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Abstract: Similarity measures, distance measures and entropy measures are some common tools
considered to be applied to some interesting real-life phenomena including pattern recognition,
decision making, medical diagnosis and clustering. Further, interval-valued picture fuzzy sets
(IVPFSs) are effective and useful to describe the fuzzy information. Therefore, this manuscript aims
to develop some similarity measures for IVPFSs due to the significance of describing the membership
grades of picture fuzzy set in terms of intervals. Several types cosine similarity measures, cotangent
similarity measures, set-theoretic and grey similarity measures, four types of dice similarity measures
and generalized dice similarity measures are developed. All the developed similarity measures are
validated, and their properties are demonstrated. Two well-known problems, including mineral field
recognition problems and multi-attribute decision making problems, are solved using the newly
developed similarity measures. The superiorities of developed similarity measures over the similarity
measures of picture fuzzy sets, interval-valued intuitionistic fuzzy sets and intuitionistic fuzzy sets
are demonstrated through a comparison and numerical examples.

Keywords: similarity measures; interval-valued picture fuzzy sets; pattern recognition; multi-attribute
decision making

1. Introduction

The concept of fuzzy set (FS), a tool that deals with uncertainty, was proposed by Zadeh [1] in
1965. In FS, there is a function from a non-empty set to the closed unit interval [0, 1] which gives the
degree of membership of an object to a non-empty set. FSs have many applications in decision making,
pattern recognition, etc. A generalization of FSs called interval-valued fuzzy sets (IvFSs) were also
proposed by Zadeh [2]. In IvFSs, the membership degree is expressed by an interval which is basically
sub-interval of [0, 1]. Like FSs, IvFSs have many applications in the field of decision making, pattern
recognition, etc.

Another generalization of FSs called intuitionistic FSs (IFSs), was proposed by Atanassov [3].
In IFSs, there are two functions named as the membership function and non-membership function
with the condition that sum of the membership and non-membership must belong to a closed unit
interval. Many authors used IFSs to develop applications in decision making, pattern recognition, etc.
Atanassov and Gargov [4] proposed the concept of interval-valued IFSs (IvIFSs). In IvIFSs the degrees
of membership and of non-membership are expressed by intervals which are sub-intervals of [0, 1] and
they keep a condition that the sum of supremums of these intervals must belong to [0, 1].
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Coung [5,6] proposed the concept of picture FSs (PFSs) which is generalization of IFSs. PFSs
consist of three functions named as membership, abstinence and non-membership functions. Like in
IFSs, PFSs also have the condition that the sum of all three values of a point must belong to a closed
unit interval. The concept of interval-valued PFSs (IvPFSs) was also proposed in [7]. In IvPFSs, the
degrees of membership, abstinence and non-membership are given in closed sub-intervals of [0, 1] and
have a condition that the sum of the supremum of all three subintervals must belong to a closed unit
interval. Obviously, IvPFSs can describe fuzzy information more easily than FSs, IFSs, IvFSs and PFSs.

Similarity measures (SMs) are an important measure about the similarity between two objects.
Now, many researchers developed different SMs and used them in the fields of MADM, pattern
recognition, mineral field recognition, building material recognition, strategy decision making, etc.
Dhengfeng and Chuntian [8] proposed SMs for IFSs and then used them to solve a pattern recognition
problem. Hung and Yang [9] used the Hausdorff distance to propose a new SM and used these SMs
for pattern recognition problem. Ye [10] proposed some cosine SMs for IFSs. Xu [11] solved MADM
problems using proposed SMs. Hwang et al. [12] proposed new SMs based on the Jaccard index for
IFSs. Nguyen [13] proposed some SMs and dissimilarity measures for IFSs. Garg [14] proposed some
improved cosine SMs for IFSs and solved decision-making problems using these SMs. Szmidt and
Kecprzyk [15] proposed SMs for IFSs and used them to solve medical diagnostic reasoning problems.
Meng and Chen [16] proposed SMs using entropy and then used these SMs to solve pattern recognition
problems. Tang et al. [17] proposed dice SMs and generalized dice SMs and applied these SMs to
group decision making. Xu and Chen [18] made a comparative overview of different SMs, which are
proposed using Hamming distance, weighted Euclidean distance, etc. Moreover, this overview is also
extended for interval-valued intuitionistic fuzzy sets (IvIFSs). Ye [19] proposed cosine SMs for IvIFSs
and solved MADM problems using these SMs. Wei et al. [20] proposed SMs using entropy measures
for IvIFSs and applied these SMs to MADM, pattern recognition and medical diagnosis problems.
Lui et al. [21] proposed interval-valued intuitionistic fuzzy ordered weighted cosine similarity measure
and used these SMs to solve investment decision making problems. Salvachandran et al. [22] solved a
pattern recognition problem using SMs for complex vague soft set. Liao and Xu [23] proposed SMs
for hesitant fuzzy linguistic information and solved qualitative decision-making problems. Chen and
Chang [24] used transformation techniques to propose SMs and applied these SMs to solve pattern
recognition problems. Rani and Garg [25] proposed distance measures between complex IFSs to solve
decision making problems. Mishra et al. [26] proposed SMs with intuitionistic fuzzy WASPAS method
and solved MADM problem with them. Garg and Kumar [27] used set pair analysis theory to propose
new SMs and applied proposed SMs to decision making problems. Garg [28] proposed distance and
SMs for intuitionistic multiplicative preference relation and solved pattern recognition and medical
diagnoses. Obviously, there are a large number of research results about SMs for different FSs.

For the SMs based on PFSs, there are some achievements. Wei [29] proposed some SMs for PFSs
and applied these SMs to mineral field recognition and building material recognition applications.
Son [30] proposed generalized picture distance measure and applied it to picture fuzzy clustering.
Wei [31] proposed some SMs for PFSs and applied these to strategy decision making problem. Wei and
Gao [32] proposed generalized dice SMs for PFSs and applied these to building material recognition.
Wei [33] solved MADM problem using picture fuzzy cross entropy. In decision making problems, the
decision makers have to give their results in the form of different fuzzy framework but if there is a
large amount of data then it is difficult to cover it in fuzzy framework. For example, in the case of
“daily mean temperature of a city”, there could be multiple readings are taken at different stations
within that particular city, all of which are presented in the dataset. To convert this data into one IvPFN
or any other fuzzy framework there are some methods discussed in [34–36]. Some decision-making
problems for different tools for uncertainty are discussed in [37–44]. SMs defined above have their
own significance but these SMs fail when information given as:
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
[0.40, 0.50],
[0.12, 0.23],
[0.19, 0.23]



[0.71, 0.79],
[0.07, 0.09],
[0.10, 0.12]



[0.21, 0.30],
[0.12, 0.22]
[0.39, 0.44]

,


[0.27, 0.43],
[0.08, 0.28],
[0.16, 0.23]



[0.42, 0.51],
[0.13, 0.29],
[0.07, 0.27]



[0.14, 0.23],
[0.21, 0.29],
[0.30, 0.40]


Thus, in this manuscript, some improved SMs are developed for interval-valued picture fuzzy

sets (IvPFSs). The key features of this paper are:

1. To propose different SMs, such as cosine SMs, cosine SMs based on cosine function, SMs based on
cotangent function, grey SMs, set-theoretic SMs, dice SMs and generalized dice SMs for IvPFSs.

2. To develop applications to strategy decision making and mineral recognition. In such applications,
we will describe that how the opinion of decision makers can be brought into the picture fuzzy
environment using a decision matrix and to be processed by using the proposed approach. Once
the picture fuzzy data is processed, we then utilize the score and accuracy functions to analyse
the obtained results.

3. To discuss the advantages of proposed new methods over the existing SMs of other
fuzzy frameworks.

4. To make a comparative study with some existing SMs and to show the superiority and effectiveness
of our proposed work.

5. To discuss some future aspects of our proposed study where the applicability could be improved.

In this manuscript, Section 2 gives some basic definitions that make an ease for reader to understand
these basic concepts. In Section 3, we propose some SMs for interval-valued picture fuzzy information
SMs, such as cosine SMs, cosine SMs based on cosine function, SMs based on cotangent function, grey
SM, set-theoretic SM, dice SMs and generalized dice SMs. In Section 4, applications of strategy decision
making and mineral recognition are established and results are studied. Section 5 is about advantages
of proposed work over existing work. Section 6 offers the conclusion to the whole manuscript.

2. Preliminaries

In this section, we define some basic notions that will help readers to understand later sections.
From now to onward, if stated, otherwise, X is used as universal set.

Definition 1. [1] A FS on X is defined as:

T =
{
(x, m(x))

∣∣∣ x ∈ X
}
, (1)

where m : X→ [0, 1] is called membership function and it describes the degree of membership of an object to a
non-empty set. Each m(x) is called fuzzy number.

Definition 2. [2] An IvFS on X is defined as:

T =
{
(x, mT(x))

∣∣∣ x ∈ X
}
, (2)

where mT = [mTL, mTU] is subinterval of [0, 1] and it expresses the degree of membership by sub-interval and
each mT(x) is called interval-valued fuzzy number (IvFN).

Definition 3. [3] An IFS on X is defined as:

T =
{
(x, m(x), n(x))

∣∣∣ x ∈ X
}
, (3)
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where m, n : X→ [0, 1] are called membership and non-membership functions. An IFS has a condition that the
sum of both functions must lie in unit interval and the degree of refusal is defined as r(x) = 1− (m(x) + n(x)).
A duplet (m(x), n(x)) is called an intuitionistic fuzzy number (IFN).

Definition 4. [5] An IvIFS on a universal set X is defined as:

T =
{
(x, mT(x), nT(x))

∣∣∣ x ∈ X
}
, (4)

where mT = [mTL, mTU], nT = [nTL, nTU] and mT, nT : X→ [0, 1] . An IvIFS has a condition that the sum of
supremum of membership and non-membership functions must lie in unit interval. A duplet (mT(x), nT(x)) is
called interval-valued intuitionistic fuzzy number (IvIFN).

