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Abstract: In this paper, based on the multilingual morphological analyzer, we researched the similar
low-resource languages, Uyghur and Kazakh, short text classification. Generally, the online linguistic
resources of these languages are noisy. So a preprocessing is necessary and can significantly improve
the accuracy. Uyghur and Kazakh are the languages with derivational morphology, in which words
are coined by stems concatenated with suffixes. Usually, terms are used as the representation of text
content while excluding functional parts as stop words in these languages. By extracting stems we
can collect necessary terms and exclude stop words. Morpheme segmentation tool can split text into
morphemes with 95% high reliability. After preparing both word- and morpheme-based training text
corpora, we apply convolutional neural network (CNN) as a feature selection and text classification
algorithm to perform text classification tasks. Experimental results show that the morpheme-based
approach outperformed the word-based approach. Word embedding technique is frequently used in
text representation both in the framework of neural networks and as a value expression, and can map
language units into a sequential vector space based on context, and it is a natural way to extract and
predict out-of-vocabulary (OOV) from context information. Multilingual morphological analysis has
provided a convenient way for processing tasks of low resource languages like Uyghur and Kazakh.

Keywords: Uyghur and Kazakh; text classification; CNN; morphology

1. Introduction

Uyghur and Kazakh are a kind of morphologically rich agglutinative languages, in which words
are formed by a root (stem) followed by suffixes, therefore, the vocabulary size of these languages is
huge. There are around 10 million Uyghur people and 1.6 million Kazakh people living in northwestern
China. Officially, Arabic scripts are used for both languages, while Latin scripts are also widely
used on the Internet, especially on mobile communications and social networks. The grammar and
lexical structure of Uyghur and Kazakh are basically the same. Words in these languages are naturally
separated in sentences, and are relatively long as the powerful suffixes can extend the stems (roots)
semantically and syntactically, as shown in the example below:
Uyghur Arabic script form.
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1. Introduction 
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words are formed by a root (stem) followed by suffixes, therefore, the vocabulary size of these 

languages is huge. There are around 10 million Uyghur people and 1.6 million Kazakh people living 

in northwestern China. Officially, Arabic scripts are used for both languages, while Latin scripts are 

also widely used on the Internet, especially on mobile communications and social networks. The 

grammar and lexical structure of Uyghur and Kazakh are basically the same. Words in these 

languages are naturally separated in sentences, and are relatively long as the powerful suffixes can 

extend the stems (roots) semantically and syntactically, as shown in the example below:  

Uyghur Arabic script form.  

 

Uyghur Latin script form.  

musabiqidA musabiqiniN vaHirqi musabiqA numurini velip, tallanma musabiqidin GAlbilik 

vOtti. 

Kazakh Arabic script form. 

Uyghur Latin script form.
musabiqidA musabiqiniN vaHirqi musabiqA numurini velip, tallanma musabiqidin GAlbilik vOtti.

Kazakh Arabic script form.
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Kazakh Latin script form.  

jaresta jaresneN soNGe jares nomeren alep, taNdaw jarestan jENespEn votte. 

As the stems are the notionally independent word particles with a practical meaning, and 

affixes provide grammatical functions in Uyghur and Kazakh languages, morpheme segmentation 

can enable us to separate stems and remove syntactic suffixes as stop words, and reduce noise and 

feature dimension of Uyghur and Kazakh texts in classification task. The form of the sentences in the 

example given above are becoming the form shown below after morpheme segmentation: 

Uyghur morpheme segmentation. musabiqA + dA musabiqA + niN vaHir + qi musabiqA 

numur + i + ni val + ip, talla + an + ma musabiqA + din GAlbA + lik vOt + ty. 

Kazakh morpheme segmentation. jares + ta jares + neN soNGe jares nomer + en al + ep, 

taNdaw jares + tan jENespEn vot + te. 

There are 10 words in the above Uyghur and Kazakh sentences, and the stems (bold parts) of 

four words are /musabiqA/ (match) and /jares/ (match), respectively. After morpheme segmentation 

and stem extraction on the above sentences, only one stem was extracted from four words, so the 

number of features will be greatly reduced, as shown in Table 1.  

Table 1. Uyghur and Kazakh word variants. 

