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Abstract: The accurate analysis of periodic surface acoustic wave (SAW) structures by combined
finite element method and boundary element method (FEM/BEM) is important for SAW design,
especially in the extraction of couple-of-mode (COM) parameters. However, the time cost is very
large. With the aim to accelerate the calculation of SAW FEM/BEM analysis, some optimization
algorithms for the FEM and BEM calculation have been reported, while the optimization for the
solution to the final FEM/BEM equations which is also with a large amount of calculation is hardly
reported. In this paper, it was observed that the coefficient matrix of the final FEM/BEM equations
for the periodic SAW structures was similar to a Toeplitz matrix. A fast algorithm based on the Trench
recursive algorithm for the Toeplitz matrix inversion was proposed to speed up the solution of the
final FEM/BEM equations. The result showed that both the time and memory cost of FEM/BEM was
reduced furtherly.

Keywords: surface acoustic wave; finite element method/boundary element method (FEM/BEM);
piezoelectric phononic crystals

1. Introduction

The surface acoustic wave (SAW) devices are playing more and more of an important role in RF
communication and MEMS sensors. Thus, the simulation methods for SAW structures are theoretical
bases for the SAW device fabrication. The simulation methods are divided into two categories:
physical approximated models and rigorous models. The physical approximated models include the
delta function model [1], impulse model [1,2], equivalent circuit model [3,4], and coupling-of-modes
(COM) [5–8]. These phenomenological models are fast, but the accuracy is poor or the model
parameters have to be obtained by some other methods, such as COM parameters [9–11]. The rigorous
models include the finite element model (FEM), the boundary element model (BEM) [12–15],
and, the combined FEM and BEM (FEM/BEM) [16]. The finite FEM/BEM [17–20] can combine the
advantages of the two methods and simulate the infinite SAW structure accurately. However, the time
cost of the FEM/BEM is very large.

To accelerate the accurate SAW device simulation, some optimization algorithms for the FEM
and BEM calculation have been reported. Laude et al. introduced asymptotic waveform evaluation
(AWE) to reduce the FEM computation for periodic SAW structures [21]. Ke et al. approximated
the equations’ coefficients by poles to simplify the solution of the equations [22]. Ventura et al.
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reduced the dimension of algebraic equations by using the Chebyshev polynomial to approximate
Green’s function [20]. Wang, Luo, and Ke et al. did more optimization in BEM based on Ventura’s
research [21,23,24]. Peach approximated Green’s function by exponential terms to reduce the time cost
in BEM [19]. In addition, some researchers used finite FEM/BEM to extract accurate COM parameters
and simulated the SAW devices by the COM method [25]. Thus, the finite FEM/BEM based on periodic
SAW devices is one of the most important methods for the extraction of COM parameters. The speed
of the simulation was improved, and the computational accuracy could be also ensured.

These studies above were aimed at FEM and BEM, while the time cost of the solution to the
final FEM/BEM equations is also very large. Based on the methods above, most of the FEM/BEM
computation is transferred to the final solution, which has a large proportion above 80% in the total
calculation. Additionally, the optimization of solving the final FEM/BEM equations is hardly reported.
It was observed that the coefficient matrix of the final FEM/BEM equations for the periodic SAW
structures was similar to a Toeplitz matrix,

T(n) =


t0 t1 t2 · · · tn

τ1 t0 t1 · · · tn−1

τ2 τ1 t0 · · · tn−2
...

...
...

...
τn τn−1 τn−2 · · · t0

. (1)

Trench proposed a recursive inversion algorithm for the Toeplitz matrix [26–28]. It reduced the
process of matrix inversion to order N2 instead of N3 [28]. Based on the algorithm of Trench and
Bereux [29], a fast algorithm is proposed to inverse the coefficient matrix of the final FEM/BEM
equations. Thus, the solution to the final FEM/BEM equations could be accelerated.

In this paper, firstly, the final equations of the FEM/BEM for the periodic SAW structures are
introduced. Additionally, the coefficient matrix inversion algorithm based on the Trench recursive
algorithm is carried out to accelerate the solution to the final FEM/BEM equations. Then, the accuracy
and speed by comparing with the conventional matrix inversion algorithm are verified. Lastly, the
computational experiments based on a one port Al/36◦YXLiTaO3 SAW resonator were conducted.
The result shows that both the time and memory cost of FEM/BEM was further reduced without
changing the accuracy of the calculation.

2. Theory

The aim of this chapter is to give the final FEM/BEM equations for the periodic SAW
structures and propose a fast algorithm for the coefficient matrix inversion based on the Trench
recursive algorithm.