Definition 5. [7] A PFS on X is defined as:

T =
{
(x, m(x), i(x), n(x))

∣∣∣ x ∈ X
}
, (5)

where m, i, n : X→ [0, 1] are called membership, abstinence and non-membership functions. A PFS has a
condition that the sum of all three functions must lie in unit interval and the degree of refusal is defined as
r(x) = 1− (m(x) + i(x) + n(x)). A triplet (m(x), i(x), n(x)) is called a picture fuzzy number (PFN).

Definition 6. [7] An IvPFS on a universal set X is defined as:

T =
{
(x, mT(x), iT(x), nT(x))

∣∣∣ x ∈ X
}
, (6)

where mT = [mTL, mTU], iT = [iTL, iTU], nT = [nTL, nTU] and mT, iT, nT : X→ [0, 1] . An IvPFS has a
condition that the sum of supremum of all three functions must lie in unit interval. A triplet (mT(x), iT(x), nT(x))
is called interval-valued picture fuzzy number (IvPFN).

3. Similarity Measures

In this section, some SMs like cosine SMs, cosine SMs based on cosine and cotangent functions,
grey SMs, set-theoretic SMs, dice SMs and generalized dice SMs are defined for IvPFSs. Some basic
properties of these SMs are also defined.

3.1. Cosine Similarity Measures for IvPFSs

In this subsection, some cosine SMs and weighted cosine SMs for IvPFSs are defined and some
basic properties of these SMs are also discussed.

Definition 7. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, an interval-valued picture

fuzzy cosine similarity measure (IvPFCSM) between T1 and T2 is defined as:

IvPFCSM1(T1, T2) =

1
k

k∑
t=1

mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt)√√√√√√ m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + m2
T1U(xt)

+i2T1U(xt) + n2
T1U(xt)

√√√√√√ m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + m2
T2U(xt)+

i2T2U(xt) + n2
T2U(xt)

(7)

For k = 1 the above equation becomes correlation coefficient between IvPFSs.
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Theorem 1. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, cosine similarity measure

satisfies the following properties:

i. 0 ≤ IvPFCSM1(T1, T2) ≤ 1.
ii. IvPFCSM1(T1, T2) = IvPFCSM1(T2, T1)

iii. For T1 = T2, IvPFCSM1(T1, T2) = 1.

Proof.

(i). As membership, abstinence and non-membership of both IvPFNs belong to [0, 1], so it is obvious
that IvPFCSM1(T1, T2) belongs to [0, 1].

(ii). Holds trivially.
(iii). If T1 = T2 then mT1L = mT2L, mT1U = mT2U, iT1L = iT2L, iT1U = iT2U, nT1L = nT2L and nT1U = nT2U.

and then

IvPFCSM1(T1, T2) = 1
k

k∑
t=1

m2
T1L(xt)+i2T1L(xt)+n2

T1L(xt)+m2
T1U(xt)+i2T1U(xt)+n2

T1U(xt)

m2
T1L(xt)+i2T1L(xt)+n2

T1L(xt)+m2
T1U(xt)+i2T1U(xt)+n2

T1U(xt)

= 1
k

k∑
t=1

1 = 1
k k = 1.

�

Definition 8. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, weighted cosine similarity

measure between T1 and T2 is defined as:

IvPFWCSM1(T1, T2) =

k∑
t=1

ωt

mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt)√√√√√√ m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + m2
T1U(xt)+

i2T1U(xt) + n2
T1U(xt)

√√√√√√ m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + m2
T2U(xt)+

i2T2U(xt) + n2
T2U(xt)

(8)

where ω = (ω1, . . . . . . . . . ,ωk) is a weight vector satisfies ωt ∈ [0, 1] and
k∑

t=1
ωt = 1.

Theorem 2. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, the weighted cosine similarity

measure satisfies the following properties:

i. 0 ≤ IvPFWCSM1(T1, T2) ≤ 1
ii. IvPFWCSM1(T1, T2) = IvPFWCSM1(T2, T1)

iii. For T1 = T2, IvPFWCSM1(T1, T2) = 1

Proof.

(i). As membership, abstinence and non-membership of both IvPFNs belong to [0, 1], so it is obvious
that IvPFWCSM1(T1, T2) belongs to [0, 1].

(ii). Holds trivially.
(iii). If T1 = T2 then mT1L = mT2L, mT1U = mT2U, iT1L = iT2L, iT1U = iT2U, nT1L = nT2L and nT1U = nT2U.
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and then
IvPFWCSM1(T1, T2)

=
k∑

t=1
ωt

m2
T1L(xt)+i2T1L(xt)+n2

T1L(xt)+m2
T1U(xt)+i2T1U(xt)+n2

T1U(xt)

m2
T1L(xt)+i2T1L(xt)+n2

T1L(xt)+m2
T1U(xt)+i2T1U(xt)+n2

T1U(xt)

=
k∑

t=1
ωt = 1.

(9)

�

Definition 9. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, the cosine and weighted

cosine similarity measure based on four functions membership, abstinence, non-membership and refusal between
T1 and T2 are defined as:

IvPFCSM2(T1, T2) =

1
k

k∑
t=1

mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + rT1L(xt)rT2L(xt) + mT1U(xt)mT2U(xt)+

iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt) + rT1U(xt)rT2U(xt)√√√√√√ m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + r2
T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt) + r2
T1U(xt)

√√√√√√ m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + r2
T2L(xt)+

m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt) + r2
T2U(xt)

(10)
and:

IvPFWCSM2(T1, T2) =

k∑
t=1

ω j

mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + rT1L(xt)rT2L(xt) + mT1U(xt)mT2U(xt)+

iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt) + rT1U(xt)rT2U(xt)√√√√√√ m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + r2
T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt) + r2
T1U(xt)

√√√√√√ m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + r2
T2L(xt)+

m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt) + r2
T2U(xt)

(11)
where weight vector ω = (ω1, . . . . . . . . . ,ωk)

T is with a condition that for t = 1, 2, . . . . . . . . . , k ωt ∈ [0, 1] and
k∑

t=1
ωt = 1.

Theorem 3. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, cosine and weighted cosine

similarity measures based on four functions satisfy the following properties:

i. 0 ≤ IvPFCSM2(T1, T2) ≤ 1.
ii. IvPFCSM2(T1, T2) = IvPFCSM2(T2, T1)

iii. For T1 = T2, IvPFCSM2(T1, T2) = 1.
iv. 0 ≤ IvPFWCSM2(T1, T2) ≤ 1
v. IvPFWCSM2(T1, T2) = IvPFWCSM2(T2, T1)

vi. For T1 = T2, IvPFWCSM2(T1, T2) = 1

Proof. The proofs are similar to Theorems 1 and 2. �

3.2. Cosine Similarity Measures for IvPFSs Based on Cosine Function

In this subsection some cosine SMs based on cosine function and some weighted cosine SMs
based on cosine function for IvPFSs are defined. Some basic properties of these SMs are also discussed.
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Definition 10. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, cosine similarity measures

based on cosine function between these two IvPFNs are defined as:

IvPFCsSM1(T1, T2) =
1
k
∑k

t=1 cos
{
π
2

[ ∣∣∣mT1L −mT2L
∣∣∣∨∣∣∣iT1L − iT2L

∣∣∣∨∣∣∣nT1L − nT2L
∣∣∣∨∣∣∣mT1U −mT2U

∣∣∣∨∣∣∣iT1U − iT2U
∣∣∣∨∣∣∣nT1U − nT2U

∣∣∣
]}

(12)

IvPFCsSM2(T1, T2) =

1
k

k∑
t=1

cos
{
π
4

[ ∣∣∣mT1L −mT2L
∣∣∣+ ∣∣∣iT1L − iT2L

∣∣∣+ ∣∣∣nT1L − nT2L
∣∣∣+ ∣∣∣mT1U −mT2U

∣∣∣
+

∣∣∣iT1U − iT2U
∣∣∣+ ∣∣∣nT1U − nT2U

∣∣∣
]}

(13)

Further, cosine similarity measures using four functions membership, abstinence, non-membership and
refusal are defined as:

IvPFCsSM3(T1, T2) =

1
k

k∑
t=1

cos
{
π
2

[ ∣∣∣mT1L −mT2L
∣∣∣∨∣∣∣iT1L − iT2L

∣∣∣∨∣∣∣nT1L − nT2L
∣∣∣∨∣∣∣rT1L − rT2L

∣∣∣∨∣∣∣mT1U −mT2U
∣∣∣∨∣∣∣iT1U − iT2U

∣∣∣∨∣∣∣nT1U − nT2U
∣∣∣∨∣∣∣rT1U − rT2U

∣∣∣
]}

(14)

IvPFCsSM4(T1, T2) =

1
k

k∑
t=1

cos
{
π
4

[ ∣∣∣mT1L −mT2L
∣∣∣+ ∣∣∣iT1L − iT2L

∣∣∣+ ∣∣∣nT1L − nT2L
∣∣∣+ ∣∣∣rT1L − rT2L

∣∣∣
+

∣∣∣mT1U −mT2U
∣∣∣+ ∣∣∣iT1U − iT2U

∣∣∣+ ∣∣∣nT1U − nT2U
∣∣∣+ ∣∣∣rT1U − rT2U

∣∣∣
]}

(15)

Theorem 4. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
, all

IvPFCsSMs satisfy the following properties for p = 1, 2, 3, 4.

i. 0 ≤ IvPFCsSMp(T1, T2) ≤ 1.
ii. IvPFCsSMp(T1, T2) = IvPFCsSMp(T2, T1)

iii. For T1 = T2, IvPFCsSMp(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFCsSMp(T1, T3) ≤ IvPFCsSMp(T1, T2)

v. and IvPFCsSMp(T1, T3) ≤ IvPFCsSMp(T2, T3)

Proof.

(i). Since value of cosine function lies in [0, 1], so it is obvious that value of IvPFCsSMp(T1, T2) lies in
[0, 1] for all p = 1, 2, 3, 4.

