01010

01010 information ﬁ“\D\Py
B

01010

Article

A Genetic Algorithm-Based Approach for Composite
Metamorphic Relations Construction

Zhenglong Xiang ! ¥, Hongrun Wu 2* © and Fei Yu %*

1
2

School of Computer Science, Wuhan University, Wuhan 430072, China; zI_xiang@whu.edu.cn
School of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
Correspondence: dr.hongrunwu@gmail.com (H.W.); yufei@whu.edu.cn (EY.)

*

Received: 15 November 2019; Accepted: 7 December 2019; Published: 10 December 2019 ﬁ:ecfgtt)g
Abstract: The test oracle problem exists widely in modern complex software testing, and metamorphic
testing (MT) has become a promising testing technique to alleviate this problem. The inference
of efficient metamorphic relations (MRs) is the core problem of metamorphic testing. Studies
have proven that the combination of simple metamorphic relations can construct more efficient
metamorphic relations. In most previous studies, metamorphic relations have been mainly manually
inferred by experts with professional knowledge, which is an inefficient technique and hinders the
application. In this paper, a genetic algorithm-based approach is proposed to construct composite
metamorphic relations automatically for the program to be tested. We use a set of relation sequences
to represent a particular class of MRs and turn the problem of inferring composite MRs into a
problem of searching for suitable sequences. We then dynamically implement multiple executions
of the program and use a genetic algorithm to search for the optimal set of relation sequences.
We conducted empirical studies to evaluate our approach using scientific functions in the GNU
scientific library (abbreviated as GSL). From the empirical results, our approach can automatically
infer high-quality composite MRs, on average, five times more than basic MRs. More importantly,
the inferred composite MRs can increase the fault detection capabilities by at least 30% more than the
original metamorphic relations.

Keywords: metamorphic testing; genetic algorithm; composite metamorphic relation; search-based
software testing

1. Introduction

With the emergence of modern large-scale software systems, software testing has become an
essential and expensive part of verifying the correctness of the program. Software testing is typically
accomplished by selecting some program inputs as test cases, executing the selected test cases,
and verifying the test results [1]. Most of these test cases have implicitly assumed that there exists a
systematic mechanism (known as oracle) that helps testers verify the test result given any possible
program input. However, when faced with more complex test scenarios, such as complex scientific
functions, the output values corresponding to the test inputs can not be obtained well. Such a problem,
termed as an oracle problem, is a fundamental challenge to be solved in software testing.

In order to alleviate the oracle problem, metamorphic testing (MT) is a software testing method
proposed by Chen [2,3], which does not need the test oracle. This test technique first generates a set of
metamorphic relations (MRs) according to the nature of the test program and then tests the software
by judging whether the test case satisfies the metamorphic relations. Since MT is proposed, it has been
widely applied on the test of various programs in many fields for its simple and efficient characteristics,
such as image processing [4,5], network diagnosis [6,7], machine learning [8,9], bioengineering [10],
and scientific software [11]. However, the metamorphic relations are generally constructed manually by

Information 2019, 10, 392; d0i:10.3390/info10120392 www.mdpi.com/journal/information


http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0001-8484-5665
https://orcid.org/0000-0003-0492-7471
http://dx.doi.org/10.3390/info10120392
http://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/10/12/392?type=check_update&version=2

Information 2019, 10, 392 2 of 15

the testers or developers who understand the principle of the test program, or are determined according
to prior knowledge, which is an obstacle to software test automation. For example, for the program of
the trigonometric function sin(x), some MRs like ”sin(x + 271) = sin(x)” are easy to understand and
infer, but some MRs like “sin?(% — x) + sin®(x) = 1” are not. Therefore, how to construct metamorphic
relations efficiently and automatically is the core problem in metamorphic testing.

To alleviate this labor-intensive work, several works have been proposed to improve the inference
of metamorphic relations. Some studies try to classify the classification of MRs based on machine
learning methods [12,13], or attempt to construct more MRs based on information of the existence
of the initial MRs [14,15]. Other recent research has yield MR identification based on the concepts
of category and choice [16,17]. Liu [14] verified that the composition of metamorphic relations can
improve the failure-detection capabilities rather than any particular metamorphic relations. However,
the composition of metamorphic relations still needs to be constructed manually by the tester in an
ad hoc way. As software becomes more and more complex and the increment number of composite
layers increases, manual construction of composite metamorphic relations has become extremely
difficult. With the cognitive bias in human experience, it is also easy to ignore critical metamorphic
relations with manual operation. Therefore, how to construct complex composite metamorphic
relations automatically and improve failure-detection capabilities by making full use of the information
in predefined simple metamorphic relations is a significant research issue. Simultaneously, it is also
interesting to study the influence of different layers on the composition of metamorphic relations.

In this paper, we focus on the automatic generation of multi-layer composite metamorphic
relations. Then we propose a search-based automatic construction method of composite metamorphic
relations by analyzing multiple executions of the program to be tested. In particular, we transform
the construction of efficient composite metamorphic relations as the search for optimal composite
sequences. We then use a genetic algorithm (GA) [18] to optimize the problem owing to the high
efficiency of the discrete optimization problem, which alleviates the need for artificial construction of
metamorphic relations. Furthermore, we analyze the influence of the number of composite layers on the
failure-detection capabilities of composite metamorphic relations. We conduct three empirical studies
on the scientific functions of the GNU scientific library (GSL) (http://www.gnu.org/software/gsl/) to
evaluate our approach. In the first study, we verify the feasibility of our approach. In the second study,
we investigate the quality of the composite metamorphic relations inferred by our approach. The third
study investigates the impact of the number of composite layers on the fault detection capability of
composite metamorphic relations. Our empirical results demonstrate that our approach can infer
several high-quality composite metamorphic relations in an acceptable time frame.

The remainder of the paper is structured as follows: Section 2 introduces a brief review of the
relevant works on the metamorphic relation inference, genetic algorithm, and search-based software
testing. Section 3 presents the details of the proposed method. Section 4 reports the experimental
results on the GSL scientific functions and the discussion. Section 5 presents the conclusions of
the paper.