2.1. The Final FEM/BEM Equations for the Periodic SAW Structures

In the FEM/BEM theory, the model of SAW devices is shown in Figure 1, in which the piezoelectric
substrate can be assumed to be a semi-infinite solid occupying the region z < 0. The surface of the
structure is loaded with metal strip gratings. The grating electrodes are parallel to the y-axis and
are assumed to be long enough along the y-axis such that any dependence on y can be ignored.
The FEM/BEM for SAW structures can be divided into two parts: FEM and BEM.

Information 2019, 10, x FOR PEER REVIEW 2 of 11 

 

[21,23,24]. Peach approximated Green's function by exponential terms to reduce the time cost in BEM 
[19]. In addition, some researchers used finite FEM/BEM to extract accurate COM parameters and 
simulated the SAW devices by the COM method [25]. Thus, the finite FEM/BEM based on periodic 
SAW devices is one of the most important methods for the extraction of COM parameters. The speed 
of the simulation was improved, and the computational accuracy could be also ensured. 

These studies above were aimed at FEM and BEM, while the time cost of the solution to the final 
FEM/BEM equations is also very large. Based on the methods above, most of the FEM/BEM 
computation is transferred to the final solution, which has a large proportion above 80% in the total 
calculation. Additionally, the optimization of solving the final FEM/BEM equations is hardly 
reported. It was observed that the coefficient matrix of the final FEM/BEM equations for the periodic 
SAW structures was similar to a Toeplitz matrix, 

𝑇( ) = ⎣⎢⎢
⎢⎡𝑡 𝑡 𝑡 ⋯ 𝑡𝜏 𝑡 𝑡 ⋯ 𝑡𝜏 𝜏 𝑡 ⋯ 𝑡⋮ ⋮ ⋮ ⋮𝜏 𝜏 𝜏 ⋯ 𝑡 ⎦⎥⎥

⎥⎤. (1) 

Trench proposed a recursive inversion algorithm for the Toeplitz matrix [26–28]. It reduced the 
process of matrix inversion to order N2 instead of N3 [28]. Based on the algorithm of Trench and 
Bereux [29], a fast algorithm is proposed to inverse the coefficient matrix of the final FEM/BEM 
equations. Thus, the solution to the final FEM/BEM equations could be accelerated. 

In this paper, firstly, the final equations of the FEM/BEM for the periodic SAW structures are 
introduced. Additionally, the coefficient matrix inversion algorithm based on the Trench recursive 
algorithm is carried out to accelerate the solution to the final FEM/BEM equations. Then, the accuracy 
and speed by comparing with the conventional matrix inversion algorithm are verified. Lastly, the 
computational experiments based on a one port Al/36°YXLiTaO3 SAW resonator were conducted. 
The result shows that both the time and memory cost of FEM/BEM was further reduced without 
changing the accuracy of the calculation. 

2. Theory  

The aim of this chapter is to give the final FEM/BEM equations for the periodic SAW structures 
and propose a fast algorithm for the coefficient matrix inversion based on the Trench recursive 
algorithm. 

2.1. The Final FEM/BEM Equations for the Periodic SAW Structures 

In the FEM/BEM theory, the model of SAW devices is shown in Figure 1, in which the 
piezoelectric substrate can be assumed to be a semi-infinite solid occupying the region z < 0. The 
surface of the structure is loaded with metal strip gratings. The grating electrodes are parallel to the 
y-axis and are assumed to be long enough along the y-axis such that any dependence on y can be 
ignored. The FEM/BEM for SAW structures can be divided into two parts: FEM and BEM.  

 

Figure 1. The schematic drawing of the periodic surface acoustic wave (SAW) structures. 

According to the theory of FEM/BEM [16,20,22], the final equations of BEM is 

Figure 1. The schematic drawing of the periodic surface acoustic wave (SAW) structures.



Information 2019, 10, 90 3 of 11

According to the theory of FEM/BEM [16,20,22], the final equations of BEM is

[
cu

cφ

]m

j

=
Ne

∑
j=1

Nch−1

∑
n=0


(

Ymn
ij

)
u

(
Ymn

ij

)
uφ(

Ymn
ij

)
φu

(
Ymn

ij

)
φ

[ bt

bσ

]n

j

(2)

where, (cu)
m
j ,
(
cφ

)m
j are displacement coefficients and potential coefficients, respectively [20].

Displacement u has three values. Potential φ has one value. (bt)
n
j , (bσ)

n
j are the approximation

coefficients of stress and charge density, respectively. Nch is the Chebyshev polynomial expansion
coefficient [16,20,22]. Ne is the number of the interdigital transducer (IDT) fingers. The equations
coefficient matrix Ymn

ij is an integral about Green’s function.
The final equation of FEM is

(cu)
m
i = ∑

n
Ymn

e (bt)
n
i (3)

where, Ymn
e is the equations coefficient matrix.