(ii). Trivially hold.
(iii). For T1 = T2, mT1L = mT2L, mT1U = mT2U, iT1L = iT2L, iT1U = iT2U, nT1L = nT2L, nT1U = nT2U,

rT1L = rT2L and rT1U = rT2U. This shows that:∣∣∣mT1L −mT2L
∣∣∣ = 0,

∣∣∣iT1L − iT2L
∣∣∣ = 0,

∣∣∣nT1L − nT2L
∣∣∣ = 0,

∣∣∣mT1U −mT2U
∣∣∣ = 0,

∣∣∣iT1U − iT2U
∣∣∣ = 0,∣∣∣nT1U − nT2U

∣∣∣ = 0.

Thus, IvPFCsSM1(T1, T2) =
1
k

k∑
t=1

cos{0} = 1
k

k∑
t=1

1 = 1.

Similarly, for p = 2, 3, 4, the others can also be proved.
(iv). For T1 ⊆ T2 ⊆ T3, mT1L ≤ mT2L ≤ mT3L also mT1U ≤ mT2U ≤ mT3U.

Similarly, iT1L ≤ iT2L ≤ iT3L, iT1U ≤ iT2U ≤ iT3U, nT1L ≥ nT2L ≥ nT3L and nT1U ≥ nT2U ≥ nT3U.
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For t = 1, 2, . . . . . . .., k we have: ∣∣∣mT1L −mT2L
∣∣∣ ≤ ∣∣∣mT1L −mT3L

∣∣∣∣∣∣iT1L − iT2L
∣∣∣ ≤ ∣∣∣iT1L − iT3L

∣∣∣∣∣∣nT1L − nT2L
∣∣∣ ≥ ∣∣∣nT1L − nT3L

∣∣∣∣∣∣mT1U −mT2U
∣∣∣ ≤ ∣∣∣mT1U −mT3U

∣∣∣∣∣∣iT1U − iT2U
∣∣∣ ≤ ∣∣∣iT1U − iT3U

∣∣∣∣∣∣nT1U − nT2U
∣∣∣ ≥ ∣∣∣nT1U − nT3U

∣∣∣
As cosine function is decreasing in

[
0, π2

]
, so IvPFCsSM1(T1, T3) ≤ IvPFCsSM1(T1, T2) and also by

following same method it can be proved that IvPFCsSM1(T1, T3) ≤ IvPFCsSM1(T2, T3).
Similarly, for p = 2, 3, 4, the others can also be proved. �

Definition 11. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, weighted cosine similarity

measures based on cosine function between these two IvPFNs are defined as:

IvPFWCsSM1(T1, T2) =
k∑

t=1
ωt cos

{
π
2

[ ∣∣∣mT1L −mT2L
∣∣∣∨∣∣∣iT1L − iT2L

∣∣∣∨∣∣∣nT1L − nT2L
∣∣∣∨∣∣∣mT1U −mT2U

∣∣∣∨∣∣∣iT1U − iT2U
∣∣∣∨∣∣∣nT1U − nT2U

∣∣∣
]}

(16)

IvPFWCsSM2(T1, T2) =
k∑

t=1
ωt cos

{
π
4

[ ∣∣∣mT1L −mT2L
∣∣∣+ ∣∣∣iT1L − iT2L

∣∣∣+ ∣∣∣nT1L − nT2L
∣∣∣+ ∣∣∣mT1U −mT2U

∣∣∣
+

∣∣∣iT1U − iT2U
∣∣∣+ ∣∣∣nT1U − nT2U

∣∣∣
]}

(17)

Further, the weighted cosine similarity measures using four functions membership, abstinence,
non-membership and refusal are defined as:

IvPFWCsSM3(T1, T2) =
k∑

t=1
ωt cos

{
π
2

[ ∣∣∣mT1L −mT2L
∣∣∣∨∣∣∣iT1L − iT2L

∣∣∣∨∣∣∣nT1L − nT2L
∣∣∣∨∣∣∣rT1L − rT2L

∣∣∣∨∣∣∣mT1U −mT2U
∣∣∣∨∣∣∣iT1U − iT2U

∣∣∣∨∣∣∣nT1U − nT2U
∣∣∣∨∣∣∣rT1U − rT2U

∣∣∣
]}

(18)

IvPFWCsSM4(T1, T2) =
k∑

t=1
ωt cos

{
π
4

[ ∣∣∣mT1L −mT2L
∣∣∣+ ∣∣∣iT1L − iT2L

∣∣∣+ ∣∣∣nT1L − nT2L
∣∣∣+ ∣∣∣rT1L − rT2L

∣∣∣
+

∣∣∣mT1U −mT2U
∣∣∣+ ∣∣∣iT1U − iT2U

∣∣∣+ ∣∣∣nT1U − nT2U
∣∣∣+ ∣∣∣rT1U − rT2U

∣∣∣
]}

(19)

where weight vector ω = (ω1, . . . . . . . . . ,ωk)
T is with a condition that for t = 1, 2, . . . . . . . . . , k ωt ∈ [0, 1] and

k∑
t=1

ωt = 1.

Theorem 5. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
, all

IvPFWCsSMs satisfy the following properties for t = 1, 2, 3, 4.

i. 0 ≤ IvPFWCsSMt(T1, T2) ≤ 1.
ii. IvPFWCsSMt(T1, T2) = IvPFWCsSMt(T2, T1)

iii. For T1 = T2, IvPFWCsSMt(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFWCsSMt(T1, T3) ≤ IvPFWCsSMt(T1, T2) and

IvPFWCsSMt(T1, T3) ≤ IvPFWCsSMt(T2, T3)

Proof.

(i). Since value of cosine function lies in [0, 1], so it is obvious that value of IvPFWCsSMt(T1, T2) lies
in [0, 1] for all t = 1, 2, 3, 4.
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(ii). Trivially hold.
(iii). For T1 = T2, mT1L = mT2L, mT1U = mT2U, iT1L = iT2L, iT1U = iT2U, nT1L = nT2L, nT1U = nT2U,

rT1L = rT2L and rT1U = rT2U. This shows that:∣∣∣mT1L −mT2L
∣∣∣ = 0,

∣∣∣iT1L − iT2L
∣∣∣ = 0,

∣∣∣nT1L − nT2L
∣∣∣ = 0,

∣∣∣mT1U −mT2U
∣∣∣ = 0,

∣∣∣iT1U − iT2U
∣∣∣ = 0,∣∣∣nT1U − nT2U

∣∣∣ = 0.

Thus:

IvPFWCsSM1(T1, T2) =
k∑

t=1

ωt cos{0} =
k∑

t=1

ωt = 1

Similarly, for t = 2, 3, 4, they can also be proved.
(iv). For T1 ⊆ T2 ⊆ T3, mT1L ≤ mT2L ≤ mT3L also mT1U ≤ mT2U ≤ mT3U.

Similarly, iT1L ≤ iT2L ≤ iT3L, iT1U ≤ iT2U ≤ iT3U, nT1L ≥ nT2L ≥ nT3L and nT1U ≥ nT2U ≥ nT3U.

For t = 1, 2, . . . . . . .., k we have: ∣∣∣mT1L −mT2L
∣∣∣ ≤ ∣∣∣mT1L −mT3L

∣∣∣∣∣∣iT1L − iT2L
∣∣∣ ≤ ∣∣∣iT1L − iT3L

∣∣∣∣∣∣nT1L − nT2L
∣∣∣ ≥ ∣∣∣nT1L − nT3L

∣∣∣∣∣∣mT1U −mT2U
∣∣∣ ≤ ∣∣∣mT1U −mT3U

∣∣∣∣∣∣iT1U − iT2U
∣∣∣ ≤ ∣∣∣iT1U − iT3U

∣∣∣∣∣∣nT1U − nT2U
∣∣∣ ≥ ∣∣∣nT1U − nT3U

∣∣∣
As cosine function is decreasing in

[
0, π2

]
, so IvPFWCsSM1(T1, T3) ≤ IvPFWCsSM1(T1, T2) and

also by following same method it can be proved that IvPFWCsSM1(T1, T3) ≤ IvPFWCsSM1(T2, T3).
Similarly, for t = 2, 3, 4, the others can also be proved. �

3.3. Similarity Measures for IvPSs Based on Cotangent Function

In this subsection, we proposed some cotangent SMs based on cotangent function and some
weighted cotangent SMs based on cotangent function for IvPFSs, and some basic properties of these
SMs are also discussed.

Definition 12. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, a cotangent similarity

measure based on cotangent function between these two IvPFNs is defined as:

IvPFCtSM1(T1, T2) =

1
k

k∑
t=1

cot
{
π
4 + π

4

[ ∣∣∣mT1L −mT2L
∣∣∣∨∣∣∣iT1L − iT2L

∣∣∣∨∣∣∣nT1L − nT2L
∣∣∣∨∣∣∣mT1U −mT2U

∣∣∣∨∣∣∣iT1U − iT2U
∣∣∣∨∣∣∣nT1U − nT2U

∣∣∣
]}

(20)

Further, then cotangent similarity measures using four functions membership, abstinence, non-membership
and refusal is defined as:

IvPFCtSM2(T1, T2)

= 1
k

k∑
t=1

cot
{
π
4 + π

4

[ ∣∣∣mT1L −mT2L
∣∣∣∨∣∣∣iT1L − iT2L

∣∣∣∨∣∣∣nT1L − nT2L
∣∣∣∨∣∣∣rT1L − rT2L

∣∣∣∨∣∣∣mT1U −mT2U
∣∣∣∨∣∣∣iT1U − iT2U

∣∣∣∨∣∣∣nT1U − nT2U
∣∣∣∨∣∣∣rT1U − rT2U

∣∣∣
]}

(21)

Theorem 6. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
, all

IvPFCtSMs satisfy the following properties for t = 1, 2:

i. 0 ≤ IvPFCtSMt(T1, T2) ≤ 1.
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ii. IvPFCtSMt(T1, T2) = IvPFCtSMt(T2, T1).
iii. For T1 = T2, IvPFCtSMt(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFCtSMt(T1, T3) ≤ IvPFCtSMt(T1, T2) and IvPFCtSMt(T1, T3) ≤

IvPFCtSMt(T2, T3).