2. Related Works

2.1. Metamorphic Relation Inference

To improve the inference of metamorphic relations, several works have been proposed. Zhang [19]
proposed a search-based approach to the automatic inference of polynomial MRs for a scientific
program under test. More specifically, the particle swarm optimization algorithm is used to search
for metamorphic relations in the form of linear or polynomial equations. Kanewala [12] proposed a
predictive model using machine learning techniques to determine the classification of metamorphic
relations. By giving three specific types of metamorphic relations, this method works by extracting a
function’s control flow graph and predicting the category of the predefined metamorphic relations.
In a later work [13], Kanewala extended the method using graph kernels, which provide various ways


http://www.gnu.org/software/gsl/

Information 2019, 10, 392 3o0f15

of measuring similarity among graphs. The intuition behind this approach was that functions that
have similar control flow and data dependency graphs might have similar metamorphic relations.
Chen [16] proposed a specification-based methodology and associated tool called METRIC for the
identification of metamorphic relations based on the category-choice framework. Su [15] presented
an approach named KABU for the dynamic inference of likely metamorphic relations inspired by
previous work on the inference of program invariants. The inference process is constrained by
searching for a set of predefined metamorphic relations. Javier [17] proposed an approach to infer likely
metamorphic relations automatically for Atlas Transformation Language (ATL) model transformations.
Liu [14] proposed a method named composition of metamorphic relations (CMR) to construct new
metamorphic relations by combining several existing relations.

Our work is most related to the research proposed by Liu [14], which proved the combination
of several existing MRs could construct effective composite metamorphic relations. Different from
our approach, in that method, the composite metamorphic relations still need to be constructed
manually by the testers from scratch. Our approach focuses on the automatic construction of
multi-layer composite metamorphic relations, which can construct composite metamorphic relations
more efficiently and accurately.

2.2. Genetic Algorithm

The genetic algorithm [18] is an adaptive heuristic optimization algorithm based on natural
selection and genetic evolution. It is the basis of a large class of evolutionary algorithms, which
generates new solutions through a series of evolutionary operations, such as selection, crossover,
mutation, and so on. In recent years, several enhanced GA variants have been proposed to improve
the search performance [20-22]. The general algorithm framework of the genetic algorithm is shown
in Figure 1.

Population Initialization

v

Fitness Evaluation

A\ 4

Satisfy the
Stop
Condition

Selection

v

Crossover

v

Mutation

Output <

Figure 1. Flowchart of the genetic algorithm.

Many problems in software engineering can be transformed into the combinatorial optimization
problem. Thus, the genetic algorithm, which is simple and suitable for discrete problems, has been



Information 2019, 10, 392 4 0f 15

widely applied in software engineering [23-28]. Particularly, Mu [25] proposed a hybrid genetic
algorithm-based strategy for software architecture re-modularization. Dai [28] proposed a genetic
algorithm-based approach for testing-resource allocation problems that can be used for software
systems with complex structures. In software testing, genetic algorithms are also efficiently applied to
improve test efficiency, such as test planning [29], test case generation [23], and regression testing [30].

2.3. Search-Based Software Testing

Many problems in software engineering with a large complex search space can be transformed
into discrete optimization problems. Thus it is very suitable to introduce search based methods, such
as genetic algorithms [24], simulated annealing algorithms [31], and multi-objective optimization [32],
to optimize problems in software engineering. Since the concept of search-based software
engineering [33] (SBSE) was put forward, search-based methods have been widely used in the field of
software engineering, such as test suit generation [24], fault localization [34], program analysis [35],
software refactoring [36], and project scheduling [37].

Search-based software testing [38] (SBST) is the sub-area of the search-based software engineering
concerned with software testing. We observe that approximately half of all SBSE papers are SBST
papers [39]. MT is one of the software testing approaches. Although SBST is promising and essential,
few works have been made to utilize the search-based methods to promote the efficiency of MT.
Zhang [19] proposed a particle swarm optimization algorithm-based approach to the automatic
inference of polynomial MRs for the scientific programs under test.

3. Our Approach

Before presenting our approach in Section 3.1, we first give a brief introduction to metamorphic
testing. The concept of multi-layer composite metamorphic relations is revealed in Section 3.2.
After that, our GA-based search algorithm for determining the composite metamorphic relation
sequences is exhibited in Section 3.3.

3.1. Metamorphic Testing

Metamorphic testing is a technique conceived to alleviate the oracle problem. Rather than
checking the output of an individual test, metamorphic testing checks whether multiple test executions
fulfill certain metamorphic relations. A metamorphic relation of the program under test is an intrinsic
property that relates two or more input data and their expected outputs. For example, consider the
scientific functions under test ¢*, one of its metamorphic relations can be expressed as mr : e* xe™* = 1.
Suppose the source test case is x, then the follow-up test case can be —x, if the source test case and its
follow-up test case violate the metamorphic relation mr, then program under test must contain a bug.

Metamorphic relations are the core position of the metamorphic testing. Metamorphic relation
is an intrinsic property of the program under test, which describes how a change to the input would
result in a change to the output. Then we can define an MR as

Ri(Il,Iz) = Ro(Ol,Oz), (1)

where I; and I, denote the original input and changed input, respectively, O; and O, denote the
outputs corresponding to I; and Iy, R; is the relation between input I; and I, and R, is the relation
between output O; and O;.

According to Chen [3], an MR is supposed to hold among multiple executions. Suppose that f
is the function under test, {I;, I, --- , Iy} and {O1,03,- - - ,Op} denote a set of M test inputs and
the corresponding outputs, respectively. Then a more general form of a metamorphic relation can be
given as

R(Ii, L, -+, Im) = R¢(01,02,- -+ ,Om), ()



Information 2019, 10, 392 50f 15

where R is the relation between inputs {I1, I, -+ ,Imy}, R £ is the relation between outputs
{01,02,- -+ ,0Opm}, and the MR can be marked as (R, R¢).

Although a program under test may have multiple MRs, the failure-detection capabilities of
different MRs may be varied. Therefore, it is important to construct a better MR with a better
failure-detection capability.

3.2. Multi-Layer Composite Metamorphic Relations

It is clear that metamorphic relations are the core part of metamorphic testing,
and Liu [14] verified the superiority of the composition of metamorphic relations (CMR). Let
(Ry, Rf1)' (R, R fz), oo, (Ry, Rfk) be k metamorphic relations of the test function f under test, all k
MRs satisfy the Formula (2). Suppose MR; and MR, are two metamorphic relations, composite
metamorphic relation CMRj, means that MR; is composite to MR; if and only if for any source
test case T for CMRy, its corresponding follow-up test case satisfies Fi»(T) = F(F(T)) [14].
Similarly, for all k metamorphic relations, if MR; is composite to MR;_1 (i = 2,...,k), the k-layer
composite metamorphic relation MRy;..; is said to be the composition of MRy, MRy, ..., MRy if
and only if for any source test case T for MR,..k, its corresponding follow-up test case satisfies
Fip.x(T) = Fe(Fc_1(--- (F1(T))---)). It should be noticed that the composition is sensitive to the
order of metamorphic relations. For example, that MR, exists does not imply that MRy; exists as
well, and even if both MR, and MRj; exist, they are not necessarily equivalent to each other.

