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Abstract: There is an emerging trend in evaluating industrial activities using principles of 
industrial ecology because of the emphasis on sustainability initiatives by major process 
industries. Attention has also been targeted at developing planned industrial ecosystems 
(IEs) across the globe. We point out the current state-of-the art in this exciting discipline 
and subsequently identify the challenges that have not been encountered by the scientific 
community yet. Ecological Input Output Analysis (EIOA) may be considered as an  
“all-inclusive model” for the assessment of an IE because of its ability to capture the 
economic, environmental, and societal behavior of an IE. It could also be utilized to 
illustrate the detailed inter-relationships among the entities of an IE. Optimization of a fully 
integrated IE using conventional multi-objective optimization techniques would be too 
complex. For such multi-objective optimization problems, Hierarchical-Pareto 
optimization discussed in the literature has shown promise, but there is a need to establish a 
methodology to assess and/or improve the robustness of an IE using such techniques. 

Keywords: industrial eco-system; robust optimization; hierarchical optimization; emergy; 
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1. Introduction 

The chemical industries across the globe have started realizing the need for sustainable development, 
which not only addresses productivity issues, but also encompasses environmental and social 
responsibility. There is also an enormous drive behind the use or promotion of the term “sustainability”. 
A widely accepted definition of sustainability or sustainable development is that given by the World 
Commission on Environment and Development: “forms of progress that meet the needs of the present 
without compromising the ability of future generations to meet their needs”. Another interpretation of 
sustainability implies that the ecological base available for current economic activity should also be 
available to future generations for their needs [1].  

Closely related to sustainable development is so-called “Ecology,” which captures the interactions 
between organisms and the environment in which they occur. We can study ecology at the level of the 
individual, the population, the community, and the ecosystem. The study of ecosystems mainly includes 
establishing the relationship of the living, or biotic, components to the non-living, or abiotic, components 
through physicochemical processes, such as energy transformations and bio-, geo- and chemical cycles. 
All ecological processes are driven by independent primary energy sources, such as solar, tidal and 
geothermal. An ecosystem may be viewed as a network of ecological processes that transforms energy 
from the primary sources to produce ecological goods such as wood, coal, and water, and services such 
as carbon sequestration, rain, and wind [2].  

Allenby and Richards [3] have illustrated an analogy between the biological and industrial 
ecosystems (IE). The various actors in industrial systems such, as raw material suppliers, component 
manufacturers, consumers, waste handlers, or recyclers are analogous to biological organisms. As 
defined by Nicholas Gertler [4], an industrial ecosystem is a community, or network, of companies and 
other organizations in a region that choose to interact by exchanging and making use of  
by-products and/or energy in a way that provides one or more of the following benefits over traditional 
or non-linked operations:  

(i) Increased systemic energy efficiency leading to reduced systemic energy use.  
(ii) Increase in the amount and types of process outputs that have market value.  

Thus, in an integrated industrial complex there is an exchange of materials and/or energy between 
different industrial sectors where the output of one industry (main product or even the “waste”) 
becomes the ‘feedstock’ of another. For example, excess steam or exhaust from a thermal power plant 
can be used as a heat source for a nearby chemical industry or in a coal-fired thermal power plant;  
fly-ash may be used to make products used in buildings and construction, such as aluminum and 
cement, as shown in Figure 1. 

Thus, the current, increasing focus on “Industrial Symbiosis” warrants a new business or operating 
model for industry. It also demands modifications to, or the establishment of, new public policies, 
technologies and managerial systems which would facilitate production in a more cooperative manner. 
Sustaining industrial ecology draws parallels and grows along with the concept/concerns of 
environmental ecology. Implementing industrial ecology may involve closed loop processing, reusing 
and recycling, design for environment and waste exchange. Technologies and processes that maximize 
economic and environmental efficiency are popularly referred to as eco-efficient. Eco-efficiency refers to 
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a process that seeks to maximize the effectiveness of business processes while minimizing their impacts 
on the environment [5]. Although industrial symbiosis is not necessarily an outcome of technology 
advancement or breakthrough, the combined use of existing technology solutions can be an  
innovation itself. 