Proof. The proofs are similar as in Theorem 4. �

Definition 13. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, a weighted cotangent

similarity measure based on cotangent function between these two IvPFNs is defined as:

IvPFWCtSM1(T1, T2) =
k∑

t=1
ωt cot

{
π
4 + π

4

[ ∣∣∣mT1L −mT2L
∣∣∣∨∣∣∣iT1L − iT2L

∣∣∣∨∣∣∣nT1L − nT2L
∣∣∣∨∣∣∣mT1U −mT2U

∣∣∣∨∣∣∣iT1U − iT2U
∣∣∣∨∣∣∣nT1U − nT2U

∣∣∣
]}

(22)

Further, then weighted cotangent similarity measure using four functions membership, abstinence,
non-membership and refusal is defined as:

IvPFWCtSM2(T1, T2) =
k∑

t=1
ωt cot

{
π
4 + π

4

[ ∣∣∣mT1L −mT2L
∣∣∣∨∣∣∣iT1L − iT2L

∣∣∣∨∣∣∣nT1L − nT2L
∣∣∣∨∣∣∣rT1L − rT2L

∣∣∣∨∣∣∣mT1U −mT2U
∣∣∣∨∣∣∣iT1U − iT2U

∣∣∣∨∣∣∣nT1U − nT2U
∣∣∣∨∣∣∣rT1U − rT2U

∣∣∣
]}

(23)

where weight vector ω = (ω1, . . . . . . . . . ,ωk)
T is with a condition that for t = 1, 2, . . . . . . . . . , k ωt ∈ [0, 1] and

k∑
t=1

ωt = 1.

Theorem 7. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
, all

IvPFWCtSMs satisfy the following properties for t = 1, 2:

i. 0 ≤ IvPFWCtSMt(T1, T2) ≤ 1.
ii. IvPFWCtSMt(T1, T2) = IvPFWCtSMt(T2, T1)

iii. For T1 = T2, IvPFWCtSMt(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFWCtSMt(T1, T3) ≤ IvPFWCtSMt(T1, T2) and

IvPFWCtSMt(T1, T3) ≤ IvPFWCtSMt(T2, T3).

Proof. The proofs are similar as in Theorem 5. �

3.4. Set-Theoretic Similarity Measures and Grey Similarity Measures for IvPFSs

In this subsection, set-theoretic SM, Grey SM and weighted set-theoretic SM, weighted Grey SM
for IvPFSs are defined, and some basic properties of these SMs are also discussed.

Definition 14. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, an interval-valued picture

fuzzy set-theoretic similarity measure (IvPFStSM) between these IvPFNs is defined as:

IvPFStSM1(T1, T2) =

1
k

k∑
t=1

mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt)

max

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + m2
T1U(xt)

+i2T1U(xt) + n2
T1U(xt)

,
m2

T2L(xt) + i2T2L(xt) + n2
T2L(xt) + m2

T2U(xt)+

i2T2U(xt) + n2
T2U(xt)


(24)



Information 2019, 10, 369 11 of 23

Theorem 8. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
, the

IvPFStSM satisfies the following properties:

i. 0 ≤ IvPFStSM1(T1, T2) ≤ 1.
ii. IvPFStSM1(T1, T2) = IvPFStSM1(T2, T1)

iii. For T1 = T2, IvPFStSM1(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFStSM1(T1, T3) ≤ IvPFStSM1(T1, T2) and IvPFStSM1(T1, T3) ≤

IvPFStSM1(T2, T3)

Proof.

(i). As membership, abstinence and non-membership of both IvPFNs belong to [0, 1], so it is obvious
that IvPFStSM1(T1, T2) belongs to [0, 1].

(ii). Holds trivially.
(iii). If T1 = T2 then mT1L = mT2L, mT1U = mT2U, iT1L = iT2L, iT1U = iT2U, nT1L = nT2L and nT1U = nT2U.

and then

IvPFStSM1(T1, T2) =
1
k

k∑
t=1

m2
T1L(xt)+i2T1L(xt)+n2

T1L(xt)+m2
T1U(xt)+i2T1U(xt)+n2

T1U(xt)

m2
T1L(xt)+i2T1L(xt)+n2

T1L(xt)+m2
T1U(xt)+i2T1U(xt)+n2

T1U(xt)

= 1
k

k∑
t=1

1

= 1
k k = 1

�

Definition 15. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, an interval-valued picture

fuzzy weighted set-theoretic similarity measure (IvPFWStSM) between these IvPFNs is defined as:

IvPFWStSM1(T1, T2)

=
k∑

t=1
ωt

mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt)

max

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + m2
T1U(xt)+

i2T1U(xt) + n2
T1U(xt)

,
m2

T2L(xt) + i2T2L(xt) + n2
T2L(xt) + m2

T2U(xt)+

i2T2U(xt) + n2
T2U(xt)


(25)

where weight vector ω = (ω1, . . . . . . . . . ,ωk)
T is with the condition that for t = 1, 2, . . . . . . . . . , k ωt ∈ [0, 1] and

k∑
t=1

ωt = 1.

Theorem 9. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
, the

IvPFWStSM satisfies the following properties:

i. 0 ≤ IvPFWStSM1(T1, T2) ≤ 1.
ii. IvPFWStSM1(T1, T2) = IvPFWStSM1(T2, T1).
iii. For T1 = T2, IvPFWStSM1(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFWStSM1(T1, T3) ≤ IvPFWStSM1(T1, T2) and

IvPFWStSM2(T1, T3) ≤ IvPFWStSM1(T2, T3).

Proof. The proof is similar as in Theorem 2. �
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Definition 16. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, an interval-valued picture

fuzzy grey similarity measure (IvPFGSM) between these IvPFNs is defined as:

IvPFGSM1(T1, T2)

= 1
3k

k∑
t=1

∆mL(min)+∆mU(min)+∆mL(max)+∆mU(max)
∆mL+∆mU+∆mL(max)+∆mU(max)

+
∆iL(min)+∆iU(min)+∆iL(max)+∆iU(max)

∆iL+∆iU+∆iL(max)+∆iU(max)

+
∆nL(min)+∆nU(min)+∆nL(max)+∆nU(max)

∆nL+∆nU+∆nL(max)+∆nU(max)

(26)

where ∆mL(min) = min
{∣∣∣mT1L −mT2L

∣∣∣}, ∆mU(min) = min
{∣∣∣mT1U −mT2U

∣∣∣}, ∆mL =
∣∣∣mT1L −mT2L

∣∣∣,
∆mU =

∣∣∣mT1U −mT2U
∣∣∣, ∆mL(max) = max

{∣∣∣mT1L −mT2L
∣∣∣}, ∆mU(max) = max

{∣∣∣mT1U −mT2U
∣∣∣}, ∆iL(min) =

min
{∣∣∣iT1L − iT2L

∣∣∣}, ∆iU(min) = min
{∣∣∣iT1U − iT2U

∣∣∣}, ∆iL =
∣∣∣iT1L − iT2L

∣∣∣, ∆iU =
∣∣∣iT1U − iT2U

∣∣∣, ∆iL(max) =

max
{∣∣∣iT1L − iT2L

∣∣∣}, ∆iU(max) = max
{∣∣∣iT1U − iT2U

∣∣∣}, ∆nL(min) = min
{∣∣∣nT1L − nT2L

∣∣∣}, ∆nU(min) =

min
{∣∣∣nT1U − nT2U

∣∣∣}, ∆nL =
∣∣∣nT1L − nT2L

∣∣∣, ∆nU =
∣∣∣nT1U − nT2U

∣∣∣, ∆nL(max) = max
{∣∣∣nT1L − nT2L

∣∣∣},
∆nU(max) = max

{∣∣∣nT1U − nT2U
∣∣∣}.

Theorem 10. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
, the

IvPFGSM satisfies the following properties:

i. 0 ≤ IvPFGSM1(T1, T2) ≤ 1.
ii. IvPFGSM1(T1, T2) = IvPFGSM1(T2, T1)

iii. For T1 = T2, IvPFGSM1(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFGSM1(T1, T3) ≤ IvPFGSM1(T1, T2) and IvPFGSM1(T1, T3) ≤

IvPFGSM1(T2, T3).

Definition 17. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, an interval-valued picture

fuzzy weighted grey similarity measure (IvPFWGSM) between these IvPFNs is defined as:

IvPFWGSM1(T1, T2)

= 1
3

k∑
t=1

ωt
∆mL(min)+∆mU(min)+∆mL(max)+∆mU(max)

∆mL+∆mU+∆mL(max)+∆mU(max)

+
∆iL(min)+∆iU(min)+∆iL(max)+∆iU(max)

∆iL+∆iU+∆iL(max)+∆iU(max)

+
∆nL(min)+∆nU(min)+∆nL(max)+∆nU(max)

∆nL+∆nU+∆nL(max)+∆nU(max)

(27)

where weight vector ω = (ω1, . . . . . . . . . ,ωk)
T is with a condition that for t = 1, 2, . . . . . . . . . , k ωt ∈ [0, 1]

and
k∑

t=1
ωt = 1 and ∆mL(min) = min

{∣∣∣mT1L −mT2L
∣∣∣}, ∆mU(min) = min

{∣∣∣mT1U −mT2U
∣∣∣}, ∆mL =∣∣∣mT1L −mT2L

∣∣∣, ∆mU =
∣∣∣mT1U −mT2U

∣∣∣, ∆mL(max) = max
{∣∣∣mT1L −mT2L

∣∣∣}, ∆mU(max) = max
{∣∣∣mT1U −mT2U

∣∣∣},
∆iL(min) = min

{∣∣∣iT1L − iT2L
∣∣∣}, ∆iU(min) = min

{∣∣∣iT1U − iT2U
∣∣∣}, ∆iL =

∣∣∣iT1L − iT2L
∣∣∣, ∆iU =

∣∣∣iT1U − iT2U
∣∣∣,

∆iL(max) = max
{∣∣∣iT1L − iT2L

∣∣∣}, ∆iU(max) = max
{∣∣∣iT1U − iT2U

∣∣∣}, ∆nL(min) = min
{∣∣∣nT1L − nT2L

∣∣∣}, ∆nU(min) =

min
{∣∣∣nT1U − nT2U

∣∣∣}, ∆nL =
∣∣∣nT1L − nT2L

∣∣∣, ∆nU =
∣∣∣nT1U − nT2U

∣∣∣, ∆nL(max) = max
{∣∣∣nT1L − nT2L

∣∣∣},
∆nU(max) = max

{∣∣∣nT1U − nT2U
∣∣∣}.

