
challenges

Article

A Linear Bayesian Updating Model for Probabilistic
Spatial Classification

Xiang Huang and Zhizhong Wang *

Department of Statistics, Central South University, Changsha 410012, Hunan, China; huangxiang@csu.edu.cn
* Correspondence: wzz8713761@163.com or wangzhizhong@csu.edu.cn; Tel.: +86-731-8713-761

Academic Editor: Palmiro Poltronieri
Received: 8 September 2016; Accepted: 21 November 2016; Published: 29 November 2016

Abstract: Categorical variables are common in spatial data analysis. Traditional analytical methods
for deriving probabilities of class occurrence, such as kriging-family algorithms, have been hindered
by the discrete characteristics of categorical fields. To solve the challenge, this study introduces the
theoretical backgrounds of the linear Bayesian updating (LBU) model for spatial classification through
an expert system. The main purpose of this paper is to present the solid theoretical foundations of
the LBU approach. Since the LBU idea is originated from aggregating expert opinions and is not
restricted to conditional independent assumption (CIA), it may prove to be reasonably adequate for
analyzing complex geospatial data sets, such as remote sensing images or area-class maps.
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1. Introduction

Categorical spatial data, such as lithofacies, land-use/land-cover classifications, and mineralization
phases, are widely investigated geographical and geological information sources. They are typically
represented by mutually exclusive and collectively exhaustive classes and visualized as area-class
maps [1]. In the Geo-information context, Rao’s quadratic diversity was used in [2] to measure the
scale-dependent landscape structure. In the geological counterpart, a spatial hidden Markov chain
model was employed in [3] for estimation of petroleum reservoir categorical variables. As a geostatistical
model, the Markov chain random field (MCRF) theory [4] and Markov chain sequential simulation
(MCSS) algorithm [5] are common choices for the prediction of categorical spatial data. They have been
widely used in spatial-related fields and gratifying results have been achieved. However, the MCRF
approach is based on a conditional independent assumption (CIA), which may be inappropriate due
to complex data interaction in a spatial context [6]. The Tau model [7] and Nu expression [8] introduce
additional weights to relax the assumption of conditional independence. It is obvious that these
power or multiplication relationships between multi-point pre-posterior probabilities and two-point
conditional probabilities involve some subjective guesswork and may not be suitable in real-world
spatial analysis. As for the generalized linear mixed model (GLMM) [6], where intermediate, latent,
spatially correlated, normal variables are assumed for the observable non-normal responses to account
for spatial dependence information. The random effects are always assumed to follow a normal
distribution in the GLMM. Our concern here is whether the latent variables for different categories can
be assumed to be independent of each other at the same location.

Generally speaking, the spatial classification problem can be regarded as combing two-point
transition probabilities into a multi-point conditional probability. A formal introduction of most of
the available approaches to aggregate probability distributions in geosciences can be found in [9].
Our task is to use the probability pooling method for spatial classification based on the pioneering
work of [10,11]. We profit from the predecessor’s studies and interpret transition probabilities as
expert opinions. The transition probabilities are obtained by the transiogram [12] spatial measure.
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The remainder of this paper is organized as follows. We begin by introducing the basic forms of the
linear Bayesian updating (LBU) method in Section 2. We then make detailed proofs in Section 3 for
some propositions introduced by [10,11] which have not yet been proven. A real-world case study is
given in Section 4. Finally, conclusions and future challenges are discussed in Section 5.

2. Linear Bayesian Updating

Consider the spatial locations x0, x1, · · · , xn in the remote sensing images or area-class maps.
We use A and D1, · · · , Dn to represent the events in sample spaces of categorical random variable
C (x0) and C (x1) , · · · , C (xn) respectively and A denotes the complementary event of A. In the
case of categorical data, let A be the finite set of events in the sample space Ω such that the events
A1, A2 · · · , AK of A are mutually exclusive and collectively exhaustive. Obviously,

Aj =

{
1 if C (x0) = j , j = 1, 2, · · · , K
0 otherwise.

(1)

In the subsequent discussions, A will be used as a general notation for Aj. We treat the n
neighboring events D1, D2, · · · , Dn as experts, and consider the conditional probabilities P (A|Di) as
expert opinions Qi for the occurrence of A, an event of interest. The experts’ opinions are regarded
as random variables Qi whose values qi, 1 ≤ i ≤ n, are to be revealed to the decision maker (DM).
The posterior probability of A given Q = q is then p∗ (q).