New composite metamorphic relations will embed all properties associated with the original
fundamental metamorphic relations, and reduce the number of test cases generated and executed in
metamorphic testing. However, the construction of composite metamorphic relations is conditional,
and not all metamorphic relations can be compounded. As mentioned above, composite rules need to
be satisfied between the test case and follow-up test case of metamorphic relations. Furthermore, just
like the construction of basic MRs, the inference of composite metamorphic relations is still involved
with much human intelligence for analyzing specification, finding the necessary characteristics of
the program under test. Therefore, the automatic inference of multi-layer composite metamorphic
relations has become urgent.

3.3. GA-Based Approach for Searching Composite MRs

As mentioned above, the main difficulty of CMR inference is the construction of CMRs that
needs to satisfy the composite rules. To solve the problem of the automatic construction of multi-layer
composite metamorphic relations, we turn the problem of CMRs construction into a search problem
that searches for optimal composite sequences. Then a genetic algorithm-based approach is applied.
The framework of the proposed algorithm is described in Algorithm 1.

Algorithm 1 Genetic algorithm applied to CMR construction.

Initialize the parameters of GA, including Pc, Pm;

Initialize individuals of CMR sequence within the search space;
Evaluate the fitness value of all individuals;

while (stop condition is not reached) do

Select the parents by roulette Selection;
Crossover to produce new individuals;
Mutation to produce new individual;
Evaluate the fitness value of all individuals;
end while
10: Return the best solution that satisfies the composite rules.

O 2 NG

First, an initial population is set (see lines 1-2). Each individual in the population represents a
possible solution to the problem, i.e., a sequence of composite metamorphic relation. The maximum



Information 2019, 10, 392 6 of 15

size of an individual is a parameter of the composite layer that can be defined by the user. An individual
of the initial population is constructed randomly. More details about the representation of individuals
can be found in the next Section 3.3.1.

In the remaining steps of code in the Algorithm 1, the search space is explored. In each iteration,
the fitness value for each individual in the population is determined. This value counts the number
of inputs that satisfy the Formula (1). A new population is constructed by evolutionary operators,
i.e., selection, crossover, and mutation based on the fitness value (see Section 3.3.2 for more details).
The execution of the algorithm continues for a certain number, and individual with the best fitness
value overall iterations will be returned.

As one execution of our GA algorithm generates only one possible CMR, we need to execute our
GA algorithm several times to obtain several CMRs. Due to the random initialization of the individuals
and the random factors (crossover rate and mutation rate), different executions of our GA algorithm
may not always produce a good enough solution (whose fitness value is lower than a threshold
denoted as F). In such cases, we drop all not good enough solutions. All related parameter-setting of
our GA algorithm is presented in Section 4.1.

3.3.1. Representation of Individuals

Suppose MRs = {mrl,mr2,~ .- ,mrm} denotes the set of basic metamorphic relations, and m
represents the number of basic metamorphic relations. K denotes the composite layer (namely
individual size). As already mentioned, an individual in the population represents a sequence of CMR.
Each position in the individual is constructed randomly from 1 to m, and then a random individual is
plotted in Figure 2.

Single individual

‘mrl‘er‘mr4‘mr2‘mr7‘mr6‘

!

Composite MR Rf1324276

Figure 2. Individual representation. Metamorphic relation (MR).

3.3.2. Genetic Operators

In order to retain the chromosome with the higher fitness value, the individuals with high fitness
value are selected to crossover after the evaluation of the CMR sequence. We use roulette wheel
selection [40] to choose the individuals on which crossover and mutation will be applied.

To apply the crossover operation, the single-point selection is used. This operation is performed
according to the random crossover point from 1 to K. In the crossover operation, two offsprings are
generated from the parent individuals. Figure 3 illustrates an example of a crossover operation with a
single point. All genes after the crossover point in the parents are swapped to produce the offspring.

In the mutation operation, one gene of an individual is chosen randomly and replaced by other
genes from the set of basic metamorphic relations. As shown in Figure 3, mr; is replaced by mrg,
and mrg is selected from the basic MRs set randomly.



Information 2019, 10, 392 7 of 15

A) Crossover in the chromosome to create a new individual

Parent individual 1

,--|mr1|mr2|mr4|mr2|mr7|mr6|
1

i Parent individual 2

:— mr 2 | nmr 1 | mr 3 | nmr 2 | mr 5 | nmr 4 |
i Created Child individual

1

'->| mr 1 | mr 2 | mr 4 | mr 2 | mr 5 | nmr 4 |

B) Mutation

|mr1|rnr2|mr4|mr2|mr7|mr6|
|mrl|rnr2|mr4|mr6|mr7|mr6|

Figure 3. Crossover and mutation operation.

3.3.3. Fitness Function

Formally, given a program under test (denoted as P) and M test inputs (denoted as I1, I, - - - , L),
the fitness function can be transformed into a search problem of finding several CMR sequences such
that for almost every input I (1 < k < M), the CMR sequence and [; satisfy Formula (1).

Thus, we can define the fitness functions as follows. Given the CMR sequence S;, if S; and input
Iy (1 < k < M) satisfy Formula (1), we define f(S;, k) = 1; otherwise we define f(S;, k) = 0. Therefore,
the fitness of the CMR sequence S; can be defined as

M

Fintess(S;) = Y _ f(Si k). 3)

k=1

Actually, the fitness of a CMR sequence S; counts the number of inputs that satisfy Formula (1) by
multiple executions of the program P.

4. Experimental Results

In order to verify the effectiveness of our proposed approach, we select some scientific functions
in the open-source software GNU scientific library (abbreviated as GSL) for experimental verification
and carry out three groups of experiments. First of all, we verify the feasibility of the proposed
method, that is, the proposed approach can infer effective composite metamorphic relations. Secondly,
we analyze the quality of the derived composite metamorphic relations. We used the mutation
testing [41] to analyze the mutation score of each composite metamorphic relations. Finally, we analyze
the effect of the number of composite layers on composite metamorphic relations.

4.1. Experimental Settings

The MT used in this paper is a black box test method, that is, we do not focus on the inside
of the source code as we only need to care about the results of multiple program runs. Therefore,
our experiment is not sensitive to the language of the test functions. The test functions selected in this
paper are from the open-source software library GNU scientific library (abbreviated as GSL). The GNU
scientific library is a numerical calculation function library written in C++. The experiments used in
this paper are all written in C++.