Theorem 11. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
, the

IvPFWGSM satisfies the following properties:

i. 0 ≤ IvPFWGSM1(T1, T2) ≤ 1.
ii. IvPFWGSM1(T1, T2) = IvPFWGSM1(T2, T1).
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iii. For T1 = T2, IvPFWGSM1(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFWGSM1(T1, T3) ≤ IvPFWGSM1(T1, T2) and

IvPFWGSM1(T1, T3) ≤ IvPFWGSM1(T2, T3).

3.5. Some Dice Similarity Measures for IvPFSs

In this subsection, some dice SMs and weighted dice SMs for IvPFSs are defined. Some basic
properties of these SMs are discussed.

Definition 18. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, some dice similarity

measures for these IvPFNs is defined as:

IvPFDSM1(T1, T2)

= 1
k

k∑
t=1

2

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt) + iT1U(xt)iT2U(xt)

+nT1U(xt)nT2U(xt)

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + m2
T1U(xt)+

i2T1U(xt) + n2
T1U(xt)

+
 m2

T2L(xt) + i2T2L(xt) + n2
T2L(xt) + m2

T2U(xt)+

i2T2U(xt) + n2
T2U(xt)


(28)

IvPFDSM2(T1, T2)

= 1
k

k∑
t=1

2

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + rT1L(xt)rT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt) + rT1U(xt)rT2U(xt)

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + r2
T1L(xt)

+m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt) + r2
T1U(xt)

+
 m2

T2L(xt) + i2T2L(xt) + n2
T2L(xt) + r2

T2L(xt) + m2
T2U(xt)+

i2T2U(xt) + n2
T2U(xt) + r2

T2U(xt)


(29)

IvPFDSM3(T1, T2)

=

∑k
t=1 2

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt) + iT1U(xt)iT2U(xt)

+nT1U(xt)nT2U(xt)


∑k

t=1

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + m2
T1U(xt)+

i2T1U(xt) + n2
T1U(xt)

+∑k
t=1

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + m2
T2U(xt)+

i2T2U(xt) + n2
T2U(xt)


(30)

IvPFDSM4(T1, T2)

=

2
∑k

t=1

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + rT1L(xt)rT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt) + rT1U(xt)rT2U(xt)


∑k

t=1

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + r2
T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt) + r2
T1U(xt)

+∑k
t=1

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + r2
T2L(xt)+

m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt) + +r2
T2U(xt)


(31)

Theorem 12. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
, all

IvPFDSMs satisfy the following properties for p = 1, 2, 3, 4 :

i. 0 ≤ IvPFDSMp(T1, T2) ≤ 1.
ii. IvPFDSMp(T1, T2) = IvPFDSMp(T2, T1)

iii. For T1 = T2, IvPFDSMp(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFDSMp(T1, T3) ≤ IvPFDSMp(T1, T2) and IvPFDSMp(T1, T3) ≤

IvPFDSMp(T2, T3)

Proof.

(i). As membership, abstinence and non-membership of both IvPFNs belong to [0, 1], so it is obvious
that IvPFDSM1(T1, T2) belongs to [0, 1].

(ii). Holds trivially.
(iii). If T1 = T2 then mT1L = mT2L, mT1U = mT2U, iT1L = iT2L, iT1U = iT2U, nT1L = nT2L and nT1U = nT2U
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and then

IvPFDSM1(T1, T2)

= 1
k

k∑
t=1

2
(
m2

T1L(xt)+i2T1L(xt)+n2
T1L(xt)+m2

T1U(xt)+i2T1U(xt)+n2
T1U(xt)

)
 m2

T1L(xt) + i2T1L(xt) + n2
T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt)

+
 m2

T1L(xt) + i2T1L(xt) + n2
T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt)


= 1

k

k∑
t=1

2
(
m2

T1L(xt)+i2T1L(xt)+n2
T1L(xt)+m2

T1U(xt)+i2T1U(xt)+n2
T1U(xt)

)
2

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt)


= 1

k

k∑
t=1

1

= 1
k k = 1.

�

Definition 19. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, some weighted dice

similarity measures between these IvPFNs are defined as:

IvPFWDSM1(T1, T2)

=
k∑

t=1
ωt

2

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt) + iT1U(xt)iT2U(xt)

+nT1U(xt)nT2U(xt)

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + m2
T1U(xt)+

i2T1U(xt) + n2
T1U(xt)

+
 m2

T2L(xt) + i2T2L(xt) + n2
T2L(xt) + m2

T2U(xt)+

i2T2U(xt) + n2
T2U(xt)


(32)

IvPFWDSM2(T1, T2)

=
k∑

t=1
ωt

2

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + rT1L(xt)rT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt) + rT1U(xt)rT2U(xt)

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + r2
T1L(xt)

+m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt) + r2
T1U(xt)

+
 m2

T2L(xt) + i2T2L(xt) + n2
T2L(xt) + r2

T2L(xt) + m2
T2U(xt)+

i2T2U(xt) + n2
T2U(xt) + r2

T2U(xt)


(33)

IvPFWDSM3(T1, T2)

=

2
∑k

t=1 ω
2
t

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt) + iT1U(xt)iT2U(xt)

+nT1U(xt)nT2U(xt)


∑k

t=1 ω
2
t

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + m2
T1U(xt)+

i2T1U(xt) + n2
T1U(xt)

+∑k
t=1 ω

2
t

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + m2
T2U(xt)+

i2T2U(xt) + n2
T2U(xt)


(34)

IvPFWDSM4(T1, T2)

=

2
∑k

t=1 ω
2
t

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + rT1L(xt)rT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt) + rT1U(xt)rT2U(xt)


∑k

t=1 ω
2
t

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + r2
T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt) + r2
T1U(xt)

+∑k
t=1 ω

2
t

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + r2
T2L(xt)+

m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt) + +r2
T2U(xt)


(35)

where weight vector ω = (ω1, . . . . . . . . . ,ωk)
T is with a condition that for t = 1, 2, . . . . . . . . . , k ωt ∈ [0, 1] and

k∑
t=1

ωt = 1.

Theorem 13. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
, all

IvPFWDSMs satisfy the following properties for p = 1, 2, 3, 4 :

i. 0 ≤ IvPFWDSMp(T1, T2) ≤ 1.
ii. IvPFWDSMp(T1, T2) = IvPFWDSMp(T2, T1)

iii. For T1 = T2, IvPFWDSMp(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFWDSMp(T1, T3) ≤ IvPFWDSMp(T1, T2) and

IvPFWDSMp(T1, T3) ≤ IvPFWDSMp(T2, T3)
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Proof.

(i). As membership, abstinence and non-membership of both IvPFNs belong to [0, 1], so it is obvious
that IvPFGDSM1(T1, T2) belongs to [0, 1].

(ii). Holds trivially.
(iii). If T1 = T2 then mT1L = mT2L, mT1U = mT2U, iT1L = iT2L, iT1U = iT2U, nT1L = nT2L and nT1U = nT2U.

Then:

IvPFGDSM1(T1, T2)

=
k∑

t=1
ωt

2
(
m2

T1L(xt)+i2T1L(xt)+n2
T1L(xt)+m2

T1U(xt)+i2T1U(xt)+n2
T1U(xt)

)
 m2

T1L(xt) + i2T1L(xt) + n2
T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt)

+
 m2

T1L(xt) + i2T1L(xt) + n2
T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt)


=

k∑
t=1

ωt
2
(
m2

T1L(xt)+i2T1L(xt)+n2
T1L(xt)+m2

T1U(xt)+i2T1U(xt)+n2
T1U(xt)

)
2

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt)


=

k∑
t=1

ωt = 1.

Similarly we can prove the others for p = 2, 3, 4. �

Definition 20. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, some generalized dice

similarity measures between these IvPFNs are defined as:

IvPFGDSM1(T1, T2)

= 1
k

k∑
t=1

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt) + iT1U(xt)iT2U(xt)

+nT1U(xt)nT2U(xt)


λ

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + m2
T1U(xt)+

i2T1U(xt) + n2
T1U(xt)

+(1−λ)

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt)+

m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt)


(36)

IvPFGDSM2(T1, T2)

= 1
k

k∑
t=1

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + rT1L(xt)rT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt) + rT1U(xt)rT2U(xt)


λ

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + r2
T1L(xt)

+m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt) + r2
T1U(xt)

+(1−λ)

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + r2
T2L(xt)

+m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt) + r2
T2U(xt)


(37)

IvPFGDSM3(T1, T2) =∑k
t=1

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt) + iT1U(xt)iT2U(xt)

+nT1U(xt)nT2U(xt)


λ
∑k

t=1

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt)

+(1−λ)
∑k

t=1

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt)+

m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt)


(38)

IvPFGDSM4(T1, T2)

=

∑k
t=1

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + rT1L(xt)rT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt) + rT1U(xt)rT2U(xt)


λ
∑k

t=1

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + r2
T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt) + r2
T1U(xt)

+(1−λ)
∑k

t=1

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + r2
T2L(xt)+

m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt) + +r2
T2U(xt)


(39)

where 0 ≤ λ ≤ 1.

Theorem 14. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
then

all IvPFDSMs satisfy the following properties for t = 1, 2, 3, 4 :

i. 0 ≤ IvPFGDSMt(T1, T2) ≤ 1.
ii. IvPFGDSMt(T1, T2) = IvPFGDSMt(T2, T1).
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iii. For T1 = T2, IvPFGDSMt(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFGDSMt(T1, T3) ≤ IvPFGDSMt(T1, T2) and

IvPFGDSMt(T1, T3) ≤ IvPFGDSMt(T2, T3).