The original LBU method was firstly proposed by [10] in statistical science in the form

p ∗ (q) = p + ∑n
i=1 λi (qi − µi) (2)

with possibly negative weights, λi, expressing the amounts of correlation between each Qi and A.
µi denotes the mathematical expectation of Qi. When µ1 = · · · = µn = p and λi ≥ 0, Equation (2)
yields to the linear opinion pool [13]

p ∗ (q) = λ0 p + ∑n
i=1 λiqi subject to ∑n

i=0 λi = 1 (3)

where the DM is considered as one of the experts. Our LBU method follows closely to that of [10],
which is proved to be the only formula satisfying

∫
p∗ (q) dF (q) = p for all distribution dF with mean

vector µ. The highlight of our LBU model lies in the fact that the random variable Qi has been replaced
by transition probability, a measure for spatial continuity.

3. Theoretical Foundations of Linear Bayesian Updating

3.1. Parameter Ranges for Linear Bayesian Updating

Although the LBU model has been used in [10,11], it is our conviction that many theoretical
challenges need to be solved to better develop this method for further use. A legitimate posterior
probability can be obtained only when λi obeys a number of inequalities [10]. Since p∗ (q) is a
probability, it must satisfy 0 ≤ p∗ (q) ≤ 1, that is to say,{

p + ∑n
i=1 λi (qi − µi) ≥ 0

p + ∑n
i=1 λi (qi − µi) ≤ 1 .

(4)

Through algebra transformation, (4) can be simplified as 1 + ∑n
i=1 λiqi

p ≥ ∑n
i=1 λiµi

p
∑n

i=1 λiqi−∑n
i=1 λiµi

1−p ≤ 1 .
(5)
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Suppose that all λi are positive, since 0 ≤ qi ≤ 1, as long as
∑n

i=1 λiµi
p ≤ 1

∑n
i=1 λi(1−µi)

1−p ≤ 1 ,
(6)

(5) can be satisfied. Therefore, if the DM considers that all λi are positive, the most common case,
then they must be chosen so that

max
{
∑n

i=1 λiµi/p, ∑n
i=1 λi (1− µi) / (1− p)

}
≤ 1, (7)

which can be regarded as a sufficient but not necessary condition of the LBU method. Only when (6),
or equivalently (7), is satisfied, can Equation (2) be a valid probabilistic model.

3.2. Interpreting Parameters as Regression Coefficients for Linear Bayesian Updating

The LBU model given above has some parameters, which need to be learned or estimated by the
DM. Let ΣQ denote the covariance matrix of Q, and σp∗Q be the vector of covariances between p∗ and
Q. Let t denote matrix transposition and

Q = (Q1, Q2, · · · , Qn) µ = (µ1, µ2, · · · , µn) λ = (λ1, λ2, · · · , λn)
t ,

using the definition of expectation, it is

E (A|Q) = p∗ , E (E (A|Q)) = E (A) = E (p∗) = p.

In addition, Equation (2) can be given as

p∗ = p + (Q− µ) · λ and µ = E (Q)

i.e.,
p∗ = p + (Q1 − µ1, Q2 − µ2, · · · , Qn − µn) · (λ1, λ2, · · · , λn)

t .

Taking the expectations on both sides of the equation after transformation yields

E
[
(Q− µ)t · (p∗ − p)

]
= E

[
(Q1 − µ1, Q2 − µ2, · · · , Qn − µn)

t · (Q1 − µ1, Q2 − µ2, · · · , Qn − µn)
]
· (λ1, λ2, · · · , λn)

t

= cov (Q1, Q2, · · · , Qn) · (λ1, λ2, · · · , λn)
t

= ΣQ · λ

we have
λ = ΣQ

−1σp∗q

provided that the covariance matrix ΣQ is invertible.
Suppose we have m samples in the training set, consider the regression model

Y = X · B + ε

where

Y =


p∗1 − p
p∗2 − p

...
p∗m − p

 X =


1 q11 − µ1 · · · q1n − µn

1 q21 − µ1 · · · q2n − µn
...