Figure 1. Example showing part of an Industrial Ecosystem. 

 

In this paper we critically review the published literature on industrial ecosystems with the aim of 
distilling out the methodology for assessment and optimization of industrial eco-systems. First, we 
briefly review the efforts undertaken by the process system engineering community, and then we 
discuss a few important examples of industrial eco-systems to evolve a common understanding of what 
its constituents are. In the later sections we discuss the basis for the sustainability assessment of 
industrial eco-systems, conventional optimization approaches adopted for the problems closer to IE 
such as green process networks, and issues/challenges with the conventional sustainability assessment 
and optimization approach. In the last part, we present a more realistic approach for sustainability 
assessment and optimization, based on available open literature. In addition, we will include a final 
part, comprising a proposal for a framework to assess the robustness of IE. 

2. Process System Engineering (PSE) in Chemical Process Industries 

2.1. Developing Optimization Techniques 

Traditionally, the Process Systems Engineering (PSE) community develops process optimization 
models at a plant level to assist plant operations or design a new plant [6]. Various tasks involved in the 
process optimization exercise can be divided into two broad areas (or sub disciplines), which are further 
integrated by the PSE community. The first area includes formulating mathematical models based on the 
chemical engineering principles to establish a relationship between the system performance parameters, 
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such as product quality, throughput, cycle time, etc., and the factors affecting these parameters, such as 
the process variables. Typically, these models are deterministic in nature, represented by objective 
functions, while ensuring that the models operate within established limits enforced by constraints. But 
in a real-life situation, as a result of uncertainties involved either in model parameters, process conditions 
or external factors, the models could be stochastic in nature.  

The other area of process optimization deals with the selection of a proper optimization algorithm to 
find the solution using the theory of optimization. Biegler and Grossmann [7] have reviewed the 
solution methods of the major types of optimization problems for continuous and discrete variable 
optimization, particularly nonlinear and mixed-integer nonlinear programming (MINLP). They have 
also reviewed the extensions of these methods to dynamic optimization and optimization under 
uncertainty. Their review paper [7] provides a general classification of mathematical optimization 
problems, followed by a matrix of applications that shows the areas in which these problems have been 
typically applied in process systems engineering. The important optimization methods used in 
chemical engineering fields are given in Table 1. In our opinion, it is hard to make generalized 
comments on the efficiency of the algorithms, but the characteristics of the mathematical model have a 
large influence on the choice of the solution methods. 

Table 1. Overview of different solution methods for optimization of industrial processes. 

Approach References 
Deterministic approaches Biegler, L.T. & Grossmann, I.E. (2004). Retrospective on optimization. 

Computers & chemical engineering, 28(8), 1169–1192 
Mixed integer non-linear 
(MINLP) 
- Branch and Bound 
- Benders’ decomposition 
- Outer-Approximation 
- Extended Cutting Plane 

Grossmann, I.E. & Kravanja, Z. (1995). Mixed-integer nonlinear programming 
techniques for process systems engineering.Computers & Chemical 
Engineering, V19, S1, 189–204 
Gupta, O.K. & Ravindran, A. (1985). Branch and Bound Experiments in 
Convex Nonlinear Integer Programming. Management Science, 31 (12), 
1533–1546 
Kagan, N. & Adams, R.N. (1993). A Benders’ decomposition approach to 
the multi-objective distribution planning problem. International Journal of 
Electrical Power and Energy Systems, 15 (5), 259–271. 

Dynamic programming Dadeboa, S.A. & Mcauley, K.B. (1995) Dynamic optimization of 
constrained chemical engineering problems using dynamic programming, 
Computers & Chemical Engineering, 19(5), 513–525 

Meta-heuristic approaches Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002) Multi-objective  
meta-heuristics: An overview of the current state-of-the-art. European 
Journal of Operational Research, 137(1), 1–9. 