Definition 21. For any two IvPFNs T1 =
(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
, some weighted dice

similarity measures between IvPFNs are defined as:

IvPFWGDSM1(T1, T2)

=
k∑

t=1
ωt

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt)


λ

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt)

+(1−λ)

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt)+

m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt)


(40)

IvPFWGDSM2(T1, T2)

=
k∑

t=1
ωt

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + rT1L(xt)rT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt) + rT1U(xt)rT2U(xt)


λ

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + r2
T1L(xt)

+m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt) + r2
T1U(xt)

+(1−λ)

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + r2
T2L(xt)

+m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt) + r2
T2U(xt)


(41)

IvPFWGDSM3(T1, T2)

=

∑k
t=1 ω

2
t

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt)


λ
∑k

t=1 ω
2
t

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt)

+m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt)

+(1−λ)
∑k

t=1 ω
2
t

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt)

+m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt)


(42)

IvPFWGDSM4(T1, T2) =∑k
t=1 ω

2
t

 mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + rT1L(xt)rT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt) + rT1U(xt)rT2U(xt)


λ
∑k

t=1 ω
2
t

 m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + r2
T1L(xt)+

m2
T1U(xt) + i2T1U(xt) + n2

T1U(xt) + r2
T1U(xt)

+(1−λ)
∑k

t=1 ω
2
t

 m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + r2
T2L(xt)+

m2
T2U(xt) + i2T2U(xt) + n2

T2U(xt) + +r2
T2U(xt)


(43)

where weight vector ω = (ω1, . . . . . . . . . ,ωk)
T have a condition that for t = 1, 2, . . . . . . . . . , k ωt ∈ [0, 1] and

k∑
t=1

ωt = 1.

Theorem 15. For any three IvPFNs T1 =
(
mT1 , iT1 , nT1

)
, T2 =

(
mT2 , iT2 , nT2

)
and T3 =

(
mT3 , iT3 , nT3

)
, all

IvPFWDSMs satisfy the following properties for t = 1, 2, 3, 4 :

i. 0 ≤ IvPFWGDSMt(T1, T2) ≤ 1.
ii. IvPFWGDSMt(T1, T2) = IvPFWGDSMt(T2, T1)

iii. For T1 = T2, IvPFWGDSMt(T1, T2) = 1.
iv. Consider T1 ⊆ T2 ⊆ T3, then IvPFWGDSMt(T1, T3) ≤ IvPFWGDSMt(T1, T2) and

IvPFWGDSMt(T1, T3) ≤ IvPFWGDSMt(T2, T3).

4. Applications for Strategy Decision Making and Mineral Fields Recognition

In this section, applications for strategy decision making and mineral field recognition are
developed with the help of numerical examples that show the reliability of proposed SMs.

4.1. Numerical Example for Strategy Decision Making

A company wants to launch a new product and board of governors have to decide one strategy.
For this purpose, there are three strategies to be selected shown as follows:



Information 2019, 10, 369 17 of 23

1. g1: Make a product for rich persons
2. g2: Make a product for every persons
3. g3: Make a product for poor persons

In order to do the best selection, it is necessary to compare these three strategies with popular
product in the existing market, so we give a best strategy g: a popular product in the existing market.

In addition, in order to evaluate these strategies, there are the following five attributes (which
weight vector = (0.25, 0.2, 0.15, 0.18, 0.22)T) to be used:

1. S1: Risk of loss
2. S2: Barriers in the development of business
3. S3: Impact on society
4. S4: Impact on environment
5. S6: Growth analysis

The decision maker gives the evaluation values for strategies according to attributes which are
shown in Table 1.

Table 1. Decision values for strategy decision making.

g1 g2 g3 g

S1

 [0.26, 0.31],
[0.12, 0.24],
[0.21, 0.39]


 [0.32, 0.37],
[0.15, 0.28],
[0.05, 0.12]


 [0.23, 0.46],

[0.1, 0.15],
[0.31, 0.36]


 [0.05, 0.1],
[0.18, 0.29],
[0.43, 0.57]


S2

 [0.25, 0.46],
[0.03, 0.13],
[0.17, 0.23]


 [0.24, 0.35],
[0.09, 0.17],
[0.37, 0.47]


 [0.41, 0.56],
[0.03, 0.09],
[0.14, 0.27]


 [0.45, 0.53],

[0.1, 0.17],
[0.01, 0.13]


S3

 [0.08, 0.26],
[0.16, 0.37],
[0.02, 0.29]


 [0.25, 0.31],
[0.21, 0.29],
[0.3, 0.39]


 [0.07, 0.16],
[0.24, 0.32],
[0.47, 0.51]


 [0.23, 0.41],
[0.07, 0.17],
[0.11, 0.26]


S4

 [0.2, 0.4],
[0.1, 0.3],
[0.1, 0.2]


 [0.14, 0.25],
[0.13, 0.19],
[0.41, 0.53]


 [0.17, 0.21],
[0.07, 0.14],
[0.51, 0.61]


 [0.14, 0.28],
[0.12, 0.24],
[0.06, 0.36]


S5

 [0.48, 0.57],
[0.22, 0.3],
[0.0, 0.07]


 [0.31, 0.41],
[0.02, 0.09],
[0.39, 0.47]


 [0.35, 0.39],
[0.11, 0.23],
[0.06, 0.21]


 [0.19, 0.31],
[0.04, 0.08],
[0.49, 0.59]


The similarity measure of three alternatives g1, g2 and g3 with g with respect to weight vector

w = (0.25, 0.2, 0.15, 0.18, 0.22)T are calculated by using the formulas of similarity measures, which are
shown in Table 2.

From Table 2, we can know the different similarity definitions can get the different similarity
measures, however, in 18 similarity measures, there are 13 similarity measures in which (g1, g) is the
biggest, there are one similarity measure in which (g2, g) is the biggest, and there are 4 similarity
measures in which (g3, g) is the largest.

So we can get g1 is best option for company is to launch product for rich persons.
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Table 2. Similarity measures for strategy decision making.

SM’s (g1,g) (g2,g) (g3,g)

IvPFWCSM1 0.7961 0.7794 0.7898
IvPFWCSM2 0.8341 0.7811 0.7758
IvPFWCsSM1 0.8931 0.8720 0.8416
IvPFWCsSM2 0.6643 0.7347 0.6754
IvPFWCsSM3 0.8931 0.8551 0.8404
IvPFWCsSM4 0.6101 0.5558 0.4932
IvPFWCtSM1 0.6574 0.6195 0.5695
IvPFWCtSM2 0.6254 0.5909 0.5679
IvPFWStSM1 0.7111 0.6576 0.6405
IvPFWGSM1 0.7843 0.7937 0.8168
IvPFWDSM1 0.7886 0.7621 0.7625
IvPFWDSM2 0.8317 0.7791 0.7744
IvPFWDSM3 0.7396 0.7592 0.7677
IvPFWDSM4 0.2772 0.2166 0.2738

IvPFWGDSM1 0.7537 0.7948 0.8021
IvPFWGDSM2 0.8187 0.7477 0.7578
IvPFWGDSM3 0.6997 0.7457 0.7665
IvPFWGDSM4 0.2716 0.2078 0.2668

4.2. Numerical Example for Mineral Fields Recognition

Let us consider three kinds of mineral fields g1, g2 and g3. Each of them is featured by five minerals
{s1, s2, s3, s4, s5} and the weight vector of minerals is = (0.25, 0.2, 0.15, 0.18, 0.22)T. The evaluation values
for three kinds of mineral fields under the five minerals are shown in Table 3.

Table 3. Decision values for mineral fields recognition.

g1 g2 g3 g

s1

 [0.37, 0.49],
[0.03, 0.11],
[0.34, 0.40]


 [0.23, 0.33],
[0.13, 0.20],
[0.11, 0.19]


 [0.12, 0.35],
[0.07, 0.18],
[0.22, 0.32]


 [0.20, 0.28],
[0.07, 0.15],
[0.31, 0.50]


s2

 [0.07, 0.23],
[0.11, 0.29],
[0.21, 0.33]


 [0.13, 0.31],
[0.02, 0.13],
[0.22, 0.44]


 [0.26, 0.44],
[0.02, 0.08],
[0.16, 0.27]


 [0.33, 0.51],
[0.02, 0.17],
[0.20, 0.21]


s3

 [0.27, 0.36],
[0.09, 0.19],
[0.13, 0.18]


 [0.09, 0.19],
[0.17, 0.31],
[0.22, 0.36]


 [0.14, 0.19],
[0.21, 0.32],
[0.36, 0.41]


 [0.17, 0.37],
[0.04, 0.14],
[0.22, 0.36]


s4

 [0.09, 0.43],
[0.12, 0.21],
[0.14, 0.35]


 [0.12, 0.21],
[0.08, 0.13],
[0.24, 0.49]


 [0.13, 0.19],
[0.08, 0.22],
[0.48, 0.58]


 [0.12, 0.24],
[0.11, 0.21],
[0.36, 0.49]


s5

 [0.16, 0.48],
[0.14, 0.30],
[0.01, 0.11]


 [0.13, 0.34],
[0.01, 0.23],
[0.31, 0.42]


 [0.28, 0.38],
[0.10, 0.20],
[0.14, 0.40]


 [0.15, 0.26],
[0.09, 0.17],
[0.43, 0.56]


Now consider an existing best mineral field g and we have to check that which field is most

similar to g. Experts evaluate each field under the consideration of five minerals.
The similarity measures of three alternatives with g with respect to weight vector w =

(0.25, 0.2, 0.15, 0.18, 0.22)T are calculated by using the formulas of similarity measures, which are
shown in Table 4.

From Table 4, we can obtain that the g3 is most similar to g, so we can select the g3.
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Table 4. Similarity measures for mineral field recognition.

