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Abstract: The least squares support vector method is a popular data-driven modeling method which
shows better performance and has been successfully applied in a wide range of applications. In this paper,
we propose a novel coupled least squares support vector ensemble machine (C-LSSVEM). The proposed
coupling ensemble helps improve robustness and produce good classification performance than the single
model approach. The proposed C-LSSVEM can choose appropriate kernel types and their parameters in
a good coupling strategy with a set of classifiers being trained simultaneously. The proposed method
can further minimize the total loss of ensembles in kernel space. Thus, we form an ensemble regressor
by co-optimizing and weighing base regressors. Experiments conducted on several datasets such
as artificial datasets, UCI classification datasets, UCI regression datasets, handwritten digits datasets
and NWPU-RESISC45 datasets, indicate that C-LSSVEM performs better in achieving the minimal
regression loss and the best classification accuracy relative to selected state-of-the-art regression and
classification techniques.
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1. Introduction

Among the support vector machines (SVM) [1,2], the least squares support vector machine (LSSVM)
is considered as a variation of the standard support vector machine (SVM) developed by Suykens et al. [3].
The concept of LSSVM has been successfully applied in many literatures to achieve good results. It is
used optimally to control non-linear Karush–Kuhn–Tucker systems for both classification and regression.
Also, it has been applied in real-world pattern recognition problems such as image classifications,
visual tracking and fault detection techniques, among others [4–7]. LSSVM is computationally based
on equality constraints in place of inequality constraints. Also, it produces closed-form solutions by
solving linear equation systems instead of solving quadratic programming (QP) problems iteratively
in the conventional SVM methods. Thus, training using LSSVM is simpler than that of the SVMs.
Furthermore, LSSVM is simple to construct and has the ability to avoid over-fitting to aid in achieving
a high generalization performance, making LSSVM popular and widely used. Researchers in recent
times have also made some contributions towards the robustness of the LSSVM method. For instance,
Lu et al. [8] proposed a robust spatiotemporal LSSVM modeling method for a distributed parameter
system (DPS) with disturbances. In this model, a spatial kernel function is firstly constructed in order to
describe the nonlinear relation amongst the spatial positions. Liu et al. [9] also proposed a robust
WLSSVM-PTS based on weighted LSSVM and penalized trimmed squares to overcome the drawback of
achieving robust regression in a noisy environment by adding a weight to each training sample.

Despite the computational advantage and attractive features of LSSVM, it has some drawbacks.
For example, parameter selection is vulnerable with respect to various kernel types and their
parameters. The selection of kernel functions could be very difficult considering the wide diversity of
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kernel functions. Moreover, the optimization of parameters is computationally challenging due to the
evaluation demands of some cross-validation procedures [10]. To solve this problem, the ensemble
model is used. The ensemble model primarily groups several weak learning techniques together to
form a strong learning technique. Some well-known ensemble models are Random Forest (RF) [11,12],
Gradient Boosting [13,14] and Tree Regression [15,16].

Motivated by the developments discussed above, we propose a novel coupled least squares
support vector ensemble machine (C-LSSVEM). The proposed coupling ensemble helps improve
robustness and produce good classification performance than the single model approach. The proposed
C-LSSVEM can choose appropriate kernel types and their parameters. Moreover, the proposed method
can minimize the total loss of ensembles in kernel space. Thus, we form an ensemble regressor by
co-optimizing and weighing base kernel regressors. To improve the robustness of the single model,
the coupled idea is used to train our ensemble model simultaneously. It is worth noting that the
proposed method is similar to yet different from the existing coupled methods used in the field of
facial recognition [17,18], artificial neural network [19,20] and partial least square [21,22]. Furthermore,
the proposed C-LSSVEM method is different and improves [23] by integrating the coupling strategy to
optimize our base model regressors.

To the best of our knowledge, we are the first to propose a coupled ensemble framework of
LSSVM. The main contributions of this paper are as follows:

• The proposed model uses the ensemble model to choose suitable kernel types and their parameters.
The proposed method can minimize the total loss of ensembles in kernel space. Thus, we form
an ensemble regressor by co-optimizing and weighing base kernel regressors.

• Our proposed method improves training base models in a coupling strategy. This helps the
base model generate robustness and better classification performance by compelling each local
minimizers together to solve training optimization problem in a coupling way.

• Experiments conducted on artificial datasets, UCI datasets, and handwritten digits datasets
indicate that the proposed model effectively performs better in achieving the lowest regression loss
and the highest classification accuracy as compared to the state-of-the-art methods. Additionally,
we test our model on NWPU-RESISC45 dataset with deep features being trained in AlexNet and
VGGNet. This shows superiority performance in feature learning and classification.

The rest of this paper is outlined as follows. Section 2 introduces some related works with
respect to the topic under discussion. Section 3 presents the proposed method in details. In Section 4,
the experimental results are presented. Section 5 concludes this paper finally.