Information 2019, 10, 392 8 of 15

There are many scientific calculation functions in GSL. In this paper, the trigonometric functions
sin(x) and cos(x) in the “specfunc” directory are selected. Due to the nature of trigonometric functions,
it is difficult for us to deduce the MRs intuitively. They can only be analyzed through verification,
which is suitable for MT. The scientific functions are also suitable for the experimental analysis of
CMR. In the GSL, the valid code of the two test functions sin(x) and cos(x) is about 100 lines, and the
core code is about 40 lines. Since the composite MRs need to be compounded based on the given
simple MRs, eight simple MRs are respectively given for the two test trigonometric functions, that is,
the number of initial MRs for both function is M = 8. Details of the initial MRs of two test functions
are shown in Table 1.

Table 1. Eight basic MRs of sin(x) and cos(x) and the corresponding mutation scores.

No. Basic MRs of sin(x) Mutation Score  Basic MRs of cos(x)  Mutation Score
mry sin(—x) = —sin(x) 0.0583 cos(—x) = cos(x) 0.0116
mry sin(x + 5) = cos(x) 0.4187 cos(x + §) = —sin(x) 0.4114
mry  sin(x — f) = —cos(x) 0.4074 cos(x — %) = sin(x 0.3935
mry  sin(x+ ) = —sin(x) 0.1608 cos(x + 11) = —cos(x) 0.1733
mrs sin(x — 7t) = —sin(x) 0.1849 cos(x — 1t) = —cos(x) 0.1969
mre sin(x + 2m) = sin(x) 0.1352 cos(x + 2m) = cos(x) 0.1316
mry sin(x — 27) = sin(x) 0.1681 cos(x —2m) = cos(x) 0.1711
mrg  sin(2x) = 2sin(x)cos(x) 0.3014 cos(2x) = 2cos?(x) — 0.3234
Avg. 0.2304 0.2261

We use the genetic algorithm to construct the CMRs of different composite layers, and set different
initial population sizes for different composite MRs. In this section, we construct 2-layer (2-CMR),
3-layer (3-CMR), and 4-layer (4-CMR) composite MRs, respectively. The setting of population size
is important to GA; Chen [42] investigated that the population size for the population-based search
methods can be set up four to six times as large as the dimension of the individual for problems
in low dimensions. Thus, in this paper, we set the initial population size of the algorithm as 12,
20, and 30 individuals, respectively. In the experiments, the empirical parameters of the genetic
algorithm are set as, according to the study of Eiben [43], the probability of crossover can be set
as Pc = 0.8. And for the discrete optimization, the mutation rate should be larger than that in the
continuous optimization [44], and then we set the mutation rate as Pm = 0.15. The crossover and
mutation rate remain unchanged during the iteration of genetic algorithm. And the stop generation
is 100. Considering the randomness of the genetic algorithm, we implement the algorithm 100 times
for each population and record several complex CMR sets with strong failure-detection capabilities
corresponding to the number of layers.

As the functions under test selected in the experiments are all trigonometric functions, the test
input of the algorithm is the real number generated randomly within a certain range (here we set the
interval as [0, 20]). In the genetic algorithm, the number of test inputs for the evaluation fitness of the
CMRs is 100 (M = 100). We set the threshold to select good enough solutions F as 95% * M.

4.2. CMR Inference

In this section, we demonstrate the quantity statistics of the inferred CMRs and the average time
required for executing the program. Tables 2 and 3 show the statistics of the CMRs derived based
on the proposed approach in this paper. As can be seen from Table 2, for two classical trigonometric
functions, the number of 2-CMRs ranges from 3 to 59, the number of 3-CMRs is from 5 to 102, and the
number of 4-CMRs is from 7 to 143. This indicates that our approach infers plenty of compositional
MR for the test trigonometric functions. As shown in Table 3, the execution time of our approach to
inferring the compositional MRs for each trigonometric function is from 29.25 s to 789.15 s, which
is acceptable. With the increase of composite layers, the time required is also increased. Therefore,
our approach is able to infer at least five times more MRs than the initial set of MRs. The statistical
data in Tables 2 and 3 indicates that our approach is feasible and efficient.



Information 2019, 10, 392 9 of 15

Table 2. The statistics on number of composition of metamorphic relations (CMRs).

Numbers of CMRs for Each Test Trigonometric Functions
2-CMRs 3-CMRs 4-CMRs
Avg. Max. Min. Avg. Max. Min. Avg. Max. Min.

sin(x) 4 59 3 50 102 7 98 143 11
cos(x) 40 53 5 52 97 5 86 132 7

Functions

Table 3. The statistics on running time for CMRs.

Execution Time of CMR Inference for Each Test Trigonometric Functions
2-CMRs (s) 3-CMRs (s) 4-CMRs (s)
Avg. Max. Min. Avg. Max.  Min. Avg. Max.  Min.

sin(x) 7825 27442 2925 19816 40254 127.06 478.04 789.02 233.29
cos(x) 84.82 291.05 4219 24629 412.01 15826 524.85 710.15 27235

Functions

We also compare our GA-based approach with the basic simulated annealing algorithm (SAA) [45],
which displayed impressive performance in discrete optimization problems such as Traveling Salesman
Problem (TSP) [46]. The initial and end temperature of SAA are set as 200 and 0.005, respectively.
The cool coefficient is set as 0.95. And we also run the SAA 100 times. The comparison of the average
number of inferred CMRS by the GA-based and SAA-based approach is plotted in Figure 4. As shown
in Figure 4, the proposed GA-based approach can construct more CMRs than the SAA-based approach
in all situations, which indicates the high efficiency of our approach.

120
sin(x) by GA
100 cos(x) by GA
sin(x) by SAA
cos(x) by SAA

80

Average number of inferred CMRs

60
./
40
20
0
2 3 4
Composite layer of CMR

Figure 4. Comparison of a genetic algorithm (GA)-based approach and a simulated annealing algorithm
(SAA)-based approach.

4.3. Quality of Inferred CMRs

As shown in Section 4.2, our approach can infer several CMRs, and we then want to test the
quality of these CMRs. First, we need to investigate the correctness of the derived CMRs. As the test
functions selected in this paper are typical scientific calculation functions, we can verify the correctness
of the derived CMRs through WolframAlpha [47]. We verified that the derived composite metamorphic
relations are correct and valid.