SM’s (g1,g) (g2,g) (g3,g)

IvPFWCSM1 0.8154 0.9028 0.9382
IvPFWCSM2 0.8413 0.9100 0.9255
IvPFWCsSM1 0.8983 0.9436 0.9565
IvPFWCsSM2 0.7963 0.8998 0.9112
IvPFWCsSM3 0.8963 0.9342 0.9472
IvPFWCsSM4 0.6449 0.8118 0.8305
IvPFWCtSM1 0.6468 0.7273 0.7607
IvPFWCtSM2 0.6093 0.6986 0.7379
IvPFWStSM1 0.6911 0.7701 0.7952
IvPFWGSM1 0.7426 0.7702 0.8132
IvPFWDSM1 0.8030 0.8877 0.9252
IvPFWDSM2 0.8396 0.9092 0.9244
IvPFWDSM3 0.8010 0.8902 0.9252
IvPFWDSM4 0.3039 0.2822 0.3195

IvPFWGDSM1 0.7736 0.8122 0.8990
IvPFWGDSM2 0.8584 0.9129 0.9260
IvPFWGDSM3 0.7702 0.8067 0.8851
IvPFWGDSM4 0.3122 0.2832 0.3200

5. Advantages

In this section, we explain the advantages of the proposed SMs.

5.1. Some Special Cases

We prove the generalization of proposed works. For this, we consider two IvPFNs T1 =(
mT1 , iT1 , nT1

)
and T2 =

(
mT2 , iT2 , nT2

)
IvPFCSM1(T1, T2)

= 1
k

k∑
t=1

mT1L(xt)mT2L(xt) + iT1L(xt)iT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt)

+iT1U(xt)iT2U(xt) + nT1U(xt)nT2U(xt)√√√√√√ m2
T1L(xt) + i2T1L(xt) + n2

T1L(xt) + m2
T1U(xt)

+i2T1U(xt) + n2
T1U(xt)

√√√√√√ m2
T2L(xt) + i2T2L(xt) + n2

T2L(xt) + m2
T2U(xt)+

i2T2U(xt) + n2
T2U(xt)

1. When lower and upper value of intervals becomes equal, then the above equation becomes SM
for PFSs:

PFCSM1(T1, T2) =
1
k

k∑
t=1

mT1(xt)mT2(xt) + iT1(xt)iT2(xt) + nT1(xt)nT2(xt)√
m2

T1
(xt) + i2T1

(xt) + n2
T1
(xt)

√
m2

T2
(xt) + i2T2

(xt) + n2
T2
(xt)

.

2. For iT1 = [0, 0] the above equation becomes SM for interval valued intuitionistic fuzzy number:

IvIFCSM1(T1, T2) =
1
k

k∑
t=1

mT1L(xt)mT2L(xt) + nT1L(xt)nT2L(xt) + mT1U(xt)mT2U(xt)

+nT1U(xt)nT2U(xt)√√√√√√ m2
T1L(xt) + n2

T1L(xt) + m2
T1U(xt)

+n2
T1U(xt)

√√√√√√ m2
T2L(xt) + n2

T2L(xt) + m2
T2U(xt)

+n2
T2U(xt)

.
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3. For iT1 = [0, 0] and the upper and lower values of membership and non-membership intervals
become equal, then the above equation becomes SM for intuitionistic fuzzy number:

IFCSM1(T1, T2) =
1
k

k∑
t=1

mT1(xt)mT2(xt) + nT1L(xt)nT2L(xt)√
m2

T1
(xt) + n2

T1
(xt)

√
m2

T2
(xt) + n2

T2
(xt)

4. For iT1 = [0, 0], nT1 = [0, 0] and iT2 = [0, 0], nT2 = [0, 0], the above equation becomes SM for IvFN:

IvFCSM1(T1, T2) =
1
k

k∑
t=1

mT1L(xt)mT2L(xt) + mT1U(xt)mT2U(xt)√
m2

T1L(xt) + m2
T1U(xt)

√
m2

T2L(xt) + m2
T2U(xt)

5. For iT1 = [0, 0], nT1 = [0, 0] and iT2 = [0, 0], nT2 = [0, 0] and the upper and lower values of
membership intervals become equal, then the above equation becomes SM for FN:

FCSM1(T1, T2) =
1
k

k∑
t=1

mT1(xt)mT2(xt)√
m2

T1
(xt) + m2

T2
(xt)

Similarly, we can reduce all other similarities in interval-valued intuitionistic, intuitionistic and picture
fuzzy environment.

Thus, we can know the proposed SMs are more general than some existing SMs.

5.2. Comparative Study

The main advantage of proposed works is that the existing SMs cannot handle the information given
in IvPFNs, but they can handle the information given in intuitionistic, interval-valued intuitionistic and
picture fuzzy environment. Hence, the proposed SMs are more generalized than those of existing SMs.

Example 1. Here, an example for interval-valued intuitionistic fuzzy information has been taken from [15]
and solved by the proposed SMs. An investment company wants to invest its money in some business and
they have four alternatives

{
g1, g2, g3, g4

}
and must select one from these alternatives. Thus, they evaluate

these alternatives on the base of three attributes {s1, s2, s3} with a weight vector (0.35, 0.25, 0.40), the evaluation
values are shown in Table 5.

Table 5. Decision makers for comparative study.

s1 s2 s3

g1

 [0.4, 0.5],
[0.0, 0.0]
[0.3, 0.4]


 [0.4, 0.6],

[0.0, 0.0]
[0.2, 0.4]


 [0.1, 0.3],

[0.0, 0.0]
[0.5, 0.6]


g2

 [0.6, 0.7],
[0.0, 0.0]
[0.2, 0.3]


 [0.6, 0.7],

[0.0, 0.0]
[0.2, 0.3]


 [0.4, 0.7],

[0.0, 0.0]
[0.1, 0.2]


g3

 [0.3, 0.6],
[0.0, 0.0]
[0.3, 0.4]


 [0.5, 0.6],

[0.0, 0.0]
[0.3, 0.4]


 [0.5, 0.6],

[0.0, 0.0]
[0.1, 0.3]


g4

 [0.7, 0.8],
[0.0, 0.0]
[0.1, 0.2]


 [0.6, 0.7],

[0.0, 0.0]
[0.1, 0.3]


 [0.3, 0.4],

[0.0, 0.0]
[0.1, 0.2]


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Now we can use the similarity measure of each alternative with the ideal alternative to select the
best one.

By using the above information, the interval-valued intuitionistic fuzzy cosine similarity measure
(IvIFCSM) can be found as given:

IvIFCSM1(g1, g) = 0.5645,
IvIFCSM1(g2, g) = 0.8637,
IvIFCSM1(g3, g) = 0.7768,
IvIFCSM1(g4, g) = 0.7801.

These results are similar as in [15]. Thus, this proves the effectiveness of the proposed works.

6. Conclusions

In this paper, the existing SMs in picture fuzzy environment are discussed and their limitations
are discussed that the existing SMs cannot handle the information given in IvPFNs. To overcome this
problem, the SMs for interval-valued picture fuzzy information are proposed, include cosine SMs, SMs
using cosine function, SMs using cotangent function, set-theoretic SM, grey SM, dice and generalized
dice SMs for IvPFSs, and some basic properties of all these SMs are also discussed, then the proposed
SMs are applied to decision making problems with the help of numerical examples. In addition,
advantages of proposed works are also discussed. In future, some other tools of correlation coefficient
and distance measure could also be developed. Further, to improve this work, such SMs can be defined
in T-spherical fuzzy environments [45,46] and interval valued T-spherical fuzzy environment [47] where
one has a variety of choices for the selection of membership, abstinence and non-membership grades.

Author Contributions: Conceptualization, M.M., T.M. and K.U.; Data curation, P.L. and K.U.; Formal analysis,
M.M.; Funding acquisition, P.L.; Investigation, P.L. and K.U.; Methodology, P.L., M.M. and T.M.; Resources, T.M.;
Software, K.U.; Supervision, T.M.; Writing—original draft, M.M.; Writing—review & editing, P.L. and T.M.

Funding: This paper is supported by the National Natural Science Foundation of China (nos. 71771140 and
71471172), Project of cultural masters and “the four kinds of a batch” talents, the Special Funds of Taishan Scholars
Project of Shandong Province (no. ts201511045).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. Fuzzy Sets. Inf. control 1965, 8, 338–353. [CrossRef]
2. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 1975,

8, 199–249. [CrossRef]
3. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
4. Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349.

[CrossRef]
5. Cuong, B.C. Picture Fuzzy Sets-First Results. Part 2, Seminar Neuro-Fuzzy Systems with Applications; Instiute of

Mathematics: Hanoi, Vietnam, 2013.
6. Cuong, B.C. Picture Fuzzy Sets-First Results. Part 1, Seminar Neuro-Fuzzy Systems with Applications; Instiute of

Mathematics: Hanoi, Vietnam, 2013.
7. Coung, B.C. Picture fuzzy sets. J. Comput. Sci. Cybern. 2014, 30, 409–420.
8. Dengfeng, L.; Chuntian, C. New similarity measures of intuitionistic fuzzy sets and application to pattern

recognitions. Pattern Recognit. Lett. 2002, 23, 221–225. [CrossRef]
9. Hung, W.L.; Yang, M.S. Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern

Recognit. Lett. 2004, 25, 1603–1611. [CrossRef]
10. Ye, J. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math. Comput. Model.

2011, 53, 91–97. [CrossRef]
11. Xu, Z. Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute

decision making. Fuzzy Optim. Decis. Mak. 2007, 6, 109–121. [CrossRef]

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/0165-0114(89)90205-4
http://dx.doi.org/10.1016/S0167-8655(01)00110-6
http://dx.doi.org/10.1016/j.patrec.2004.06.006
http://dx.doi.org/10.1016/j.mcm.2010.07.022
http://dx.doi.org/10.1007/s10700-007-9004-z


Information 2019, 10, 369 22 of 23

12. Hwang, C.M.; Yang, M.S.; Hung, W.L. New similarity measures of intuitionistic fuzzy sets based on the
Jaccard index with its application to clustering. Int. J. Intell. Syst. 2018, 33, 1672–1688. [CrossRef]

13. Nguyen, H. A novel similarity/dissimilarity measure for intuitionistic fuzzy sets and its application in pattern
recognition. Expert Syst. Appl. 2016, 45, 97–107. [CrossRef]

14. Garg, H. An improved cosine similarity measure for intuitionistic fuzzy sets and their applications to
decision-making process. Hacet. J. Math. Stat. 2017, 47, 1578–1594. [CrossRef]

15. Szmidt, E.; Kecprzyk, J. A similarity measure for intuitionistic fuzzy set and its application in supporting
medical diagnostic reasoning. In International Conference on Artificial Intelligence and Soft Computing; Springer:
Berlin, Germany, 2004; pp. 388–393.