2. Related Work

LSSVM has been addressed in a lot of prior studies. In this section, we introduce some related
studies on LSSVM and ensemble models.

2.1. Least Squares Support Vector Machine

LSSVM has the same classification principle as SVM, but there are differences in solving the
hyperplane. SVM uses quadratic programming to optimize parameter hyperplane while LSSVM
transforms the linear programming problem of SVM into constraint conditions. Thus, changes the
structure of the loss function, hence greatly reduces the computational effort. LSSVM uses this hyperplane
to fit the location of the sample points. LSSVM is generally used for optimal control, classification and
regression problems [3,24]. LSSVR is introduced as a regression for LSSVM. The LSSVR technique is
to approximate a function by using a given sample of a training data series {x1, y1}N

i=1. The regression
function can be formulated as a feature space representation:

y = f (X) = wTδ(x) + b (1)
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where the x ∈ <d, y ∈ < and δ(.) : <d 7→ <h is the mapping to the high dimensional feature space.
The optimization problem of LSSVM is given as:

minJ1(w, b, e) =
1
2

wTw +
1
2

C
n

∑
i=1

e2
i (2)

Subjected to

yi = wTδ(xi) + b + ei, i = 1, 2, ..., n (3)

Research has recently been made to the contributions of the LSSVM method. For example,
Zheng et al. [25] proposed a novel model that combines wavelet technique integrated LSSVM with
improved PSO for forecasting of dissolved gases in oil-immersed transformers. Wen et al. [26] on
the other hand also presented a different method which integrates machine learning and complexity
theory to assess node relevance in complex network relying on LSSVMs techniques with experimental
outcome showing the accuracy and efficacy of their method.

2.2. Ensemble Regression

Ensemble learning is a kind of machine learning paradigm in which multiple models, such as
decision trees, neural networks and SVM, are combined together to solve a particular problem [27].
Typical ensemble methods include Adaboost [28], random forests [29] and gradient boosted
machines [30]. All these methods encourage diversity of the base learners to some extent to compensate
individual errors and reach a better-expected performance.

Adaboost is a common ensemble and iterative algorithm [31] that allows a new classifier to be
generated from the training dataset in each iteration; it further classifies all samples to assess the
importance of each sample. The weight of the wrongly classified samples will be higher in the next
training. The whole process will not end until the error rate is small enough or up to a certain iteration
number. Moghimi et al. [32] proposed a vehicle detection technology which aims to locate and show
the vehicle size in digital images based on the boosting technique by Viola Jones. Their experimental
results showed that the accuracy, completeness, and quality of the proposed vehicle detection method
are better than previous techniques. Yin et al. [33] proposed a new method of video text localization
based on Adaboost. The experimental results showed that their method does not only achieve a good
effect on the text localization in video images with a text of various fonts, sizes and colors but also can
realize rapidly and accurately these requirements to meet the video text localization.

The random forest, proposed by Breiman [29] is an ensemble approach that can also be thought
of as a form of the nearest neighbor predictor. It is an algorithm that uses multiple trees to train and
predict a sample. Melville et al. [34] presented a random forest classification approach for identifying
and mapping three types of lowland natives grassland communities found in the Tasmania midlands
region. The results of this study indicated that remote sensing is a viable method for the identification
of lowland native grassland communities in the Tasmanian Midlands, and that repeat classification
and statistical significance testing can be used to identify optimal datasets for vegetation community
mapping. Jog et al. [35] presented a supervised random forest image synthesis approach called
RELICA, that learns a non-linear regression to predict the intensities of alternate tissue contracts given
specific input tissue contracts.

Gradient boosting is an ensemble technique in which the predictors are not made independently,
but sequentially. Gradient boosting is one of the most powerful techniques for building predictive
models. Li et al. [36] used an extreme gradient boosting regression tree model to analyze twitter
signals as a medium for user sentiment to predict the price fluctuations of a small-cap alternative
cryptocurrency called (ZClassic). Their model is the first academic proof of concept that social media
platforms such as twitter can serve as a powerful social signal for predicting price movements in the
highly speculative alternative cryptocurrency or "alt-coin" market. Touzani et al. [37] more recently
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presented an energy consumption baseline modeling method based on a gradient boosting machine
to assess the performance of testing procedures used on a large dataset of 410 commercial buildings.
The results showed that using the gradient boosting machine model improved the R-squared prediction
accuracy and the CV(RMSE) in more than 80 percent of the cases when compared to an industry best
practice model that is based on piecewise linear regression, and to a random forest algorithm.