Information 2019, 10, 392 10 of 15

Table 4 presents typical CMRs of the trigonometric functions sin(x) and cos(x). From the table,
these typical CMRs include complex MRs of the trigonometric functions than the basic MRs in Table 1.
For example, these 2-CMRs, represented by sin((x — 7 ) +27) = —cos(x), can reflect the periodical and
trigonometric transformation characteristics of the sin(x) function. The inferred 3-CMRs, represented
by cos(2(2(x — 7)) = 8cos*(x) — 8cos?(x) + 1, show the quadratic relation between cos(x) and cos(4x)
besides the symmetric and periodical characteristics of the cos(x) function.

Table 4. Typical CMRs of sin(x) and cos(x) and the corresponding mutation score.

Layers Composite Metamorphic Relations of sin(x) Composite Metamorphic Relations of cos(x)
CMRs Details of CMRs MS CMRs Details of CMRs MS
cmry3 sin((—x) + §) = cos(—x) 0.585  cmryp cos((—x) 4+ 5) = —sin(—x) 0.579
cmryy sin((—x) + 1) = sin(x) 0.586  cmriz cos((—x) = %) = sm( x) 0.580
cmrig sin(2(7x)) = 2sin(x)cos(—x) 0.585  cmrig cos(2(—x)) = 2cos?(x) — 1 0.588
cmroy sin((x + %) 4 ) = —cos(x) 0.584  cmryy cos((x )+ m) = sin(x) 0.581
cmros sin((x+ % ) 1) = —cos(x) 0.586  cmry cos((x+ %) + %) = 7cos(x) 0.586
cmryy sin(f(x —2m)) = cos(x) 0582 cmrs; cos(2(x — §)) = 2sin®(x) — 1 0.588
2-CMR  cmr3g sin((x —2m) 4+ 2m) = —cos(x) 0.589  cmrsg cos(2(x — 7)) = 2cos?(x) — 1 0.578
cmryg sin((x +27) + 27) = —sin(x) 0.585  cmrs; cos(—(x — 71)) 7505()() 0.586
cmrsz sin((x — ) — §) = cos(x) 0.585  cmrss cos((x — ) — ’”) = —sin(x) 0.589
cmryg sin(2(x — 2m)) = 2sin(x)cos(x — 27) 0.586  cmry; cos((x —27) — 27r) = cos(x) 0.583
cmrgy sin(—(2x)) = —2sin(x)cos(x) 0582  cmrgy cos(2x 4 %) = —2sin(x)cos(x) 0.577
cmrgg sin(2x — §) = —cos(2x) 0.589  cmrgs cos(2x — 1) = 1 — 2c0s?(x) 0.591
cmrgg sin(2(2x)) = 4sin(x)cos(x)cos(2x) 0.584  cmrgg cos(2(2x)) = 8cos*(x) — 8cos?(x) + 1 0.571
3-CMR  cmrigg  sin(2(2(—x))) = —4sin(x)cos(—x)cos(2(—x)) 0.612  cmrypq cos(x 4+ 7w+ 2m 4 ) = —cos(x) 0.596
cmrgye sin((—2x) +2m) = —2sin(x)cos(x) 0.622  cmrsgs  cos(2(2(x — 7)) = 8cos*(x) — 8cos?(x) +1  0.592
4-CMR  cmryzsy sin(((x + ) —2m) — m —2m) = sin(x) 0.633  cmraigs cos(—((x+m)+F)—F) = cos(x) 0.603
cmr7ee8 sin(2((x —2m) + 2w+ 2m)) = —sin(x) 0.623  cmryns cos(2(—(x + %)) — m) = 2cos?(x) — 1 0.614

We note that the number of CMRs listed in Table 4 is less than the number of inferred MRs shown
in Table 2, and this is because some of the CMRs inferred by the algorithm are equal. In fact, some of the
CMRs we derive are equivalent, as Chen [3] demonstrated that more MRs could perform more complete
testing processes, so these equivalent composite MRs derived from other basic MRs are not redundant.
For example, in order to the reveal the faults that can be detected only by cmr3e : sin((x — 5) +2m) =
—cos(x), it may be more costly to check the two basic MRs (i.e., mr3 : sin(x — §) = —cos(x) and
mre @ sin(x + 2m) = sin(x)) rather than one MR. To check the cmrsg, testers may run the sin(x)
function twice, whereas checking the latter two MRs mr3 and mrg, testers may run the sin(x) function
four times. Therefore, the CMR reduces the number of times the program needs to run and thus
improves efficiency.

In order to test the fault detection capabilities of the derived CMRs, we use mutation testing [41]
to conduct experiments. We generate 168 mutants for both sin(x) and cos(x) of GSL through
Mujava [48]. The detailed types of mutants are listed in Table 5, including Arithmetic Operator
Deletion (AODU), Arithmetic Operator Insertion (AOIS), Arithmetic Operator Replacement (AORB),
Assignment Operator Replacement (ASRS), Constant Deletion (CDL), Conditional Operator Insertion
(COI), Logical Operator Insertion (LOI), Logical Operator Replacement (LOR), Operator Deletion
(ODL), Relational Operator Replacement (ROR) and Variable Deletion (VDL). The mutants of the
subject program are listed in Table 6. In this paper, the mutation score (MS) [41] is used as the evaluation
to measure the quality of the composite MRs. Let T denotes the source test case of the program under
test, and FT denotes the follow-up test case, which derived from metamorphic relations mr;. MU
denotes the mutants produced by Mujava. One can judge whether the mr; kills the mutant MU, by
verifying the results of T and FT. The mutation score can be obtained by counting the proportion of
the number of killed mutants to the total number of mutants. The mutation score of metamorphic
relation mr; can be defined as N

1

LFT) = ——1
MS(mr;, FT) N, N,

4)



Information 2019, 10, 392 11 of 15

where N;, Np, and N, denote the number of killed mutants by mr;, total number of mutants,
and equivalent mutants in the mutants set, respectively.

Table 5. Mutant types generated by Mujava.

Mutant Types AODU AOIS AORB ASRS CDL COI LOI LOR ODL ROR VDL
Number 2 42 49 16 12 5 3 2 25 10 2

Table 6. Mutants of the subject program.