Stem Variants Suffix 

（match） 

Uyghur: 

musabiqA 

Kazakh: jares 

（in the match） 

Uyghur: musabiqidA = musabiqA + dA 

Kazakh: jaresta = jares + ta 

dA 

 

ta 

（of the match） 

Uyghur: musabiqiniN = musabiqA + niN 

Kazakh: jaresneN = jares + neN 

niN 

 

neN 

（from the match） 

Uyghur: musabiqidin 

Kazakh: jarestan = jares + tan 

din 

 

tan 

The Uyghur and Kazakh Arabic letters corresponding to the Latin letters are shown in Table 2. 

Here, La, Uy, and Ka in table headings stand for Latin, Uyghur, and Kazakh, respectively. 

Table 2. Correspondence of Arabic and Latin letters. 

No. La Uy Ka No. La Uy Ka No. La Uy Ka 

1 y 13 ي ي m 25 م م H خ خ 

2 a 14 ا ا s 26 س س U ۈ  

3 l 15 ل ل b 27 ب ب h ھ ھ 

4 G 16 ع غ d 28 د د g گ گ 

5 u 17 ۇ ۇ A 29 ٵ ە f ف ف 

6 z 18 ز ز v 30 ئ ئ w ۋ ۋ 

7 k 19 ك ك r 31 ر ر O ۆ ۆ 

8 x 20 ش ش n 32 ن ن J ژ  

9 i 21 ٸ ى N 33 ڭ ڭ j ج ج 

10 t 22 ت ت c 34 چ چ E  ە 

11 o 23 و و e 35 ى ې B  ٶ 

12 p 24 پ پ q 36 ق ق C  ٷ 

Both Uyghur and Kazakh languages transcribe speech as they pronounce which cause the 

personalized spelling of words especially less frequent words and terms. The main problems in 

natural language processing (NLP) tasks for Uyghur and Kazakh languages are the scarceness in 

resources and derivative morphology in language structure. Data collected from the Internet are 

Kazakh Latin script form.
jaresta jaresneN soNGe jares nomeren alep, taNdaw jarestan jENespEn votte.
As the stems are the notionally independent word particles with a practical meaning, and affixes

provide grammatical functions in Uyghur and Kazakh languages, morpheme segmentation can enable
us to separate stems and remove syntactic suffixes as stop words, and reduce noise and feature
dimension of Uyghur and Kazakh texts in classification task. The form of the sentences in the example
given above are becoming the form shown below after morpheme segmentation:

Uyghur morpheme segmentation. musabiqA + dA musabiqA + niN vaHir + qi musabiqA
numur + i + ni val + ip, talla + an + ma musabiqA + din GAlbA + lik vOt + ty.

Kazakh morpheme segmentation. jares + ta jares + neN soNGe jares nomer + en al + ep, taNdaw
jares + tan jENespEn vot + te.

There are 10 words in the above Uyghur and Kazakh sentences, and the stems (bold parts) of four
words are /musabiqA/ (match) and /jares/ (match), respectively. After morpheme segmentation and
stem extraction on the above sentences, only one stem was extracted from four words, so the number
of features will be greatly reduced, as shown in Table 1.

Table 1. Uyghur and Kazakh word variants.

Stem Variants Suffix

(match)
(in the match) dA

Uyghur: musabiqidA = musabiqA + dA
Kazakh: jaresta = jares + ta ta

Uyghur: musabiqA
(of the match) niN

Uyghur: musabiqiniN = musabiqA + niN
Kazakh: jaresneN = jares + neN neN

Kazakh: jares
(from the match) din

Uyghur: musabiqidin
Kazakh: jarestan = jares + tan tan

The Uyghur and Kazakh Arabic letters corresponding to the Latin letters are shown in Table 2.
Here, La, Uy, and Ka in table headings stand for Latin, Uyghur, and Kazakh, respectively.