3. The Proposed Method

In this section, we explore the intricacy of the novel coupled least squares support vector
ensemble machine (C-LSSVEM). The following subsections talks about kernel theory and the proposed
model respectively

3.1. Kernel Theory

Kernel methods map the data into a high dimensional feature space, where each coordinate
corresponds to one feature of the data items. In that space, a variety of methods can be used to find
relations in the data. Since the mapping can be quite general (e.g., not necessarily linear), the relations
found in this way are explicitly general. Kernels are proposed as a result of varied situational and
application differences. A Mercer Kernel function K : X × X 7→ < is said to be symmetrically
continuous and positive semidefinite. Thus, for any finite set of distinct points {x1, x2, ..., xN} ∈ X,
the matrix {(xi, xj)}N

i,j=1 is positive semidefinite.
The basic features of a kernel function are derived from Mercer’s theorem [38]. Applicable kernel

functions must satisfy Mercer’s conditions. This study uses the radial function (RBF), the gaussian
function and the polynomial function as kernel functions as shown below:

- The Polynomial kernel

k(xi, xj) = (axT
i xj + b)c (4)

- The RBF kernel (Radial Basis Function)

k(xi, xj) = exp(−
‖xi − xj‖

µ
) (5)

- The Gaussian kernel

k(xi, xj) = exp(−
‖xi − xj‖2

2σ2 ) (6)

where a, b, c, µ, σ ∈ R. a, b and c are kernel parameters used in the experiment, µ and σ are parameters
frequently used by kernels in practice due to its capacity to generate nonparametric classification
functions. xi − xj represents feature vectors in input space. While K denotes a Gram matrix obtained
according to samples. Which is a symmetric and semi-positive definite matrix given as follows:

K =


k(x1, x1) k(x1, x2) · · · k(x1, xN)

k(x2, x1) k(x2, x2) · · · k(x2, xN)
...

...
. . .

...
k(xN , x1) k(xN , x2) · · · k(xN , xN)

 (7)

Given a set of labeled examples (xi, yi), i = 1, ..., N, the standard framework estimates an unknown
function by minimizing:

f ∗ = arg min
N

∑
i=1

E(ym, f (xm)) + λ|| f ||2k (8)
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where E : < × < 7→ [0, ∞] is a loss function, such as squared loss (yi − f (xi))
2 for hinge loss or

regularized least square loss function max [0, 1− yi f (xi)] for SVM. λ|| f ||2k is considered as a smooth
condition on likely solutions and the lambda is a positive parameter to trade off the balance. Moreover,
the classical representation theorem states the solution to minimizing problems that exist can be
written as:

f (x) =
N

∑
j=1

ajk(x, xj) (9)

Hence, the difficulty is reduced to enhancing over the finite dimensional space or coefficients aj,
which is the algorithmic basis for SVM, regularized least squares, and other regression methods.

3.2. Coupled Least Squares Support Vector Ensemble Machine (C-LSSVEM)

In this subsection, we introduce our coupled least squares support vector ensemble method.
Diverse kernel models and their parameters are utilized to construct base regressors. The proposed
kernel ensemble method is presented as follows.

Diverse kernels are archived according to data samples. Supposing a training set X with
regression result (X = {(x1, y1), ..., (xN , yN)}) and a testing set Xt without regression result
(Xt= {(x1, ..., xNt)}) where xn(xn ∈ Rd, n = 1, ..., N) expresses a training sample, yn is the real value
of xn, and xt(xt ∈ Rd, t = 1, ..., Nt) expresses a testing sample. N is the number of training samples
and Nt is the number of testing samples. The base kernel regressor is built as a kernel regressor.

On the other hand, diverse kernel types and their parameters selection result in various regression
results. So as to get a superior regression ensemble model, base kernel regressors are consolidated
in our coupled least squares support vector ensemble framework. Those base regressors are coupled
and weighted in the following part. To make simpler the whole model, we present a new variable ein,
which equals to ([(Ki+1αi+1 + bi+11N∗1)n×1− (Kiαi + bi1N∗1)n×1]). The proposed coupled least squares
support vector ensemble machine (C-LSSVEM) model is as follows:

argmin
ei ,bi ,w,αi

L

∑
i=1

wi(
N

∑
n=1
||(Kiαi)n + bi − yn||22) + e2

in + λαT
i Kiαi)

s.t.1Tw = 1, ein = [(Ki+1αi+1 + bi+11N∗1)n − (Kiαi + bi1N∗1)n]

(10)

where L is the number of base regressors. w denotes a weight vector of individual base kernel
regression model and w = [w1, ..., wL]

T . Ki is the i-th base gram matrix and ein is the coupling error
between the (i + 1)-th base regressor and the i-th base regressor. αi is N × 1 weight column vector,
which is identified to the weight of every training data sample in Ki. bi is the bias item for the i-th
base regressor.

