]

7. Tsai, A.C.; Mendenhall, E.; Trostle, J.A.; Kawach, I. Co-occurring epidemics, syndemics and population
health. Lancet 2017, 389, 978–982. [CrossRef]

8. Iacoviello, D.; Stasio, N. Optimal control for SIRC epidemic outbreak. Comput. Methods Programs Biomed.
2013, 110, 333–342. [CrossRef] [PubMed]

9. Xu, Y.; Ren, J. Propagation effect of a virus outbreak on a network with limited anti-virus ability. PLoS ONE
2016, 27, e0164415. [CrossRef] [PubMed]

10. Zhu, Q.; Yang, X. Modeling and analysis of the spread of computer virus. Commun. Nonlinear Sci.
Numer. Simul. 2012, 17, 5117–5124. [CrossRef]

11. Ahmed, I.H.I.; Witbooi, P.J.; Patida, K. Modeling the dynamics of an epidemic under vaccination in two
interacting populations. J. Appl. Math. 2012, 2012, 275902. [CrossRef]

12. Rowthorn, R.E.; Laxminarayan, R.; Gilligan, C.A. Optimal control of epidemics in metapopulations. J. R.
Sci. Interface 2009, 6, 1135–1144. [CrossRef] [PubMed]

13. Dooley, K.E.; Chaisson, R.E. Tuberculosis and diabetes mellitus: convergence of two epidemics.
Lancet Infect. Dis. 2010, 8, 4–15. [CrossRef]

14. Newman, M.E.J.; Ferrario, C.R. Interacting epidemics and coinfection on contact networks. PLoS ONE 2009,
8, e71321. [CrossRef] [PubMed]

15. Sutiono, A.B.; Suwa, H.; Ohta, T. Multi agent based simulation for typhoid fever with complications:
An epidemic analysis. In Proceedings of the 51st Annual Meeting of the International Society for the
Systems Sciences, Tokyo, Japan, 5–10 August 2007; pp. 4–15.

16. Zhou, Y.; Yang, K.; Zhou, K.; Wang, C. Optimal treatment strategies for HIV with antibody response.
J. Appl. Math. 2014, 27, 1–13. [CrossRef]

17. Di Giamberardino, P.; Iacoviello, D. Optimal Control of SIR Epidemic Model with State Dependent Switching
Cost Index. Biomed. Signal Process. Control 2017, 31, 377–380. [CrossRef]

18. Iacoviello, D.; Liuzzi, G. Fixed/free final time SIR epidemic models with multiple controls. Int. J. Simul. Model.
208, 7, 81–92. [CrossRef]

19. Di Giamberardino, P.; Iacoviello, D. Modeling and control of an epidemic disease under possible complication.
In Proceedings of the 22nd International Conference on System Theory, Control and Computing, Sinaia,
Romania, 10–12 October 2018; pp. 87–92.

20. Van Den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for
compartmental models of disease transmission. Math. Biosci. 2002, 18, 29–48. [CrossRef]

21. Van Den Driessche, P. Reproduction numbers of infectious disease models. Infect. Dis. Model. 2017, 2,
288–303. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/oca.710
http://dx.doi.org/10.1016/S0140-6736(17)30403-8
http://dx.doi.org/10.1016/j.cmpb.2013.01.006
http://www.ncbi.nlm.nih.gov/pubmed/23399104
http://dx.doi.org/10.1371/journal.pone.0164415
http://www.ncbi.nlm.nih.gov/pubmed/27788157
http://dx.doi.org/10.1016/j.cnsns.2012.05.030
http://dx.doi.org/10.1155/2012/275902
http://dx.doi.org/10.1098/rsif.2008.0402
http://www.ncbi.nlm.nih.gov/pubmed/19324686
http://dx.doi.org/10.1016/S1473-3099(09)70282-8
http://dx.doi.org/10.1371/journal.pone.0071321
http://www.ncbi.nlm.nih.gov/pubmed/23951134
http://dx.doi.org/10.1155/2014/685289
http://dx.doi.org/10.1016/j.bspc.2016.09.011
http://dx.doi.org/10.2507/IJSIMM07(2)3.103
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/j.idm.2017.06.002
http://www.ncbi.nlm.nih.gov/pubmed/29928743
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Mathematical Model
	The Model Analysis
	The Reproduction Number

	Formulation of the Optimal Control Problem
	Simulations Results
	Conclusions 
	References