Both Uyghur and Kazakh languages transcribe speech as they pronounce which cause the
personalized spelling of words especially less frequent words and terms. The main problems in natural
language processing (NLP) tasks for Uyghur and Kazakh languages are the scarceness in resources and
derivative morphology in language structure. Data collected from the Internet are noisy and uncertain
in terms of coding and spelling [1]. Generally, Internet data for these low resource languages suffered
from high uncertainty of writing forms on these languages, due to the deep influence of the major
languages, Chinese and English [2]. This influence is greatly aggravated by the rapid development of
information technology, which triggers a broad spectrum of cross-lingual and cross-cultural interaction,
leading to unceasing coining of new words and new concepts. Most of these new items are borrowed
from Chinese and English, and the integration is in forms that are full of noise caused by the different
spelling habits [3]. Dialects and uncertainty in terms of spelling and coding pose a big challenge for
reliability of extracting and classifying short and noisy text data.

Previous works [4] on stem extraction for Uyghur and Kazakh texts are mostly based on simple
suffix-based stemming methods and some simple hand-crafted rules, which suffer from ambiguity,
particularly on the short texts. Sentence or longer context-based reliable stem extraction methods can
extract stems and terms accurately in noisy texts for Uyghur and Kazakh texts on a sentence level, and
lead to the ambiguity reduction in a noisy text environment.
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Table 2. Correspondence of Arabic and Latin letters.

No. La Uy Ka No. La Uy Ka No. La Uy Ka

1 y ø



ø



13 m Ð Ð 25 H p p

2 a @ @ 14 s � � 26 U �
ð

3 l È È 15 b H. H. 27 h ë ë

4 G
	

¨ ¨ 16 d X X 28 g À À

5 u �
ð

�
ð 17 A è @



' 29 f

	
¬

	
¬

6 z 	P 	P 18 v 
ø 
ø 30 w �
ð

�
ð

7 k ¼ ¼ 19 r P P 31 O �
ð

�
ð

8 x �
�

�
� 20 n 	

à
	
à 32 J �P

9 i ø ø


' 21 N

�
¼

�
¼ 33 j h. h.

10 t �
H

�
H 22 c h� h� 34 E è

11 o ð ð 23 e ø
..

ø 35 B ð


'

12 p H� H� 24 q
�

�
�

� 36 C �
ð



'

Text classification approaches based on convolutional neural networks (CNN) are extensively
studied on major languages such as English and Chinese. P. Wang et al. [5] proposed semantic
clustering and a CNN-based short text classification method. Reference [5] used a fast clustering
approach to find semantic cliques by clustering word embeddings, and used the semantic units which
meet the preset threshold to build semantic matrices, then put them into CNN. In this experiment,
more than 97% of classification accuracy was obtained on TREC (Text REtrieval Conference) questions
data set when using the GloVe (Global Vectors for Word Representation) model to pretrain word
embeddings. R. Johnson and T. Zhang [6] proposed a text classification method based on CNN with
a multiconvolution layer. CNN was used directly to the text data with high dimension and learned
the local features of small text areas for classification of texts, and the bag of word (BoW) conversion
operation was made in convolution layer in [6], and an excellent result with 9.33% error rate was
obtained in topic classification experiment on RCV1 (Reuters Corpus Volume 1) data set with 103 topics.
M. Zhu and X.D. Yang [7] proposed a Chinese text classification method based on CNN. They added
attention mechanism after pooling layer to make improvements on the CNN model proposed by
Kim [8], and achieved 95.15% of classification accuracy on Sohu news data with nine classes.

Some works on Uyghur and Kazakh text classification have been reported in [4,9,10].
Tuerxun et al. [4] used KNN (K-Nearest Neighbor) as a classifier on Uyghur text to conduct text
classification, and used the TFIDF (Term Frequency-Inverse Document Frequency) algorithm to
calculate the feature weight in this paper. Imam et al. [9] used the TextRank algorithm to select the
features to make a sentiment classification experiment on Uyghur text, and SVM (Support Vector
Machine) was used as a classifier in this experiment. Yergesh et al. [10] made a sentiment classification
experiment on Kazakh text based on linguistic rules of Kazakh. The text classification methods used
by the researchers mentioned above are the traditional classification framework in which the machine
learning process is shallow and do not consider the context relationship between the words in the text
or just based on the simple rules, so they are problematic for noisy text.

Automatic text classification (ATC) is a guided learning process, which classifies a large number
of unstructured text data into specific categories according to the given classification system and
the content of text information [11–13], which is widely used in sentiment classification [14], spam
filtering [15], and Web searching [16]. CNN uses relatively little preprocessing compared to traditional
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classification models. This is because the network can learn the filters that were hand-crafted in a
traditional classification framework. CNN can be used to learn features as well as to classify data.