Equation (10) can be transformed into Equation (11) by adding Lagrangian multiplier β:

argmin
ei ,bi ,w,αi

L

∑
i=1

wi(α
T
i KT

i αi + 2αT
i KT

i bi1N∗1 − 2αT
i KT

i y

+ b2
i N − 2bi1T

N∗1y + yTy + λαT
i Kiαi

+ eT
i ei + 2βT

i [ei − (ki+1αi+1 + bi+11N∗1)

+ (Kiαi + bi1N∗1)])

(11)

Derivatives are taken of Equation (11) with respect to bi, ei, αi, and βi obtain as follows, whiles we
set them to zero (0):

To derive ei

ei + βi = 0 (12)
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To derive βi

ei = (Ki+1αi+1 + bi+11N∗1)− (Kiαi + bi1N∗1) (13)

To derive αi

wi(KiKiαi + biKi1N∗1 − Kiy + λKiαi + Kiβi)

− wi−1Kiβi−1 = 0
(14)

To derive bi

wi[α
T
i Ki1N∗1 + bi N − 1N∗1y + βT

i ∗ 1N∗1]

− wi−1[β
T
i−1 ∗ 1N∗1] = 0

(15)

From the above, we then substitute βi and ei into Equations (14) and (15) and obtain the
following equations:

αi =(2wiKi + wi−1Ki + λwi I)−1(wiy + wiKi+1αi+1

+ wi−1Ki−1αi−1 − 2wibi1N∗1 − wibi+11N∗1

+ wi−1bi−11N∗1 − wi−1bi1N∗1)

(16)

bi =
1

(2wi + wi−1)N
(wibi+1N + wi−1bi−1N

− 2wiα
T
i Ki1N∗1y + wiα

T
i Ki+11N∗1

+ wi−1αT
i−1Ki−11N∗1 − wi−1αT

i Ki1N∗1)

(17)

Since our approach aims to select suitable kernel types and parameters in individual kernel
regressors and also to obtain an optimal weight vector of base regressors, we aimed at minimizing the
loss for determining the performance of the base kernel regression models.

Consider Wi to be Wi
r (where r speaks to the control parameter for the weights of multiple

features) in light of the fact that linear programming accomplishes its ideal solution at the extreme
ends. In this way, either Wi = 0 or Wi = 1. This implies there will be one kernel chosen in opposing to
our goal of discovering the rich complementation of multiple kernels. At the point r = 1, just a single
kernel will be chosen in the ideal result, which is undesirable, yet on the off chance that r > 1 the ideal
result is based on multi-kernel adjusting. The value of r is man-made to obtain appropriate w. We can
further derive that:

wi =
( 1

ζi
)

r−1

L
∑

i=1
( 1

ζi
)

r−1
(18)

where ζi = ‖Kiαi + bi − y‖2
2 + λαi

TKiαi denotes the loss of each kernel. As per Equation (18), the ideal
weight of the ensemble method can be achieved, where r is a parameter to get suitable w. We achieve
an ensemble regression model by consolidating the different base kernel models linearly. The proposed
kernel ensemble regressor is constructed using Formula (19).

f (xt) =
L

∑
i=1

Wi(
N

∑
j=1

Ki(xj, xt)αi,j + bi) (19)

The C-LSSVEM method summarized in Algorithm 1.
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Algorithm 1 The proposed C-LSSVEM method.

1: Input: Training set X, L
2: Output: f (xt)
3: Parameters: α,b,c,λ,r
4: Initialize:

-Set w = ( 1
L , 1

L , ..., 1
L )

T

-Constract gram matrix K
5: while not converged do

6: obtain f (xt) as in Equation (19)
7: Update e through Equation (13)
8: Update α through Equation (16)
9: Update b through Equation (17)

10: Update w through Equation (18)
11: Compute loss through Equation (10)
12: end while

4. Experiment Result

This section demonstrates the generalization performance advantage of the coupled ensemble
multiple kernel based method in our proposed model (C-LSSVEM) over other regression
methods, for example, ridge regression (RR), support vector regression (SVR), random forest (RF),
gradient boosting regression (GBR), decision tree regression (DTR) and extreme gradient boosting
(XGBoost) [39]. To validate the performance of our proposed method, artificial dataset, UC Irvine (UCI)
regression and UC Irvine (UCI) classification datasets are used. The details of the experimental settings
and results on different datasets are discussed in the following subsection.

4.1. Experimental Settings

The experiments are conducted with training (i.e., 2/3) and testing (i.e., 1/3) data from each
dataset. It is worth noting that the training and testing data of each dataset are randomly selected.
The experimental results are performed 10 times on each dataset.

A demonstration of how several LSSVM models in an ensemble are coupled is discussed in
the proposed method. In Equation (4), a single polynomial kernel method is considerably used as
the elementary method of an ensemble for all the diverse datasets. This method comprises of three
parameters (i.e., a, b, and c). Also, the different values of the parameters yield different effects with
respect to the experimental results. Specifically, we set parameters a, b, and c as a ∈ {1 ∗ 1e− 6, 1 ∗ 1e−
5, · · · , 1000}, b ∈ {1 ∗ 1e− 6, 1 ∗ 1e− 5, · · · , 1000} and c ∈ {1, 2, 3, 4, 5} respectively. The parameter
L in Equation (10) demonstrates the number of the base polynomial kernel models. Considering the
generalization ability of an ensemble regressor, it is always expedient to have enough base models.
Nevertheless, extreme availability of base models possibly will result in a worse generality capacity of
an ensemble regressor, which yields a poor classification accuracy level. Therefore, a careful selection
of L is given as L ∈ {10, 20, 50, 100, 150} in our experimentations. Moreover, 20 blends among three
parameters (i.e., a, b, and c) are selected.