Mutant Original Statement Faulty Statement
AODU  if(octant > 3)octant— = 4;sgn_result = —sgn_result;  if (octant > 3)octant— = 4;sgn_result = sgn_result;
AOIS z=absy —y* Pl —yx P2 —yxP3; z=absy —y*xPl—y«P2—y— —xP3;
AORB doublex? = x * x; result.val = x * (1.0 — x2/6.0); doublex® = x * x; result.val = x * (1.0 + x2/6.0);
ASRS if (octant > 3)octant— = 4;sgn_result = —sgn_result;  if (octant > 3)octant+ = 4;sgn_result = —sgn_result;
CDL doublex? = x * x;result.val = x * (1.0 — x%/6.0); doublex? = x * x; result.val = x * (x2/6.0);
LOI if (octant == 0)... if (~ octant == 0)...
coI doublesgn_x = x >=0.0?1: —1; doublesgn_x =!(x >=0.0)?1: —1;
LOR if (octant&1)... if (octant|1)...
ODL intoctant =y — Idexp(floor(Idexp(y, —3)),3); intoctant = ldexp(floor(ldexp(y, —3)),3);
ROR if (octant&1)... if (true)...
VDL doublex? = x * x;result.val = x * (1.0 — x%/6.0); doublex? = x * x; result.val = x * (1.0 — 6.0);

In Table 1, we construct eight basic MRs of sin(x) and cos(x), respectively, and the mutation
scores of the corresponding basic MRs are listed on the right side of the table according to the mutation
testing. It can be seen from the table that for the eight basic MRs of sin(x), with a few exceptions such
as sin(x + 5 ) = cos(x), the fault detection capabilities of basic MRs is relatively poor. The average
mutation score of the basic MRs set of sin(x) is 0.23. The mutation scores corresponding to the basic
MRs of cos(x) are similar.

As shown in the right side of Table 4, the mutation scores of some typical CMRs of sin(x) and
cos(x) are given. It can be seen from the table that the mutation scores of these CMRs are higher than
that of the basic MRs. All mutation scores of CMRs are higher than 0.5. The results show that the
method of inferring the CMRs based on the genetic algorithm can construct several composite MRs
with strong fault detection capabilities, and the mutation scores are much higher than the initial MRs,
which verifies the feasibility of the proposed approach.

It is worth noting that few initial MRs with high fault detection capabilities, such as mr, of
sin(x) (mutation score is 0.4), can construct CMRs with higher faults detection capability, such as
CMRj4, CMR35. However, more initial MRs with lower mutation score, such as mry and mry of sin(x),
can construct CMRs with high faults detection capability, such as CMRy4. This indicates that the
construction of the CMRs is not sensitive to the faults detection capability of the initial MRs. Therefore,
one only needs to construct some simple MRs for the program under test, which also makes the
method proposed in this paper more applicable.

4.4. Influence of Composite Layers

As shown in Table 4 of Section 4.3, with the increase of the number of composite layers,
the corresponding mutation scores also show an upward trend, and there are simple statistics shown
in Table 7. We see from Table 7 that the average mutation scores of the two trigonometric functions
increase with the increase of the number of composite layers, and the average mutation scores of
3-CMR and 4-CMR are relatively close. Thus, in order to verify the influence of composite layers on
inferred CMRs, we increase the number of composite layers of the CMRs. The obtained relationship
between the number of composite layers and the average mutation scores of the CMRs is shown in
Figure 5.



Information 2019, 10, 392 12 of 15

Table 7. The average mutation scores of multi-layer CMRs.

Test Functions 2-CMRs 3-CMRs 4-CMRs

sin(x) 058504  0.6247  0.626192
cos(x) 052548 059365  0.607526

From Figure 5, it can be seen that the CMRs can indeed enhance the fault detection capabilities,
but as the number of layers increases to a certain number, the fault detection capabilities of CMRs
will tend to be stable. In particular, the improved range of the mutation scores of the two-layer and
three-layer composite MRs is relatively apparent. When the number of composite layers is greater than
three-layer, the enhanced range of fault detection capabilities will not be noticeable. With more layers
of CMRs, more work is needed to construct the corresponding follow-up test cases. Therefore, we can
conclude that two-layer and three-layer composite MRs can be better to practical metamorphic testing.

0.7

o
=)

—

~

sin(x)
cos(x)

o
W

Mutation Score
o o o
S} W N

o

1 2 3

4 5 6 7
Composite layer of CMR

Figure 5. Illustration of the mutation score changes with the increase of composite layers.

5. Conclusions

We have proven that the composition of basic metamorphic relations can construct more effective
composite metamorphic relations (CMRs) [14]. However, the construction of CMRs still needed to be
inferred manually by testers, which was a bottleneck of the application. One of the main difficulties
is the condition of constructing CMRs, and this has to satisfy the composite rules. In this paper,
a GA-based approach for automatic construction of composite metamorphic relations was proposed by
analyzing multiple executions of the same program under test. We viewed the problem of composite
MRs inference as a searching problem, then used the GA algorithm to search for the optimal composite
sequences that satisfied the composite rules. Then we conducted three empirical studies to validate
the correctness and efficiency of our approach. It turns out that our proposed method can infer several
CMRs with high quality in an acceptable time (from 29 s to 789 s), and are effective in detecting faults
by mutant testing. On average, at least five times more composite MRs, in terms of quantity, can be
constructed compared to the initial MRs. We also analyzed the effect of the composite layer on CMR’s
fault detection capabilities. The results show that with the increase in the number of composite layers,
the fault detection capabilities will increase by 30%, at least. However, the improvement of fault
detection capability is limited. Additionally, the experiments illustrate that setting composite layers at
three is the best choice.

There are some limitations to the proposed method in this paper. For example, the input of
the program only supports numerical values, and it is not suitable for arrays or pointers. Therefore,
we may improve the existing GA approach by transforming these non-numerical values into numerical
values. Our approach can only infer the composite metamorphic relations in the form of equality so
far, and further, some metamorphic relations will be represented by the inequality. Then, our future



Information 2019, 10, 392 13 of 15

research should be carried out from the following two perspectives. First, we will extend the genetic
algorithm-based method to non-scientific functions and the form of inequalities. Second, we will
extend our work to find a set of CMRs with the least number and highest fault detection capabilities,
and the multi-objective optimization method will be useful for this extended work.

Author Contributions: Z.X. performed the experiments and wrote the papaer; HW. and EY. proposed the idea
and designed the model.

Funding: This research was funded by the National Natural Science Foundation of China [Grant No. 61672391
and 61702239], the Foundation of Fujian Province Great Teaching Reform, China [No. FB]JG 20180015], and the
Science Foundation of Jiangxi Provincial Department of Education [G]]170765, GJJ170798].

Acknowledgments: We are grateful for the discussion and data collection by Xiongtao Xia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barr, E.T,; Harman, M.; McMinn, P; Shahbaz, M.; Yoo, S. The oracle problem in software testing: A survey.
IEEE Trans. Softw. Eng. 2014, 41, 507-525. [CrossRef]

2. Chen, TY;; Kuo, F; Tse, TH.; Zhou, Z. Metamorphic Testing and Beyond. In Proceedings of the 11th
International Workshop on Software Technology and Engineering Practice, Amsterdam, The Netherlands,
19-21 September 2003; pp. 94-100.