1 qm1 − µ1 · · · qmn − µn

 B =


b0

b1
...

bn

 ε =


ε1

ε2
...

εm

 ,
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ε = (ε1, ε1, · · · , εm)
t denotes the random errors. Provided that the experts do not have a linearly

dependent relationship, the least squares estimation of the regression coefficients yields

B̂ =
(
XtX

)−1 (XtY
)

,

which can be written in its matrix form

B̂ =




1 1 · · · 1

q11 − µ1 q21 − µ1 · · · qm1 − µ1

q12 − µ2 q22 − µ2 · · · qm2 − µ2
...

... · · ·
...

q1n − µn q2n − µn · · · qmn − µn

 ·


1 q11 − µ1 · · · q1n − µn

1 q21 − µ1 · · · q2n − µn
...
1 qm1 − µ1 · · · qmn − µn





−1

·


1 · · · 1

q11 − µ1 · · · qm1 − µ1

q12 − µ2 · · · qm2 − µ2
... · · ·

...
q1n − µn · · · qmn − µn

 ·


p∗1 − p
p∗2 − p

...
p∗m − p



=



m m
(
Q1 − µ1

)
· · · m

(
Qn − µn

)
m
(
Q1 − µ1

) m
∑

i=1
(qi1 − µ1)

2 · · ·
m
∑

i=1
(qi1 − µ1) (qin − µn)

m
(
Q2 − µ2

) m
∑

i=1
(qi2 − µ2) (qi1 − µ1) · · ·

m
∑

i=1
(qi2 − µ2) (qin − µn)

...

m
(
Qn − µn

) m
∑

i=1
(qin − µn) (qi1 − µ1) · · ·

m
∑

i=1
(qin − µn)

2



−1

·



mp∗ −mp
m
∑

i=1

(
p∗i − p

)
(qi1 − µ1)

m
∑

i=1

(
p∗i − p

)
(qi2 − µ2)

...
m
∑

i=1

(
p∗i − p

)
(qin − µn)


.

When the sample size is large enough, the sample mean is approximately equal to the total
expectation, we have

B̂ = 1
m ·



1 E (Q1)− µ1 E (Q2)− µ2 · · · E (Qn)− µn

E (Q1)− µ1 E
[
(Q1 − µ1)

2
]

· · · E [(Q1 − µ1) (Qn − µn)]

E (Q2)− µ2 E [(Q2 − µ2) (Q1 − µ1)] · · · E [(Q2 − µ2) (Qn − µn)]
...

E (Qn)− µn E [(Qn − µn) (Q1 − µ1)] · · · E
[
(Qn − µn)

2
]



−1

·m ·


E (p∗)− p
E [(p∗ − p) (Q1 − µ1)]

E [(p∗ − p) (Q2 − µ2)]
...
E [(p∗ − p) (Qn − µn)]



= 1
m ·


1 E (Q1)− µ1 E (Q2)− µ2 · · · E (Qn)− µn

E (Q1)− µ1

E (Q2)− µ2 cov (Q1, Q2, · · ·Qn)
...
E (Qn)− µn



−1

·m ·
(

E (p∗)− p
σp∗Q

)

=

(
0

ΣQ
−1 · σp∗Q

)
(n+1)×1

.

Therefore, our derivation gives an explanation of the parameters λi in the LBU model as the
linear regression coefficients of p∗ − p with respect to Q− µ when the neighboring events are not
linearly dependent. As in multiple regression, each λi can thus be thought of as a measure of the
additional information that the ith expert provides over and above the other experts and what the DM
already knows.

3.3. Invertible Conditions of Linear Bayesian Updating

We now discuss what happened when the linear systems of Equation (2) become invertible.
Equation (2) can be rewritten as

p ∗ (q) = p−∑n
i=1 λiµi + (q1, q2, · · · , qn) (λ1, λ2, · · · , λn)

t .

Therefore,

(q1, q2, · · · , qn) (λ1, λ2, · · · , λn)
t = p∗ (q)− p + (µ1, µ2 · · · , µn) (λ1, λ2, · · · , λn)

t ,

we have
(q1, q2, · · · , qn)Λ = [p∗ (q)− p] (λ1, λ2, · · · , λn) + (µ1, µ2 · · · , µn)Λ,
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where
Λ = (λ1, λ2, · · · , λn)

t (λ1, λ2, · · · , λn)

=


λ1

2 λ1λ2 · · · λ1λn

λ2λ1 λ2
2 · · · λ2λn

...
...