The parameter in Equation (10) is the parameter to smooth the base regressor. The parameter r in
Equation (18) is the control parameter for adjusting the weights of multiple base models. The values of
λ and r are respectively set as 0.1 and 2, in all the experiments.

4.2. Experimental Results

In this section, we discuss the overall performance of the proposed C-LSSVEM method with
all the relative methods on diverse datasets under the: artificial dataset, UCI regression and UCI
classification datasets. The outcomes are recorded in Tables 1–3 with the highest performance results
on each dataset highlighted in bolded textual style.
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Table 1. MSE results (Average ± Std) of different methods on eight UCI datasets.

Dataset
Method RR SVR RF GBR DTR XGBOOST C-LSSVEM

Abalone 6.865 ± 0.314 7.675 ± 0.128 6.223 ± 0.176 6.478 ± 0.187 6.989 ± 0.135 7.103 ± 0.175 5.822 ± 0.125
RedWine 0.522 ± 0.020 0.597 ± 0.039 0.515 ± 0.009 0.516 ± 0.016 0.585 ± 0.034 0.599 ± 0.065 0.401 ± 0.008
Housing 24.245 ± 3.015 33.230 ± 6.030 15.304 ± 2.019 17.302 ± 0.025 20.308 ± 0.029 18.672 ± 3.018 13.319 ± 0.007
Concrete 103.857 ± 7.298 278.723 ± 11.658 43.145 ± 7.095 52.543 ± 8.609 74.564 ± 7.232 54.235 ± 7.342 40.123 ± 7.243
Mg 0.022 ± 0.001 0.019 ± 0.001 0.018 ± 0.001 0.016 ± 0.001 0.019 ± 0.001 0.017 ± 0.001 0.015 ± 0.009
Mpg 14.902 ± 1.200 81.674 ± 3.123 10.889 ± 1.725 12.565 ± 1.155 15.678 ± 1.182 13.735 ± 2.016 10.143 ± 0.851
Space 0.023 ± 0.001 0.045 ± 0.003 0.022 ± 0.001 0.023 ± 0.002 0.023 ± 0.001 0.023 ± 0.001 0.022 ± 0.001
Bodyfat 2.826 ± 0.974 45.785 ± 11.099 5.673 ± 1.446 3.764 ± 0.988 3.645 ± 0.978 3.989 ± 0.936 1.999 ± 0.935

Table 2. MAE results (Average ± Std) of different methods on eight UCI datasets.

Dataset
Method RR SVR RF GBR DTR XGBOOST C-LSSVEM

Abalone 1.723 ± 0.061 1.787 ± 0.075 1.678 ± 0.052 1.753 ± 0.060 1.798 ± 0.078 1.760 ± 0.082 1.658 ± 0.568
RedWine 0.685 ± 0.013 0.764 ± 0.029 0.687 ± 0.011 0.689 ± 0.012 0.732 ± 0.015 0.069 ± 0.013 0.678 ± 0.010
Housing 3.504 ± 0.008 3.821 ± 0.012 2.707 ± 0.008 3.104 ± 0.009 4.108 ± 0.010 3.467 ± 0.010 2.101 ± 0.004
Concrete 10.245 ± 0.198 15.673 ± 0.147 6.850 ± 0.183 7.859 ± 0.918 8.467 ± 0.182 7.997 ± 0.989 7.074 ± 0.218
Mg 0.128 ± 0.005 0.117 ± 0.005 0.099 ± 0.005 0.100 ± 0.004 0.102 ± 0.003 0.138 ± 0.007 0.090 ± 0.002
Mpg 3.678 ± 0.150 8.737 ± 0.221 3.076 ± 0.162 3.328 ± 0.140 3.598 ± 0.230 3.700 ± 0.151 3.100 ± 0.030
Space 0.109 ± 0.001 1.622 ± 0.001 0.108 ± 0.002 0.107 ± 0.005 0.107 ± 0.004 0.110 ± 0.006 0.103 ± 0.001
Bodyfat 13.253 ± 1.925 186.456 ± 20.752 57.678 ± 4.967 32.364 ± 1.934 22.356 ± 2.672 33.024 ± 2.000 12.873 ± 1.906

Table 3. Classification accuracy results (%) (Average ± Std) of different methods on five UCI datasets.