Text feature representation methods used frequently are BoW [17], TFIDF [18], and LDA (Latent
Dirichlet Allocation) [19]. In this paper, we propose a subword and stem vector-based Uyghur and
Kazakh short text classification method. We used a word (stem) embedding method for extraction of
text features, and used a TFIDF algorithm to weight the feature vectors to better represent the Uyghur
and Kazakh texts, and then used CNN as a feature selection and text classification algorithm to obtain
a Uyghur and Kazakh text classification model, and conducted a classification experiment on a corpora
collected from the Internet.

2. Proposed Uyghur and Kazakh Text Representation and Classification Method

The proposed text classification system in this paper consists of two steps. Step one is the
preprocessing of Uyghur and Kazakh text data, which includes the establishment of the text corpus,
morpheme segmentation, and extracting the stems. Step two is the classification process, which
includes the extraction of features and classification of texts.

2.1. Term Representation

Along with the rise of neural networks, a large number of neural network models suitable for
natural language have been proposed [20,21]. Bengio et al. [20] proposed a neural network-based
language model construction method in 2003. Mikolov et al. [21] proposed word2vec algorithm in 2013,
and by describing the representation of a word through text context information, got low-dimensional
dense vectors, which can represent semantic relationships between words.

2.1.1. Word Vector

Word (stem) embedding [22] is a technique to map words or word units to vectors of real values,
and the similarity of any two stems can quickly be determined by calculating the distance between
the their stem vectors. Word2vec tool enabled us to obtain stem vectors conveniently. There are two
submodels in the word2vec framework, which are the CBOW (Continuous Bag Of Words) model [23]
and the skip-gram model [24], respectively.

CBOW is a model to predict the probability of occurrence
p
(
st
∣∣∣st−c, s(t−c)−1, . . . , st−1, st+1, st+2, . . . , st+c

)
of a stem, st, given the context stems

st−c, s(t−c)−1, . . . , st−1, st+1, st+2, . . . , st+c. In this model, a stem is represented by c stems before
and after that stem, c is the size of the preselected window, the output is the stem vector for this feature
stem st, as shown in Figure 1. We used the CBOW method for training of stem vectors.
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The idea of the skip-gram model is exactly the opposite of the CBOW model, in that
it predicts the occurrence probability p

(
st−c, s(t−c)−1, . . . , st−1, st+1, st+2, . . . , st+c|st

)
of context stems

st−c, s(t−c)−1, . . . , st−1, st+1, st+2, . . . , st+c, given the particular stem, st, as shown in Figure 2.Information 2019, 10, 387 5 of 14 
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Figure 2. Skip-gram model.

The stem vector obtained by word2vec training can determine the degree of semantic similarity
between stems by the cosine distance. The larger the calculated cosine value, the closer the semantics
are; otherwise, the opposite is true, as shown in Table 3.

Table 3. Stem vector semantic similarity.

Uyghur Word Stem Muzika (Music) Related Stems Kazakh Word Stem Vaqxa (Coin) Related Stems

stem cosine distance stem cosine distance

vusul(dance) 0.8138 qarez(loan) 0.9206

sAnvAt(art) 0.7970 pul(money) 0.8783

naHxa(song) 0.7742 bankE(bank) 0.8704

gitar(guitar) 0.7413 somasen(amount) 0.8694

klassik(classic) 0.7281 qaytarew(repayment) 0.8664

From Table 3 we can see that the Uyghur stem muzika (music) and Kazakh stem vaqxa (coin) are
input, respectively, and the five stems which have the closest semantics to the two input stems are
obtained by calculating the cosine distance between stem vectors.

2.1.2. Weighting Term Vector by TFIDF

For set D with M texts, where Di(i = 1, 2, · · · , M), the stem vector is obtained by the CBOW model.
For each stem in a text, apply TF− IDF algorithm to get the t f id f (t, D) value, which refers to the weight
value of stem t in text Di(i = 1, 2, · · · , M).