Based on charge conservation principle,

0 =
Ne

∑
i=1

(bσ)
0
i (4)

by assuming the supply voltage is 1 V, the potential coefficients of electrodes are [20,30].

(
cφ

)m
i =


π + πVp m = 0, the ith electrode is positive

0 m 6= 0

πVp m = 0, the ith electrode is negative

(5)

We define that, (
c′∅
)m

i =

{
π m = 0, the ith electrode is positive

0 m 6= 0
(6)

where, i is the electrode on the positive pole of the power supply, and Vp is a potential of Reference [30].
According to Equations (2)–(6), we can get the final FEM/BEM equations,

 0(
c′φ
)m

i
0

 =
Ne

∑
j=1

Nch−1

∑
n=0


(

Ymn
ij − Ymn

e δij

)
uu

(
Ymn

ij

)
uφ(

Ymn
ij

)
φu

(
Ymn

ij

)
φφ

0 −πδ0n


[

(bt)
n
j

(bσ)
n
j

]
+

 0
−πδ0m

0

Vp (7)

Suppose that the coefficient matrix of Equation (8) is partitioned into

Mcoef =

[
Tcoe f YC
YC

T 0

]
(8)

where, YC is a 4NchNe × 1 constant vector and Tcoe f can be written as

Tcoe f =



T11 T12 · · · T1j · · · T1Ne

T21 T22 · · · T2j · · · T2Ne
...

...
...

...
Ti1 Ti2 · · · Tij · · · TiNe

...
...

...
...

TNe1 TNe2 · · · TNe j · · · TNe Ne


(9)
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where,

Tij =



N11 N12 · · · N1n · · · N1Nch

N21 N22 · · · N2n · · · N2Nch
...

...
...

...
Nm1 Nm2 · · · Nmn · · · NmNch

...
...

...
...

NNch1 NNch2 · · · NNchn · · · NNch Nch


(10)

where,

Nmn =


(

Ymn
ij − Ymn

e δij

)
uu

(
Ymn

ij

)
uφ(

Ymn
ij

)
φu

(
Ymn

ij

)
φφ


4×4

(11)

Mcoe f is a (4NchNe + 1)× (4NchNe + 1) matrix. For periodic SAW structures, we have

Tij = T(i+1)(j+1) (12)

Tij = Tji
T (13)

Let Tj−i = Tij, for j ≥ i. So Equation (9) can be written as

Tcoe f = T(Ne−1) =


T0 T1 T2 · · · TNe−1

Γ1 T0 T1 · · · TNe−2

Γ2 Γ1 T0 · · · TNe−3
...

...
...

...
ΓNe−1 ΓNe−2 ΓNe−3 · · · T0

 (14)

where, Γi = Ti
T, i = 1, 2, . . . , Ne − 1. T(Ne−1) is a Ne × Ne block Toeplitz matrix. Different from

Equation (1), every element of T(Ne−1) is a 4Nch × 4Nch matrix. The coefficient matrix Mcoe f is just one
more row and column than a block Toeplitz matrix. Thus, a fast algorithm is carried out based on the
Trench inversion algorithm for the Toeplitz matrix to speed up the solution of Equation (7).

2.2. Fast Inversion Algorithm

First, find the relationship between Bcoef and B(Ne−1), which are assumed to be the inversions of
Mcoef and T(Ne−1), respectively. Bcoef can be partitioned into

Bcoe f =

[
M P
Q b0

]
(15)

where, M is a 4NchNe × 4NchNe matrix. P is 4NchNe × 1 vector. Q is 1× 4NchNe vector. So we have

Mcoe f Bcoe f = I4Nch Ne+1 (16)

That is 

T(Ne−1)M + YCQ = I4Nch Ne

T(Ne−1)P + YCb0 = 0

YC
TM = 0

YC
TP = 1

(17)

Moreover,
T(Ne−1)B(Ne−1) = I4Nch Ne (18)
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With Equations (17) and (18), we get the solution of M, P, Q, b0 in Equations (15) and the
relationship between Bcoe f and B(Ne−1),

Bcoe f =

[
B(Ne−1) + 1

a B(Ne−1)YCYC
TB(Ne−1) − 1

a B(Ne−1)YC

− 1
a YC

TB(Ne−1) 1
a

]
(19)

where,
a = −YC

TB(Ne−1)YC (20)

Next, we calculate the inversion of T(Ne−1) based on the Trench recursive algorithm. According to
Equation (14), T(k) is like

T(k) =


T0 T1 T2 · · · Tk
Γ1 T0 T1 · · · Tk−1
Γ2 Γ1 T0 · · · Tk−2
...