Dataset
Method RR SVR RF KNORA − E OLA C-LSSVEM

Breast-cancer 97.701 ± 1.365 98.825 ± 1.104 98.580 ± 1.141 95.948 ± 0.800 98.367 ± 1.219 99.924 ± 0.471
Pima 79.198 ± 1.820 75.466 ± 1.436 77.175 ± 1.472 76.453 ± 1.865 76.895 ± 2.598 81.933 ± 0.830
Sonar 78.323 ± 3.786 79.213 ± 4.438 80.357 ± 3.678 79.898 ± 2.986 76.587 ± 3.354 81.898 ± 2.673
Australian 89.566 ± 1.679 56.913 ± 4.894 86.430 ± 2.166 88.980 ± 1.751 87.140 ± 1.784 89.886 ± 1.946
German 78.783 ± 1.455 72.876 ± 0.018 76.784 ± 1.211 73.874 ± 2.346 76.181 ± 3.536 79.783 ± 1.253

4.2.1. Artificial Dataset

The utilization of artificial dataset is purposefully used to illustrate the performances of the
proposed method and comparative methods visually. Ideally, the sampling of the input space is not
practical in most cases. So, we utilized it only for demonstration purposes to visualize the regression
effects in Figure 1.

Fifty data points are produced from the scalar function corrupted by an observation noise.
We made use of the model shown below:

y =
sin(πx)

πx
+ 0.1x + 0.05η (20)

We visualize the regression effects on five regression methods, namely, SVR, RF, GBR, DTR and
C-LSSVEM. We considered the data points to be consistently spread over the x-axis on all the methods
as shown in the following experimental graph, where η denotes noise.

From Figure 1 the fitting of our proposed C-LSSVEM method outperforms the other comparative
method in this experiment. From all indications, the loss of the proposed method is the least among
the regression methods indicated above. Similar to the SVR method is the GBR and DTR methods
where good fitting is achieved by both methods on the x-axis however poorly fit midway of the x-axis.
Our proposed method in Figure 1e shows an excellent regression performance to the comparative
methods due to the coupling benefits of both ensemble and kernel methods.
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(a) (b)

(c) (d)

(e)

Figure 1. The fitting of five different methods on artificial dataset. (a) SVR; (b) RF; (c) GBR; (d) DTR;
(e) C-LSSVEM.

4.2.2. UCI-Datasets

(1) Regression

Quite a lot of regression datasets with diverse features have been tested so as to authenticate the
performance of our proposed model. We selected eight benchmark publicly available datasets for the
evaluation of our performance of our technique from the UCI repository, namely Abalone, Bodyfat,
Concrete, Mg, Mpg, RedWine, Space, and Housing. The detailed summary about the UCI datasets
used is presented in Table 4 [40]. The standards applied is Mean Absolute Error (MAE) and Mean
Square Error (MSE). They are given as:

MAE =
1

Nt

Nt

∑
i=1
| f (xi)− yi| (21)

MSE =
1

Nt

Nt

∑
i=1

( f (xi)− yi)
2 (22)
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where f (xi) and yi are the real output and the model output respectively, and Nt is the number of
samples. The mean and variance of MSE and MAE are used to evaluate the performance of the
proposed method.

Table 4. Descriptions of the UCI datasets.

Dataset Samples Attributes

Abalone 4177 8
RedWine 1599 11
Housing 506 13
Concrete 1030 8

Mg 1385 6
Mpg 392 7
Space 3107 6

Bodyfat 252 14

Table 1 presents the average MSE with corresponding standard deviations after running each
method ten times. It is evident from the results that our approach performed much better than all
the comparative methods. Taking for example the Abalone dataset, our approaches performance
superseded RR by 1.042, SVR by 1.853, RF by 0.401, GBR by 0.656, DTR by 1.167 and XGBoost
by 1.28. On the Concrete dataset, most of the approaches performed relatively poorly. Our approach
however outperformed RF which is the next best performing method on this dataset by 3.022, and also
outperformed the worst method which is SVR by 238.6. Taking the standard deviations of all
approaches into perspective indicates also that our approach has the best stability, as it consistently
records the lowest deviations. The lower MSE and standard deviation values indicates that our
proposed approach can better handle non-linear datasets with kernel methods and obtains stable
regression performance as a result of the coupling of ensemble methods.

We demonstrate further the merits of coupling kernel and ensemble methods using MAE as
a performance measure. Table 2 illustrates the obtained results of the six regression approaches on our
selected benchmark datasets. Our proposed C-LSSVEM again consistently outperforms all comparing
methods. It records an optimal result of 1.6580 on the Abalone dataset, leading the RF approach by
0.0206. It is also observed that our C-LSSVEM approach attains the best performance of 12.873 and
7.074 respectively on the Bodyfat and Concrete datasets, whiles SVR achieves the poorest performance
of 15.673 on the concrete dataset.

Using box diagrams of MSE and MAE on the WhiteWine dataset, which is a regression dataset
of 4898 cases in 11 features, which was collected by variants of the Portuguese “Vinho Verde” wine.
We again show the preeminence of our approach with the other comparing methods in Figures 2 and 3.