3. Chen, T.Y;; Kuo, F; Liu, H.; Poon, P.; Towey, D.; Tse, T.H.; Zhou, Z.Q. Metamorphic Testing: A Review of
Challenges and Opportunities. ACM Comput. Surv. 2018, 51, 4. [CrossRef]

4. Guderlei, R.; Mayer, ]J. Towards Automatic Testing of Imaging Software by Means of Random and
Metamorphic Testing. Int. |. Softw. Eng. Knowl. Eng. 2007, 17, 757-781. [CrossRef]

5. Chan, WK;; Ho, ].C.F; Tse, T.H. Finding failures from passed test cases: Improving the pattern classification
approach to the testing of mesh simplification programs. Softw. Test. Verif. Reliab. 2010, 20, 89-120. [CrossRef]

6. Sun, C.; Wang, G.; Mu, B.; Liu, H.; Wang, Z.; Chen, T.Y. A Metamorphic Relation-Based Approach to Testing
Web Services Without Oracles. Int. J. Web Serv. Res. 2012, 9, 51-73. [CrossRef]

7. Segura, S.; Parejo, J.A.; Troya, J.; Cortés, A.R. Metamorphic Testing of RESTful Web APIs. IEEE Trans.
Softw. Eng. 2018, 44, 1083-1099. [CrossRef]

8.  Xie, X.; Ho, JWK,; Murphy, C.; Kaiser, G.E.; Xu, B.; Chen, T.Y. Testing and validating machine learning
classifiers by metamorphic testing. J. Syst. Softw. 2011, 84, 544-558. [CrossRef]

9.  Nakajima, S.; Chen, T.Y. Generating Biased Dataset for Metamorphic Testing of Machine Learning Programs.
In Proceedings of the International Conference Testing Software and Systems, Paris, France, 15-17 October
2019; pp. 56-64.

10.  Shahri, M.P; Srinivasan, M.; Reynolds, G.; Bimczok, D.; Kahanda, I.; Kanewala, U. Metamorphic Testing
for Quality Assurance of Protein Function Prediction Tools. In Proceedings of the 2019 IEEE International
Conference On Artificial Intelligence Testing, Newark, CA, USA, 4-9 April 2019. [CrossRef]

11. Lin, X,; Simon, M.; Niu, N. Hierarchical metamorphic relations for testing scientific software. In Proceedings
of the International Workshop on Software Engineering for Science, Gothenburg, Sweden, 2 June 2018;
pp- 1-8.

12. Kanewala, U.; Bieman, ].M. Using machine learning techniques to detect metamorphic relations for programs
without test oracles. In Proceedings of the 24th International Symposium on Software Reliability Engineering,
Pasadena, CA, USA, 4-7 November 2013; pp. 1-10.

13. Kanewala, U.; Bieman, ].M.; Ben-Hur, A. Predicting metamorphic relations for testing scientific software:
A machine learning approach using graph kernels. Softw. Test. Verif. Reliab. 2016, 26, 245-269. [CrossRef]

14. Liu, H;; Liu, X,; Chen, T.Y. A New Method for Constructing Metamorphic Relations. In Proceedings of the
12th International Conference on Quality Software, Xi’an, China, 27-29 August 2012; pp. 59-68.

15.  Su, E; Bell, J.; Murphy, C.; Kaiser, G.E. Dynamic Inference of Likely Metamorphic Properties to Support
Differential Testing. In Proceedings of the 10th International Workshop on Automation of Software Test,
Florence, Italy, 23-24 May 2015; pp. 55-59.

16. Chen, T.Y.; Poon, P; Xie, X. METRIC: METamorphic Relation Identification based on the Category-choice
framework. J. Syst. Softw. 2016, 116, 177-190. [CrossRef]


http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1145/3143561
http://dx.doi.org/10.1142/S0218194007003471
http://dx.doi.org/10.1002/stvr.408
http://dx.doi.org/10.4018/jwsr.2012010103
http://dx.doi.org/10.1109/TSE.2017.2764464
http://dx.doi.org/10.1016/j.jss.2010.11.920
http://dx.doi.org/10.1109/AITest.2019.00017
http://dx.doi.org/10.1002/stvr.1594
http://dx.doi.org/10.1016/j.jss.2015.07.037

Information 2019, 10, 392 14 of 15

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Troya, J.; Segura, S.; Cortés, A.R. Automated inference of likely metamorphic relations for model
transformations. J. Syst. Softw. 2018, 136, 188-208. [CrossRef]

Holland, ].H. Genetic Algorithms and the Optimal Allocation of Trials. SIAM ]. Comput. 1973, 2, 88-105.
[CrossRef]

Zhang, J.; Chen, J.; Hao, D.; Xiong, Y.; Xie, B.; Zhang, L.; Mei, H. Search-based inference of polynomial
metamorphic relations. In Proceedings of the International Conference on Automated Software Engineering,
Vasteras, Sweden, 15-19 September 2014; pp. 701-712.

Deng, Y.; Liu, Y.; Zhou, D. An improved genetic algorithm with initial population strategy for symmetric
TSP. Math. Probl. Eng. 2015, 2015. [CrossRef]

Li, X.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem.
Int. J. Prod. Econ. 2016, 174, 93-110. [CrossRef]

Kora, P; Yadlapalli, P. Crossover operators in genetic algorithms: A review. Int. |. Comput. Appl. 2017, 162.
[CrossRef]

Li, X.; Wong, W.E.; Gao, R.; Hu, L.; Hosono, S. Genetic algorithm-based test generation for software product
line with the integration of fault localization techniques. Empir. Softw. Eng. 2018, 23, 1-51. [CrossRef]
Sharma, C.; Sabharwal, S; Sibal, R. A Survey on Software Testing Techniques using Genetic Algorithm.
arXiv 2014, arXiv:1411.1154.

Mu, L.; Sugumaran, V.; Wang, F. A Hybrid Genetic Algorithm for Software Architecture Re-Modularization.
Inf. Syst. Front. 2019, 1-29. [CrossRef]

Boopathi, M.; Sujatha, R.; Kumar, C.S.; Narasimman, S.; Rajan, A. Markov approach for quantifying the
software code coverage using genetic algorithm in software testing. Int. ]. Bio-Inspired Comput. 2019,
14, 27-45. [CrossRef]

Goyal, S.; Mishra, P.; Lamichhane, A.; Gandhi, P. Software test case optimization using genetic algorithm.
Int. . Sci. Eng. Sci. 2018, 1, 69-73.