...
...

...
Γk Γk−1 Γk−2 · · · T0

 (21)

We assume the inversion of T(k) and T(k+1) is B(k) and B(k+1), respectively, and partition
T(k+1) into

T(k+1) =


T(k)

Tk+1
Tk
...

T1

Γk+1 Γk · · · Γ1 T0

 (22)

By using the same method of getting the relationship between of Bcoe f and B(Ne−1), we get a
relationship between B(k+1) and B(k),

B(k+1) =

 B(k) + B(k)

 Tk+1
...

T1

αk
−1(Γk+1, · · · , Γ1)B(k) −B(k)

 Tk+1
...

T1

αk
−1

−αk
−1(Γk+1, · · · , Γ1)B(k) αk

−1

 (23)

where, αk is a 4Nch × 4Nch matrix,

αk = T0 − (Γk+1, · · · , Γ1)B(k)

 Tk+1
...

T1

 (24)

T(k+1) can also be partitioned into

T(k+1) =


T0 T1 T1 · · · Tk+1
Γ1

Γ2
...

Γk+1

T(k)

 (25)



Information 2019, 10, 90 6 of 11

Similarly, we get another relationship between B(k+1) and B(k),

B(k+1) =


βk
−1 −βk

−1(T1, · · · , Tk+1)B(k)

−B(k)

 Γ1
...

Γk+1

βk
−1 B(k) + B(k)

 Γ1
...

Γk+1

βk
−1(T1, · · · , Tk+1)B(k)

 (26)

where, βk is a 4Nch × 4Nch matrix,

βk = T0 − (T1, · · · , Tk+1)B
(k)

 Γ1
...

Γk+1

 (27)

Define that

B(k)

 Γ1
...

Γk+1

 =


c(k)1

...

c(k)k+1

 (28)

B(k)

 Tk+1
...

T1

 =


r(k)k+1

...

r(k)1

 (29)

Since Γi = Ti
T,

(T1, · · · , Tk+1)B
(k) =

(
c(k)1

T, · · · , c(k)k+1
T
)

(30)

(Γk+1, · · · , Γ1)B(k) =
(

r(k)k+1
T, · · · , r(k)1

T
)

(31)

Trench used the sub-symmetric property of a Toeplitz matrix in his algorithm to reduce the
number of defined parameter sets from four to two, in Equations (28)–(31). However, T(k) is not a
sub-symmetric matrix in this paper. However, we can use the transposition property to keep the new
algorithm with the same complexity as Trench’s algorithm.

By expanding Equations (23) and (26), the elements of B(k+1) are
b(k+1)

11 = βk
−1

b(k+1)
1,j+1 = −βk

−1c(k)j
T, j = 1, 2, · · · , k + 1

b(k+1)
i+1,1 = −c(k)i βk

−1, i = 1, 2, · · · , k + 1

(32)

b(k+1)
i,j = b(k)

i,j + r(k)k+2−iαk
−1r(k)k+2−j

T (33)

b(k+1)
i+1,j+1 = b(k)

i,j + c(k)i βk
−1c(k)j

T (34)

By removing b(k)
i,j from Equations (33) and (34), we get

b(k+1)
i+1,j+1 = b(k+1)

i,j + c(k)i βk
−1c(k)j

T − r(k)k+2−iαk
−1r(k)k+2−j

T, i, j = 1, 2, · · · , k + 1 (35)

where,

αk = T0 −
k+1

∑
l=1

Γlr
(k)
l (36)
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βk = T0 −
k+1

∑
l=1

Tlc
(k)
l (37)

Let k = n − 1, for n = Ne − 1, and bring it to Equations (32) and (35) to obtain the iterative
relationships for calculating the elements of B(Ne−1),

b(n)
11 = βn−1

−1

b(n)
1,j+1 = −βn−1

−1c(n−1)
j

T, j = 1, 2, · · · , n

b(n)
i+1,1 = −c(n−1)

i βn−1
−1, i = 1, 2, · · · , n

(38)

b(n)
i+1,j+1 = b(n)

i,j + c(n−1)
i βn−1

−1c(n−1)
j

T − r(n−1)
n+1−iαn−1

−1r(n−1)
n+1−j

T, i, j = 1, 2, · · · , n (39)

This implies that if c(n−1)
i and r(n−1)

i for i = 1, 2, · · · , n have been calculated, we can get B(Ne−1).
Thus, the key for calculating B(Ne−1) is to calculate