SVR and RR respectively recorded the highest value MSE and MAE amongst all the comparing
regression methods from the results in Figures 2 and 3. This is a result of bad parameter selection
of SVR and RR. It is observed from the same figures that our C-LSSVEM has the least MSE and
MAE values amongst all the comparing methods, making it invariably the best performing method.
RF performed quite well on the WhiteWine dataset for both MAE and MSE.

From the above discussions, we deduce that our proposed C-LSSVEM approach has good
performance on all the UCI datasets chosen for our experiments. It is also able to select suitable
kernels with corresponding parameters that enhances significantly the performance of the regression.
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Figure 2. The MSE of six regression methods on WhiteWine dataset.

Figure 3. The MAE box plot of six regression methods on WhiteWine dataset.

(2) Classification

Even though all the models discussed in the previous sections are for regression tasks,
we additionally apply those techniques for classification task to additionally confirm the performance
of our proposed C-LSSVEM. Five open datasets from UCI (http://archive.ics.uci.edu/ml/index.php),
namely, Breast-cancer, Pima, Sonar, Australian and German are used. Also, we use five comparison
algorithms to compare with our method, which includes RR, SVR, RF, K-Nearest Oracles Eliminate
(KNORA-E) [41] and Overall Local Accuracy (OLA) [42]. The last two comparison methods are the
state-of-the-art techniques for dynamic classifier and ensemble selection in DESlib. The essential
information on these datasets is shown in Table 5.

Table 3 summarizes the results of average classification accuracies and corresponding standard
deviations of the various comparing methods on selected UCI datasets to further ascertain the
efficacy of our approach. The proposed C-LSSVEM obtains higher performance compared to the
other approaches under review with respect to all the datasets used in the experiment. For instance on

http://archive.ics.uci.edu/ml/index.php
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the Breast-cancer dataset, C-LSSVEM recorded a mean accuracy of 99.9246 with SVR and OLA lagging
behind our approach by 1.0992 and 1.5568, respectively. KNORA-E attains the worse performance
lagging behind our approach by 3.9757. Analysis on the standard deviations recorded by the various
approaches confirms that the proposed C-LSSVEM is more stable than the other baseline approaches
since it records the lowest values relative to the comparative models.

Table 5. Description information for the five datasets.

Dataset Samples Attributes

Breast-cancer 683 10
Pima 768 8
Sonar 208 60

Australian 690 14
German 1000 24

Additionally, we compare the performance of different comparative approaches. The box plot on
two datasets (German and Pima) as illustrated in Figure 4 is used.

(a)

(b)

Figure 4. The accuracy of six regression methods on two UCI dataset. (a) German (b) Pima.

Using box plot, we illustrate in Figure 4, the performance of all models on the German and Pima
datasets. As asserted in our earlier discussions, Figure 4 further confirms the superiority of our method
in classification accuracy with C-LSSVEM recording the highest position amongst the comparative
models on the two datasets. The relative narrow shape of the boxes also confirms the stability of our
model relative to the other approaches. In both the German and Pima datasets, the RR approach which
is a classical method, performed second best to C-LSSVEM, indicating the relevance of our approach
which outperforms all the comparative methods in our study.
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4.2.3. Handwritten Digits-Datasets

In this section, MNIST (http://www.cad.zju.edu.cn/home/dengcai/Data/data.html), USPS (http:
//www.cad.zju.edu.cn/home/dengcai/Data/data.html) which are handwritten datasets are used in
our experiment to perform classification task on five regression methods namelyin our experiments
to perform the classification task on six regression methods, namely Adaboost (AB) [43], RR, RF,
Simple Vote Rule [44], QFWEC [45] and C-LSSVEM. The detailed descriptions are shown in Table 6
and their accuracy can be seen in Table 7.

Table 6. Descriptions information for handwritten digits datasets.

Dataset Data Points No. of Features

MNIST 4000 784
USPS 9298 49

Table 7. Classification accuracy result (%) (Average ± Std) of different methods on Handwritten
digits datasets.

Dataset
Method Adaboost RR RF Simple Vote Rule QFWEC C-LSSVEM

MNIST 74.2345 ± 1.0456 69.7635 ± 1.6263 88.1793 ± 0.8792 87.9267 ± 0.9782 83.6671 ± 0.8679 93.8726 ± 0.3979
USPS 82.6728 ± 0.8962 89.1782 ± 0.9286 93.8369 ± 0.6284 93.9872 ± 0.8625 94.0432 ± 0.7237 94.0768 ± 0.5994

Comparing the results of C-LSSVEM from Table 7 to the other methods, the highest mean accuracy
performances recorded all belong to our C-LSSVEM method. For instance, 93.8726 ± 0.3979 and
94.0768 ± 0.5994 as recorded for MNIST and USPS, respectively. On the MNIST dataset, it outperformed
Adaboost by 19.6381, RR by 24.0191, RF by 5.6933, SVR by 5.9459, and QFWEC by 10.2055. The QFWEC
method has high mean accuracy on the USPS dataset and second only to our approach. Although,
the result of QFWEC is not satisfactory on the MNIST dataset. In addition, the Simple Vote Rule and
RF are optimistic on two datasets. From Table 7, the result of Adaboost is worse on the USPS dataset.
The standard deviations values of Table 7 implies our C-LSSVEM method is the most stable amongst the
comparative methods as it records the least values in our experiments. From our experimental results on
USPS and MNIST datasets, our proposed approach has a good effect on the handwriting field.