The stem vector of each stem is weighted by t f id f value to represent a text, as shown in Equation (1):

vec(Di) =
∑
t∈Di

wt·t f id f (t, Di) (1)

Here, vec(Di) refers to the stem vector of each text Di, wt represents N-dimensional stem vector of
stem t, and t f id f (t, Di) represents the TF− IDF weight value of stem t in text Di.
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2.2. CNN Model Architecture

CNN is a deep learning model, which was proposed by Lecun et al. [25], and Kim [8] first used
CNN in a text classification task. CNN can automatically extract and learn the feature of the sentence
on the basis of the stem vector, thus reducing the dependence on the manual selection of features and
optimizing the effect of feature selection. The architecture of the CNN model proposed in this paper is
shown in Figure 3. Our CNN model consisted of four different layers: Input layer, two convolution
layers, two pooling layers, and a fully connected layer, respectively.Information 2019, 10, 387 6 of 14 
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Figure 3. Convolutional neural network (CNN) model architecture proposed in this paper.

(1) Input layer. The first layer of CNN is the input layer, in which the input parameters are the
stem vectors that we obtained after pretraining the texts.

(2) Convolution layers, which are the core components of CNN. These layers convolve feature
maps of a previous layer in the network with convolution kernels to generate new features.

(3) Pooling layer. The input of this layer is the feature matrix generated in the convolution
layer. The function of the pooling layer is to sample the feature map which is generated by the
convolution layer.

(4) Fully connected layer, which is the last layer in CNN, connects all the features and output
values to the classifier.

For the text set Di(i = 1, 2, · · · , M), we got text vectors vec(Di) after training the texts by using
the CBOW algorithm, then we weighted them by using the t f id f value of each stem. Then we let all
the text vectors obtained by the previous steps have the necessary input matrix for CNN processing
by modifying them. The input text of CNN can be expressed as shown in Equation (2). Here, T1:m
represents all the input texts, and ⊕ is the concatenation operator.

T1:m = vec(D1) ⊕ vec(D2) ⊕ · · · ⊕ vec(Dm) (2)

2.3. Robust Uyghur and Kazakh Morpheme Segmentation

For improving the minority language NLP tasks, we developed a compact tool [2]. This tool can
segment the sequences of words in Uyghur and Kazakh texts into the sequences of morphemes.

Based on aligned word and morpheme parallel training data, this program will automatically learn
the various surface forms and acoustic rules from training data. When the morphemes were merged
to a word, the phonemes on the boundaries changed their surface forms according to the phonetic
harmony rules. Morphemes will harmonize each other, and appeal to each other’s pronunciation.
When the pronunciation is precisely represented, the phonetic harmony can be clearly observed in the
text. A segmentation program will export all possible segmentation forms for each candidate word.
An independent statistical model can be incorporated to select the best result from N-best results. This
toolkit provided a reliable basis for morpheme segmentation and stem extraction and greatly improved
the short text classification task of Uyghur and Kazakh.

We used this tool to train a statistical model using word-morpheme parallel training corpus,
which included 10,025 Uyghur sentences and 5000 Kazakh sentences, and we selected 80% of them as
the training corpus. The rest was used as the testing corpus to carry out morpheme segmentation and
stem extraction experiments, as shown in Figure 4. The highest accuracy of stem extraction on two
data sets obtained were 97.66% and 95.87%, respectively, which were the percentage of exact match
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of all morphemes obtained by automatic segmentation with morpheme of manual segmentation, as
shown in Table 4.
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Table 4. Results of rule-based morpheme segmentation and stem extraction.

Corpus Size (word/k) Corpus Accuracy (%) Morpheme Coverage (%) Word Coverage (%)

1.91
Uyghur 93.47 82.30 38.93

Kazakh 89.09 77.31 30.15

7.49
Uyghur 96.59 91.88 60.94

Kazakh 93.89 86.91 46.94

32.74
Uyghur 97.45 95.96 71.43

Kazakh 95.06 94.19 65.72

64.51
Uyghur 97.52 96.11 74.35

Kazakh 95.87 96.21 73.87

129.4
Uyghur 97.66 98.44 86.85

Kazakh - - -

Table 5 shows some ambiguous examples which can only be disambiguated by morphological
analysis within a longer context, like a sentence, and intraword-based stemming methods are unable
to extract stems reliably.