16. Meng, F.; Chen, X. Entropy and similarity measure of Atanassov’s intuitionistic fuzzy sets and their
application to pattern recognition based on fuzzy measures. Pattern Anal. Appl. 2016, 19, 11–20. [CrossRef]

17. Tang, Y.; Wen, L.L.; Wei, G.W. Approaches to multiple attribute group decision making based on the
generalized Dice similarity measures with intuitionistic fuzzy information. Int. J. Knowl.-Based Intell. Eng.
Syst. 2017, 21, 85–95. [CrossRef]

18. Xu, Z.S.; Chen, J. An overview of distance and similarity measures of intuitionistic fuzzy sets. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst. 2008, 16, 529–555. [CrossRef]

19. Ye, J. Interval-valued intuitionistic fuzzy cosine similarity measures for multiple attribute decision-making.
Int. J. Gen. Syst. 2013, 42, 883–891. [CrossRef]

20. Wei, C.P.; Wang, P.; Zhang, Y.Z. Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and
their applications. Inf. Sci. 2011, 181, 4273–4286. [CrossRef]

21. Liu, D.; Chen, X.; Peng, D. Interval-valued intuitionistic fuzzy ordered weighted cosine similarity measure
and its application in investment decision-making. Complexity 2017, 4, 1–11. [CrossRef]

22. Selvachandran, G.; Garg, H.; Alaroud, M.H.; Salleh, A.R. Similarity measure of complex vague soft sets and
its application to pattern recognition. Int. J. Fuzzy Syst. 2018, 20, 1901–1914. [CrossRef]

23. Liao, H.; Xu, Z. Approaches to manage hesitant fuzzy linguistic information based on the cosine distance
and similarity measures for HFLTSs and their application in qualitative decision making. Expert Syst. Appl.
2015, 42, 5328–5336. [CrossRef]

24. Chen, S.M.; Chang, C.H. A novel similarity measure between Atanassov’s intuitionistic fuzzy sets based on
transformation techniques with applications to pattern recognition. Inf. Sci. 2015, 291, 96–114. [CrossRef]

25. Rani, D.; Garg, H. Distance measures between the complex intuitionistic fuzzy sets and their applications to
the decision-making process. Int. J. Uncertain. Quantif. 2017, 7, 423–439. [CrossRef]

26. Mishra, A.R.; Singh, R.K.; Motwani, D. Multi-criteria assessment of cellular mobile telephone service
providers using intuitionistic fuzzy WASPAS method with similarity measures. Granul. Comput. 2019, 4,
511–529. [CrossRef]

27. Garg, H.; Kumar, K. An advanced study on the similarity measures of intuitionistic fuzzy sets based on
the set pair analysis theory and their application in decision making. Soft Comput. 2018, 22, 4959–4970.
[CrossRef]

28. Garg, H. Distance and similarity measures for intuitionistic multiplicative preference relation and its
applications. Int. J. Uncertain. Quantif. 2017, 7, 117–133. [CrossRef]

29. Wei, G. Some similarity measures for picture fuzzy sets and their applications. Iran. J. Fuzzy Syst. 2018, 15,
77–89.

30. Son, L.H. Generalized picture distance measure and applications to picture fuzzy clustering. Appl. Soft
Comput. 2016, 46, 284–295. [CrossRef]

31. Wei, G. Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision
making. Informatica 2017, 28, 547–564. [CrossRef]

32. Wei, G.; Gao, H. The generalized Dice similarity measures for picture fuzzy sets and their applications.
Informatica 2018, 29, 107–124. [CrossRef]

33. Wei, G. Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. Manag.
2016, 17, 491–502. [CrossRef]

34. Nirmal, N.P.; Bhatt, M.G. Selection of automated guided vehicle using single valued neutrosophic entropy
based novel multi attribute decision making technique. In New Trends in Neutrosophic Theory and Applications;
Smarandache, F., Pramanik, S., Eds.; Pons Publishing House/Pons asbl: Bruxelles, Belgium, 2016; p. 105.

http://dx.doi.org/10.1002/int.21990
http://dx.doi.org/10.1016/j.eswa.2015.09.045
http://dx.doi.org/10.15672/HJMS.2017.510
http://dx.doi.org/10.1007/s10044-014-0378-6
http://dx.doi.org/10.3233/KES-170354
http://dx.doi.org/10.1142/S0218488508005406
http://dx.doi.org/10.1080/03081079.2013.816696
http://dx.doi.org/10.1016/j.ins.2011.06.001
http://dx.doi.org/10.1155/2017/1891923
http://dx.doi.org/10.1007/s40815-018-0492-5
http://dx.doi.org/10.1016/j.eswa.2015.02.017
http://dx.doi.org/10.1016/j.ins.2014.07.033
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356
http://dx.doi.org/10.1007/s41066-018-0114-5
http://dx.doi.org/10.1007/s00500-018-3202-1
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2017018981
http://dx.doi.org/10.1016/j.asoc.2016.05.009
http://dx.doi.org/10.15388/Informatica.2017.144
http://dx.doi.org/10.15388/Informatica.2018.160
http://dx.doi.org/10.3846/16111699.2016.1197147


Information 2019, 10, 369 23 of 23

35. Quek, S.G.; Selvachandran, G.; Munir, M.; Mahmood, T.; Ullah, K.; Son, L.H.; Thong, P.H.; Kumar, R.;
Priyadarshini, I. Multi-Attribute Multi-Perception Decision-Making Based on Generalized T-Spherical Fuzzy
Weighted Aggregation Operators on Neutrosophic Sets. Mathematics 2019, 7, 780. [CrossRef]

36. Maniya, K.D.; Bhatt, M.G. A multi-attribute selection of automated guided vehicle using the AHP/M-GRA
technique. Int. J. Prod. Res. 2011, 49, 6107–6124. [CrossRef]

37. Mahmood, T.; Liu, P.; Ye, J.; Khan, Q. Several hybrid aggregation operators for triangular intuitionistic fuzzy
set and their application in multi-criteria decision making. Granul. Comput. 2018, 3, 153–168. [CrossRef]

38. Garg, H.; Munir, M.; Ullah, K.; Mahmood, T.; Jan, N. Algorithm for T-Spherical Fuzzy Multi-Attribute
Decision Making Based on Improved Interactive Aggregation Operators. Symmetry 2018, 10, 670. [CrossRef]

39. Liu, P.; Mahmood, T.; Khan, Q. Group decision making based on power Heronian aggregation operators
under linguistic neutrosophic environment. Int. J. Fuzzy Syst. 2018, 20, 970–985. [CrossRef]

40. Zeng, S.; Hussain, A.; Mahmood, T.; Irfan, A.M.; Ashraf, S.; Munir, M. Covering-Based Spherical Fuzzy Rough
Set Model Hybrid with TOPSIS for Multi-Attribute Decision-Making. Symmetry 2019, 11, 547. [CrossRef]

41. Ullah, K.; Mahmood, T.; Jan, N. Similarity measures for T-spherical fuzzy sets with applications in pattern
recognition. Symmetry 2018, 10, 193. [CrossRef]

42. Liu, P.; Liu, J.; Merigó, J.M. Partitioned Heronian means based on linguistic intuitionistic fuzzy numbers for
dealing with multi-attribute group decision making. Appl. Soft Comput. 2018, 62, 395–422. [CrossRef]

43. Liu, P.; Chen, S.M. Multiattribute group decision making based on intuitionistic 2-tuple linguistic information.
Inf. Sci. 2018, 430, 599–619. [CrossRef]

44. Liu, P.; Liu, J.; Chen, S.M. Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application
to multi-attribute group decision making. J. Oper. Res. Soc. 2018, 69, 1–24. [CrossRef]

45. Mahmood, T.; Ullah, K.; Khan, Q.; Jan, N. An Approach Towards Decision Making and Medical Diagnosis
Problems Using the Concept of Spherical Fuzzy Sets. Neural Comput. Appl. 2018, 31, 7041–7053. [CrossRef]

46. Ullah, K.; Garg, H.; Mahmood, T.; Jan, N.; Ali, Z. Correlation coefficients for T-spherical fuzzy sets and their
applications in clustering and multi-attribute decision making. Soft Comput. 2019. [CrossRef]

47. Ullah, K.; Hassan, N.; Mahmood, T.; Jan, N.; Hassan, M. Evaluation of Investment Policy Based on
Multi-Attribute Decision-Making Using Interval Valued T-Spherical Fuzzy Aggregation Operators. Symmetry
2019, 11, 357. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/math7090780
http://dx.doi.org/10.1080/00207543.2010.518988
http://dx.doi.org/10.1007/s41066-017-0061-6
http://dx.doi.org/10.3390/sym10120670
http://dx.doi.org/10.1007/s40815-018-0450-2
http://dx.doi.org/10.3390/sym11040547
http://dx.doi.org/10.3390/sym10060193
http://dx.doi.org/10.1016/j.asoc.2017.10.017
http://dx.doi.org/10.1016/j.ins.2017.11.059
http://dx.doi.org/10.1057/s41274-017-0190-y
http://dx.doi.org/10.1007/s00521-018-3521-2
http://dx.doi.org/10.1007/s00500-019-03993-6
http://dx.doi.org/10.3390/sym11030357
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	Similarity Measures 
	Cosine Similarity Measures for IvPFSs 
	Cosine Similarity Measures for IvPFSs Based on Cosine Function 
	Similarity Measures for IvPSs Based on Cotangent Function 
	Set-Theoretic Similarity Measures and Grey Similarity Measures for IvPFSs 
	Some Dice Similarity Measures for IvPFSs 

	Applications for Strategy Decision Making and Mineral Fields Recognition 
	Numerical Example for Strategy Decision Making 
	Numerical Example for Mineral Fields Recognition 

	Advantages 
	Some Special Cases 
	Comparative Study 

	Conclusions 
	References