4.2.4. NWPU-RESISC45 Dataset

In this subsection, we test our model in a large dataset with features learned from deep networks.
Deep learning can learn high-level features in data by using structures composed of multiple non-linear
transformations. In view of this, we test our model on deep features, which are trained from two kinds
of deep learning-based CNN features: AlexNet [46] and VGGNet [47] for its superiority performance
in feature learning and classification. The details of these models are tabulated in Table 8.

Table 8. The detail features of AlexNet and VGGNet models.

Attribute AlexNet VGGNet

Feature layer conv5 Conv5-3
Feature map size 13× 13× 256 14× 14× 512

Receptive field size 163× 163 196× 196
Stride 16 16

The NWPU-RESISC45 dataset [48] is used in this subsection. It consists of 31,500 remote sensing
images divided into 45 scene classes. Each class includes 700 images with a size of 256× 256 pixels in the
red green blue (RGB) color space. This dataset was extracted, by experts in the field of remote sensing
image interpretation, from Google Earth (Google Inc.) that maps the Earth by the superimposition of

http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
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images obtained from satellite imagery, aerial photography and geographic information system (GIS)
onto a 3D globe. This data set is of the largest scale on the number of scene classes and the total number
of images. The rich image variations, large within class diversity and high between class similarities
make the data set rather challenging. The NWPU-RESISC45 dataset has the following three notable
characteristics compared with all existing scene classification datasets including large scale, rich image
variation and high with-in class diversity and between class similarity. Figure 5 shows two samples of
each class from this dataset.

Figure 5. Some example images from the NWPU-RESISC45 dataset.

In order to perform a comprehensive comparison, five comparative methods such as Ada-boost
(AB), RR, RF, Simple Vote Rule, and QFWEC are used in the experiment. The accuracy results are
recorded in Table 9.

Table 9. The accuracy results(%) (Average ± Std) of different methods on deep features.

Model Adaboost RR RF Simple Vote Rule QFWEC C-LSSVEM

AlexNet 53.3628 ± 0.3671 55.6260 ± 0.6746 55.8264 ± 0.4926 60.3728 ± 0.3627 62.5628 ± 0.8974 67.2631 ± 0.2345
VGGNet 51.8674 ± 0.1936 54.4636 ± 0.4783 54.8946 ± 0.7836 59.4653 ± 0.7536 61.6789 ± 0.984 64.7485 ± 0.4635

From Table 9, our proposed C-LSSVEM outperforms all the comparative methods using deep
features from AlexNet and VGGNet This indicates the effectiveness of the proposed method on diverse
deep features. Our proposed C-LSSVEM achieves higher accuracy and shows better robustness than
all the comparatives models. For instance, on AlexNet deep features, Adaboost performed poorly with
the least accuracy of mean of 53.3628. RF and RR are similar to a difference of 0.2004. Adaboost again,
on the other hand, had the least performance with a mean accuracy of 51.8674. QFWEC performed
fairly well on both models. Simple vote rule performed well on AlexNet model compared to VGGNet
model. When the proposed C-LSSVEM is applied on AlexNet deep features, the classification accuracy
of is 67.2631 and 64.7485 on VGGNet deep features.This indicates that the proposed method has the
best classification accuracy.
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5. Conclusions

In this paper, a novel coupled least squares support vector ensemble machine is presented.
We explore the difficulty of how to combine diverse base kernel regressors. Our proposed coupled
ensemble model helps to improve the robustness and to produce good classification performance
than the single model approach. The coupled least squares support vector ensemble model has the
ability to select appropriate kernel types and their parameters in a good coupling strategy with a set
of classifiers. We form an ensemble regressor by co-optimizing and weighing base kernel regressors.
Experiments conducted on several datasets including artificial datasets, UCI classification datasets,
UCI regression datasets, handwritten digits datasets and NWPU-RESISC45 datasets, indicate that
C-LSSVEM performs better in achieving minimal regression loss with best classification accuracy
relative to selected state-of-the-art regression and classification techniques.

We will aim to expand our model by altering our objective functions into different functions,
such as ε-insensitive loss and the hinge loss function in the future. Meanwhile, we will try to find other
ways to update the weights of base kernel regressors. Furthermore, we will find more effective ways
to utilize the end-to-end deep learning model.
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