Dai, Y.S.; Xie, M.; Poh, K.L.; Yang, B. Optimal testing-resource allocation with genetic algorithm for modular
software systems. J. Syst. Softw. 2003, 66, 47-55. [CrossRef]

Ray, M.; Mohapatra, D.P. Multi-objective test prioritization via a genetic algorithm. Innov. Syst. Softw. Eng.
2014, 10, 261-270. [CrossRef]

Raju, S.; Uma, G. Factors oriented test case prioritization technique in regression testing using genetic
algorithm. Eur. J. Sci. Res. 2012, 74, 389-402.

Bank, M.; Ghomi, S.M.T.E; Jolai, F.; Behnamian, J. Application of particle swarm optimization and simulated
annealing algorithms in flow shop scheduling problem under linear deterioration. Adv. Eng. Softw. 2012,
47, 1-6. [CrossRef]

Ramirez, A.; Romero, J.R.; Ventura, S. A survey of many-objective optimisation in search-based software
engineering. J. Syst. Softw. 2019, 149, 382-395. [CrossRef]

Jiang, H.; Tang, K.; Petke, J.; Harman, M. Search Based Software Engineering [Guest Editorial]. IEEE Comput.
Int. Mag. 2017, 12, 23-71. [CrossRef]

Sun, S.; Guo, J.; Zhao, R.; Li, Z. Search-Based Efficient Automated Program Repair Using Mutation and Fault
Localization. In Proceedings of the 42th Annual Computer Software and Applications Conference, Tokyo,
Japan, 23-27 July 2018; pp. 174-183.

Zeller, A. Search-Based Program Analysis. In Proceedings of the Search Based Software Engineering—Third
International Symposium, Szeged, Hungary, 10-12 September 2011; pp. 1-4._1. [CrossRef]

Mohan, M.; Greer, D. A survey of search-based refactoring for software maintenance. J. Softw. Eng. R D
2018, 6, 3.

Rezende, A.V,; Silva, L.; Britto, A.; Amaral, R. Software project scheduling problem in the context of
search-based software engineering: A systematic review. J. Syst. Softw. 2019, 155, 43-56. [CrossRef]
Harman, M,; Jia, Y.; Zhang, Y. Achievements, Open Problems and Challenges for Search Based Software
Testing. In Proceedings of the 8th International Conference on Software Testing, Verification and Validation,
Graz, Austria, 13-17 April 2015; pp. 1-12. [CrossRef]

Segura, S.; Fraser, G.; Sanchez, A.B.; Cortés, A.R. A Survey on Metamorphic Testing. IEEE Trans. Softw. Eng.
2016, 42, 805-824. [CrossRef]

Bajaj, A.; Sangwan, O.P. A Systematic Literature Review of Test Case Prioritization Using Genetic Algorithms.
IEEE Access 2019, 7, 126355-126375. [CrossRef]


http://dx.doi.org/10.1016/j.jss.2017.05.043
http://dx.doi.org/10.1137/0202009
http://dx.doi.org/10.1155/2015/212794
http://dx.doi.org/10.1016/j.ijpe.2016.01.016
http://dx.doi.org/10.5120/ijca2017913370
http://dx.doi.org/10.1007/s10664-016-9494-9
http://dx.doi.org/10.1007/s10796-019-09906-0
http://dx.doi.org/10.1504/IJBIC.2019.101152
http://dx.doi.org/10.1016/S0164-1212(02)00062-6
http://dx.doi.org/10.1007/s11334-014-0234-2
http://dx.doi.org/10.1016/j.advengsoft.2011.12.001
http://dx.doi.org/10.1016/j.jss.2018.12.015
http://dx.doi.org/10.1109/MCI.2017.2670459
http://dx.doi.org/10.1007/978-3-642-23716-4_1
http://dx.doi.org/10.1016/j.jss.2019.05.024
http://dx.doi.org/10.1109/ICST.2015.7102580
http://dx.doi.org/10.1109/TSE.2016.2532875
http://dx.doi.org/10.1109/ACCESS.2019.2938260

Information 2019, 10, 392 15 of 15

41.

42.

43.

44.

45.

46.

47.

48.

Papadakis, M.; Kintis, M.; Zhang, J.; Jia, Y; Traon, Y.L.; Harman, M. Chapter Six - Mutation Testing Advances:
An Analysis and Survey. Adv. Comput. 2019, 112, 275-378.

Chen, S.; Montgomery, J.; Rohler, A.B. Measuring the curse of dimensionality and its effects on particle
swarm optimization and differential evolution. Appl. Intell. 2015, 42, 514-526. [CrossRef]

Eiben, A.E,; Hinterding, R.; Michalewicz, Z. Parameter control in evolutionary algorithms. IEEE Trans. Evol.
Comput. 1999, 3, 124-141. [CrossRef]

Doerr, B.; Doerr, C.; Ebel, F. From black-box complexity to designing new genetic algorithms. Theor. Comput.
Sci. 2015, 567, 87-104. [CrossRef]

Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671-680.
[CrossRef] [PubMed]

Geng, X.; Chen, Z.; Yang, W.; Shi, D.; Zhao, K. Solving the traveling salesman problem based on an adaptive
simulated annealing algorithm with greedy search. Appl. Soft Comput. 2011, 11, 3680-3689. [CrossRef]
Delgado, F. Meaningful Learning of Math and Sciences Using Wolfram Alpha Widgets. In Proceedings of
the EdMedia+ Innovate Learning, Victoria, BC, Canada, 24 June 2013; pp. 1794-1799.

Ma, Y.; Offutt, J.; Kwon, Y.R. MuJava: An automated class mutation system. Softw. Test. Verif. Reliab. 2005,
15,97-133. [CrossRef]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1007/s10489-014-0613-2
http://dx.doi.org/10.1109/4235.771166
http://dx.doi.org/10.1016/j.tcs.2014.11.028
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1016/j.asoc.2011.01.039
http://dx.doi.org/10.1002/stvr.308
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works 
	Metamorphic Relation Inference
	Genetic Algorithm
	Search-Based Software Testing

	Our Approach 
	Metamorphic Testing 
	Multi-Layer Composite Metamorphic Relations 
	GA-Based Approach for Searching Composite MRs 
	Representation of Individuals 
	Genetic Operators 
	Fitness Function 


	Experimental Results 
	Experimental Settings 
	CMR Inference 
	Quality of Inferred CMRs 
	Influence of Composite Layers 

	Conclusions 
	References