Cn−1 =
(

c(n−1)
1 , c(n−1)

2 , · · · , c(n−1)
n

)
(40)

Rn−1 =
(

r(n−1)
1 , r(n−1)

2 , · · · , r(n−1)
n

)
(41)

According to Equation (26) and the definitions of Ck and Rk, we have
c(k+1)

i = c(k)i + r(k)k+2−iαk
−1

(
k+1
∑

j=1
r(k)k+2−j

TΓj − Γk+2

)
, i = 1, 2, · · · , k + 1

c(k+1)
i = αk

−1

(
Γk+2 −

k+1
∑

j=1
r(k)k+2−j

TΓj

)
, i = k + 2

(42)


r(k+1)

i = r(k)i + c(k)k+2−iβk
−1

(
k+1
∑

j=1
c(k)k+2−j

TTj − Tk+2

)
, i = 1, 2, · · · , k + 1

r(k+1)
i = βk

−1

(
Tk+2 −

k+1
∑

j=1
c(k)k+2−j

TTj

)
, i = k + 2

(43)

where,

αk+1 = T0 −
k+2

∑
l=1

Γlr
(k+1)
l (44)

βk+1 = T0 −
k+2

∑
l=1

Tlc
(k+1)
l (45)

Summarizing the procedure of inversing T(Ne−1):
The initial value: 

α0 = T0

β0 = T0

c(0)1 = T0
−1Γ1

r(0)1 = T0
−1T1

(46)

Step 1: take k from 0 to n− 2, for n = Ne − 1, and calculate Equations (42)–(45) to get αk+1, βk+1,
c(n−1)

i and r(n−1)
i , for i = 1, 2, · · · , n.

Step 2: according to Equations (38) and (39), calculate every element of B(Ne−1).
Thus, Bcoe f can be calculated by bringing B(Ne−1) to Equation (19).
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Finally, we get the solution of the final FEM/BEM equation for periodic SAW structures. Since the
new fast algorithm is one lower order than the normal inversion algorithm, we can reduce the
complexity of the FEM/BEM simulation.

3. Algorithm Verification

Several groups of computational examples based on the one port Al/42◦YXLiTaO3 SAW resonator
were conducted to exemplify the new fast optimization algorithm by Matlab. The accuracy of this
algorithm is verified by comparing it with the traditional method per frequency point, and the time
cost and memory cost at one frequency point were calculated with different numbers of electrodes,
which was from 300 to 1800.

Since this algorithm used the recursion method to accelerate the inversion of the coefficient
matrix of the final FEM/BEM equations without any estimate, the accuracy of the solution was
not affected. In Figure 2, the two lines represent the real and imaginary parts of Y11 calculated by
normal FEM/BEM, respectively. The device parameters are as follows: the substrate of the sample is
42◦YXLiTaO3. The electrode is aluminium. The number of electrodes is 400. Only one set of IDT is
simulated here and the period of the IDT is 4.0 µm. The metallization ratio of the IDT is 0.5 and the
film thickness is 0.88 µm. The aperture of the IDT is 200 µm. The two kinds of markers represent the
real and imaginary parts respectively of Y11 calculated by optimal FEM/BEM. The two kinds of the
algorithm had almost the same accuracy.
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Figure 2. The Y11 calculated by (finite element method and boundary element method) FEM/BEM for
periodic SAW structures with 200 electrodes.

The time cost of the FEM/BEM for Periodic SAW Structures was reduced significantly with the
rising number of electrodes, as shown in Figure 3. With 1800 electrodes, the time cost of the fast
algorithm had a decrease of above 86%. The new fast algorithm was one lower order than the normal
algorithm. At the same time, the memory cost was also reduced obviously, as shown in Figure 4.
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4. Conclusions

FEM/BEM method is essential for the rigorous simulation for periodic SAW structures, but with
a large amount of calculation. Different from other reported speed optimization methods, this new fast
algorithm was focused on the solution of the FEM/BEM final equations, of which the calculation had a
large proportion in the SAW FEM/BEM simulation. For periodic SAW structures, the coefficient matrix
of the final FEM/BEM equations is similar to a Toeplitz matrix. By proposing a recursive algorithm for
the inversion of the coefficient matrix based on the Trench inversion algorithm for Toeplitz matrixes,
the algorithm complexity can be reduced significantly with the same accuracy.

The computational results confirmed that the new fast algorithm had one lower order than the
normal algorithm. Additionally, the new optimization algorithm has great advantages in both the time
and memory costs with a large number of electrodes.
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