Table 5. Ambiguous stems (Uyghur).

Variants(English) Variants Suffix

vAl(people)/val(get) vAl/val→ el + iN iN

person’s name/lucky qUt→ qUtlUq, qUt + lUq lUq

fire/grass Vot→ vot + tAk, vot + laq tAk, laq

Usually, the number of words in texts are not the same. Therefore, we use padding to modify the
text length to let all the texts have the same word length, which can produce the required input matrix
for CNN. We made statistics about the number of words in each raw text in our corpus, and found that
the number of words in the experimental text corpus tend to range from 40 to 120 words, and most of
the texts had about 100 words. Hence, we select 100 as a standard word length of the text corpus for
CNN. We filled in the texts with less than 100 words with zero. For the corresponding morpheme
sequence texts, after extracting the stems, the first 100 stems were selected for each text as the input of
CNN. Similarly, the texts with less than 100 stems were filled with zero to get the text matrix required
for CNN input.
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3. Experimental Results and Analysis

At present, the research on the classification of Uyghur and Kazakh text is at its initial stage. There
are no publicly available standard and open source text corpus. Therefore, we had to build Uyghur
and Kazakh text corpus for our experiment by crawling the Internet.

3.1. Experimental Setup

We collected our text corpora by using Web crawler technique and downloaded from official
Uyghur and Kazakh Web sites with Arabic script such as www.uyghur.people.com.cn and www.
Kazakh.ts.cn. Our corpus included nine categories of Uyghur texts: Law, finance, sports, culture,
health, tourism, education, science, and entertainment. Each category contained 900 texts, for a total of
8100 texts. Our corpus also included eight categories of Kazakh texts: Law, finance, sports, culture,
tourism, education, science, and entertainment. Each category contained 900 texts, for a total of
7200 texts. (The names of the eight categories in the Uyghur and Kazakh corpora are the same, but the
text content in the same-named category in the two corpora was not the same.) We used 75% of them
as a training set, used 10% as a validation set, and used the rest as a test set. We used the pytorch to
implement the CNN framework on a Linux CentOS operating system with GPU (Graphics Processing
Unit) support. The resulting loss and accuracy rates were recorded.

After normalizing all the texts with various coding in the original corpus into standard Roman code,
we segmented them to morpheme sequence and extracted stems by using morpheme segmentation tool.
The stem-affix based subword extraction method gave a very good result in the reduction of feature
space, in that the morpheme vocabulary reduced greatly to less than 31% of the word vocabulary, as
shown in Tables 6 and 7. We can see that the accumulation of morphemes was also only one-third of
the accumulation of words when the number of classes and volume of corpus were increasing.

Table 6. Reduction in feature space dimension by stem extraction (Uyghur).

Corpus # of Class Word Vocabulary Morpheme
Vocabulary

Morpheme-Word
Vocabulary Ratio (%)

Uyghur
5 55,165 18,148 32.8

7 67,924 21,474 31.6

9 79,762 24,643 30.8

Table 7. Reduction in feature space dimension by stem extraction (Kazakh).

Corpus # of Class Word Vocabulary Morpheme
Vocabulary

Morpheme-Word
Vocabulary Ratio (%)

Kazakh
4 49,018 15,238 31.1

6 60,826 18,439 30.3

8 72,152 21,715 30.1

After a robust morpheme segmentation and stem extraction, the stem vector of all corpora was
trained using the CBOW model based on the hierarchical softmax algorithm. During training, the
training window size was set to 5, and the learning rate was 0.025. After obtaining stem vectors,
the TFIDF algorithm was used to weight them. In order to confirm the optimal dimension of stem
embedding in this classification task, we experimented with the different stem embedding dimensions
range from 50 to 300 in steps of 50. The effect of different stem embedding dimensions on the
classification accuracy is shown in Figure 5.

www.uyghur.people.com.cn
www.Kazakh.ts.cn
www.Kazakh.ts.cn
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From Figure 5 we can see that the classification accuracy was the highest when the vector
dimension was around 100, and the increase in the stem vector dimension hardly influenced the
accuracy, so we selected 100 as a dimension of stem vectors in our experiments.