. . .
...

λ nλ1 λnλ2 · · · λn
2

 .

Since the determinant |Λ| = 0, Λ is irreversible. Therefore, q1, q2, · · · , qn cannot be uniquely
determined. Thus, the linear systems of Equation (2) are not invertible under these circumstances.

The case where the linear system of Equation (2) is invertible happens only when there is one
expert to be consulted, i.e.,

p∗ (q) = p + λ (q− µ) .

In this case, the left inverse of the system is

q =
p∗ − p

λ
+ µ,

where p∗ is the input. The right inverse can be given as

qi =
p∗ (qi)− p

λi
+ µi,

where p∗ (qi) is the desired output after consultation. The necessary qi can be compared with the
corresponding transition probability P (A|Di). If large deviation emerges, the expert Qi may seem not
to be convincing.

4. Case Study

We now present a case study to demonstrate the use of the method. The Swiss Jura data set [14] is
used, where four lithology types are sampled in a 14.5 km2 region. These rock types are Argovian,
Kimmeridgian, Sequanian and Quaternary; corresponding class proportions of these four categories
are 20.46%, 32.82%, 24.32%, 22.39% respectively. We have 259 samples in total for prediction (Figure 1).
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Figure 1. Jura lithology data set with four classes.

The first task we need to do is to obtain the expert opinions (i.e., transition probabilities) in spatial
scenarios. We use the 10 nearest samples for prediction, thus we always get 10 experts for consultation.
The detailed procedures for estimating the transition probability are beyond the scope of this work.
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One can find the discussions with respect to transiogram fitting in [1,11]. We only show the descriptive
statistics of transition probabilities in Table 1.

Table 1. Descriptive statistics of transition probabilities (expert opinions).

Transition Probability Mean Median Maximum Minimum Standard Deviation

P11 0.270 0.201 1.000 0.000 0.250
P12 0.290 0.292 0.632 0.000 0.173
P13 0.254 0.239 0.769 0.000 0.140
P14 0.186 0.193 0.436 0.000 0.123
P21 0.227 0.239 0.563 0.000 0.134
P22 0.332 0.282 1.000 0.091 0.198
P23 0.254 0.256 0.436 0.000 0.090
P24 0.187 0.192 0.387 0.000 0.088
P31 0.220 0.200 0.636 0.000 0.141
P32 0.313 0.309 1.000 0.000 0.155
P33 0.294 0.262 1.000 0.000 0.203
P34 0.173 0.185 0.469 0.000 0.119
P41 0.219 0.182 0.720 0.000 0.154
P42 0.312 0.318 0.562 0.000 0.142
P43 0.256 0.238 0.586 0.000 0.123
P44 0.213 0.184 1.000 0.000 0.208

After obtaining the expert opinions, we can use the regression model represented by Equation (2)
to estimate the linear weights in spatial classification. Given that multiple neighbors will be involved
in spatial scenarios most of the time, the LBU should often be a multivariable linear regression model.
With the estimated regression coefficients, we can use the maximum a posteriori (MAP) probability
criterion for classification [11].

The final prediction results have been shown in Figure 2. We get an overall classification accuracy
of 82.63% (214 out of259). To better reflect the prediction accuracy, the precision indicator for each
lithoface has also been illustrated in Figure 3.
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5. Conclusions

In this work, we consummate the theoretical foundations of the LBU model for the prediction
of categorical spatial data. We have enriched our previous findings [11] by adding some rigorous
theoretical proofs of the LBU method. To show how the LBU model can work in spatial settings,
a real-world case study has also been carried out. As pointed out by [11], our method can also be
generalized to nonlinear systems, where more confident probability forecasting results can be obtained.

In the proposed model, the choice of the size of a neighborhood can be regarded as a variable
selection problem. The involvement of more neighboring samples is likely to boost the prediction
accuracy for the training set, while it may be computation-intensive and accompanied by a higher
generalization error, the so-called overfitting. Challenges to determine the optimal number of neighbors
will be the focus of our future works and may be addressed in our upcoming papers.
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