3.2. Evaluation Indicator

Accuracy, precision, recall, and F1-Measure are frequently used evaluation methods for text
classifier performance. Precision and recall evaluate the quality of feature extraction items, and
F1-Measure is the method which is combined by precision and recall. The calculations for them are
shown below, where

accuracy = number of texts classified accurately/total number of texts
precision = number of texts classified accurately into class Ck/total number of texts actually categorized
into class Ck

recall = number of texts accurately categorized into class Ck/total number of texts in category Ck

F1 = 2 × precision × recall / (precision + recall).

In this paper, we use accuracy and macro-F1 value to evaluate the performance of a proposed text
classification approach. Macro-F1 is a global F1 indicator, in that the F1 value is calculated for each
class respectively, and the arithmetic mean of them is then used as the global index.

3.3. Test Results and Analysis

3.3.1. Comparison of Accuracy on Different Word Units

We segmented the texts into morpheme sequences and selected 100 stem units, and selected
the top 100 word units from the texts without segmentation as the input for CNN separately. We
used word2vec algorithm to extract 100 × 100 word and stem vectors from all texts, and used the
TFIDF algorithm to weight them, then input them into CNN, and conducted classification experiments
based on word and morpheme units, respectively. We compared the word-based results with the
morpheme-based results.

In this paper, several CNN model structures including 2, 4, and 6 convolution layers were tested.
From these experiments, we found that for the task of text classification proposed in this paper the best
CNN model structure consisted of two groups of convolution layers, each of which was followed by a
max pooling layer. Through repeated experiments, we determined that 128 convolutional filters with
a filter size of 5 × 100 on each convolution layer had the best classification effect. After the second
max pooling layer, a dropout function was used to avoid overfitting problems and the dropout value
was set to 0.5. Then, a full connection layer with a length of 64 was added, followed by a second
dropout function, then followed by a dense layer with a size of 9 for Uyghur texts and 8 for Kazakh
texts to represent the number of categories with a softmax function determining the output, as shown
in Figure 3.
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CNN obtained weights by iterative calculations and got the ideal parameters after several times
of iterations. In this experiment, 150 times of iterations were performed. The experimental results are
shown in Figures 6 and 7.Information 2019, 10, 387 10 of 14 
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As can be seen from Figures 6 and 7, the classification accuracy based on both word and morpheme
units on two data sets increased with the rise of iteration time, but the morpheme-based accuracy on
both data sets was bigger than that of word-based accuracy in all the ranges of iteration times. After 9
times of iterations the accuracy of both word- and morpheme-based approaches exceeded 90%, and
reached 91.33% and 90.55% on Uyghur and Kazakh data sets with word units, and to 93.88% and
93.02% on Uyghur and Kazakh data sets with morpheme units, respectively. Around 80–90 times of
iterations, the accuracy based on morpheme units on two data sets reached to the highest point of
95.43% and 95.39%, and then tended to converge around 95.3% and 95.2%, respectively, which were
much bigger than that of the highest values with the word-based approach, which accounted for 93.90%
and 93.71% on two data sets, respectively. The loss on two data sets decreased with the rise of iteration
times, but the speed of decrease was much faster on morpheme units than that of word units. The loss
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rate for both data sets on morpheme units converged around 14%, which was much lower than that of
word units with around 22% of loss rate. These results prove that the morpheme unit is a much better
option than word units in text classification task of agglutinative languages like Uyghur and Kazakh.

3.3.2. Comparison of Proposed Classification Method with Other Methods

In order to prove the superiority of the CNN model in text classification tasks, we used several
commonly used machine learning models, namely KNN, RF (Random Forest), NB (Naive Bayes),
LR (Logistic Regression), and SVM, to perform classification experiments on our corpus. We used
w2vec_TFIDF fusion features to represent morpheme sequence text. For traditional classifiers we used
chi-2 feature selection method to reduce original feature space dimensions, and selected from 100 to
2000 feature dimensions to perform classification experiments. Comparative results are shown in
Table 8.

Table 8. Classification results based on different classification methods.

Methods Corpus Accuracy (%) Macro-F1

KNN
Uyghur 86.12 0.86

Kazakh 85.49 0.85

RF
Uyghur 84.56 0.83

Kazakh 84.69 0.83

NB
Uyghur 92.47 0.91

Kazakh 92.07 0.90

LR
Uyghur 88.23 0.87

Kazakh 87.69 0.85

SVM
Uyghur 93.81 0.92

Kazakh 93.64 0.91

CNN
Uyghur 95.43 0.97

Kazakh 95.39 0.97

As can be seen from Table 8, among the traditional machine learning models, the SVM achieved
the best performance with an accuracy rate of 93.81% and 93.64% on two data sets, respectively. This is
related to the training goal of the SVM model pursuing structural risk minimization, which reduces
the requirement of data size and data distribution. Therefore, the best performance among traditional
methods was obtained under the small sample conditions in this paper. The CNN model outperformed
all the other traditional machine learning methods on both data sets in terms of accuracy and F1 score,
and the CNN model-based accuracy rate was still better than the best results with SVM for 1.62% and
1.75% on two data sets, respectively. These results verify that CNN is superior to other traditional
models in text classification tasks.

3.3.3. Effects of Different Text Representation Methods on Accuracy

In order to verify the performance of word2vec_TFIDF fusion feature representation in text
classification tasks, we performed experiments based on the following methods and compared the
results with our model: CNN + rand, CNN + word2vec, and CNN + word2vec_LDA. For all the
experiments below we still carried out 150 times of iterations for fair comparison.

CNN + rand: The network architecture of the CNN model remained unchanged, but there was
no pretraining of stems to represent text features, and the distributed features of the network’s inputs
were randomly initialized by Gaussian distribution.
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CNN + word2vec: The network architecture of the CNN model remained unchanged, but
word2vec algorithm was used to pretrain stem vectors to represent text features, and stem vectors
obtained by the training were input to CNN.

CNN + word2vec_LDA: The network architecture of the CNN model remained unchanged, but
word2vec algorithm was used to pretrain stem vectors and the LDA algorithm was used to train the
topic model on stem sequence texts. Then, by superimposing the matrices obtained from the two
models, a new feature matrix was formed and input to the CNN.

The classification results based on the methods mentioned above are shown in Table 9.

Table 9. Classification results based on different text representation methods.

Methods Corpus Accuracy (%) Macro-F1 Loss

CNN + rand
Uyghur 91.64 0.92 0.35

Kazakh 91.23 0.93 0.33

CNN + word2vec
Uyghur 94.98 0.96 0.17

Kazakh 94.95 0.95 0.18

CNN + word2vec_LDA
Uyghur 95.21 0.96 0.16

Kazakh 95.13 0.96 0.18

CNN + word2vec_TFIDF
Uyghur 95.43 0.97 0.15

Kazakh 95.39 0.97 0.14

As can be seen from Table 9, the word2vec_TFIDF fusion feature representation method proposed
in this paper outperformed the other text representation methods mentioned above in terms of accuracy,
Macro-F1 value, and loss. Compared with the CNN + rand method, the CNN + word2vec method
introduced word embedding to represent words, and then obtained a distributed representation of the
entire short text, which increased the classification accuracy rate from 91.64% and 91.23% to 94.98% and
94.95% on two data sets. The word2vec_LDA features gave better results than just the plain word2vec
text representation method, but because there was a weak correlation between the components of the
Dirichlet distributed random vectors, some potential topics tended to seem irrelevant in this method;
actually there was maybe a strong relationship among them. Therefore, its performance was not better
than that of the word2vec_TFIDF method. The word2vec_TFIDF fusion feature representation method
not only realized the distributed representation of text features, but also better took into account the
impact of a given single stem on whole texts by using TFIDF weighting, so it obtained much better
classification results.

4. Conclusions

Uyghur and Kazakh are morphologically rich agglutinative languages in which words are formed
by a stem attached to several suffixes, and this property allows infinite vocabulary, in theory. Suffixes
provide semantic and syntactic functions. So stem extraction and morphological analysis are the
efficient way of NLP. Word embedding techniques can map language units into a sequential vector
space based on context. It is a natural way to extract and predict OOV from context information. In this
paper, we discuss a text classification method based on morpheme embedding with tfidf weighting
and neural network architecture. Based on the CNN model, Uyghur and Kazakh text classification
tasks were implemented on both word and morpheme units separately. The experimental results
based on morpheme segmentation showed an improved performance for morpheme units compared
to word units.
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