Expert systems Yamin, H.Y. (2004). Review on methods of generation scheduling in 
electric power systems. Electric Power Sys. Res., 69, (2-3), 227–248 

Neural networks Nascimento, C., Giudici, R., Guardani, R. (2000), Neural network based 
approach for optimization of industrial chemical processes. Computers & 
Chemical Engineering, 24 (9-10), 2303–2314 

Genetic algorithms Shopova, E.G. & Vaklieva-Bancheva, N.G. (2006). BASIC—A genetic 
algorithm for engineering problems solution. Computers and Chemical 
Engineering, 30, 1293–1309 
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Optimization problems encountered in process engineering need to address multiple objectives and 
often they are conflicting. A simple and the most common approach to solve such a multi-objective 
optimization problem (MOO) is to formulate a single aggregate objective function (AOF) by assigning 
appropriate weights with each objective based on the domain knowledge. This approach generally 
suggests a single trade-off solution rather than all possible trade-off solutions. Some of the recent 
advanced methods, which may be employed to seek solutions for various process engineering 
optimization problems, are listed in Table 2. For details regarding the evolution and importance of 
various methods, readers should refer to the respective references. 

Table 2. Multi-objective optimization solution methods. 

Multi-objective Optimization  
Solution Methods 

References 

Normal Boundary Intersection method  Vahidinasab, V. & Jadid, S. (2010). Normal boundary intersection 
method for suppliers’ strategic bidding in electricity markets: An 
environmental/economic approach. Energy Conversion and 
Management, 51, 1111–1119. 

Enhanced normalized normal constraint Sanchis, J., Martínez, M., Blasco, X., &Salcedo, J.V. (2008). A new 
perspective on multiobjective optimization by enhanced normalized 
normal constraint method. 
Structural and Multidisciplinary Optimization, 36, 537–546 

Successive Pareto Optimization method Ancau, M. & Caizar, C. (2010), The computation of Pareto-optimal 
set in multicriterial optimization of rapid prototyping processes. 
Computers & Industrial Engineering, 58, 696–708 

Multi-objective Optimization Evolutionary 
Algorithms 

Tan, K.C., Lee, T.H. & Khor, E.F. (2002) Evolutionary Algorithms 
for Multi-Objective Optimization: Performance Assessments and 
Comparisons. Artificial Intelligence Review, 17, 253–290.  

Genetic algorithms  Summanwar, V.S., Jayaraman, V.K., Kulkarni, B.D., Kusumakar, 
H.S., Gupta, K., & Rajesh, J. (2002). Solution of constrained 
optimization problems by multi-objective genetic algorithm. 
Computers and Chemical Engineering, 26 (10), 1481-1492 

Non-dominated Sorting Genetic Algorithms Inamdar, S.V., Gupta, S.K., & Saraf, D.N. (2004). Multi-objective 
Optimization of an Industrial Crude Distillation Unit Using the 
Elitist Non-Dominated Sorting Genetic Algorithm.Chem. Ind. Res. 
Des., 82(A5), 611–623 

Strength Pareto Evolutionary Approach Sarker,R., Liang, K., & Newton, C. (2002). New multiobjective 
evolutionary algorithm 
European Journal of Operational Research,1, 12–23 

Chaotic Particle swarm optimization  Cai, J, Mab, X., Li,Q, Li, L., & Peng, H. (2009). A multi-objective 
chaotic particle swarm optimization for environmental/economic 
dispatch. Energy Conversion and Management, 50, 1318–1325 

Simulated annealing algorithms Suman, B. (2004). Study of simulated annealing based algorithms 
for multiobjective optimization of a constrained problem. Computers 
and Chemical Engineering, 28, 1849–1871 

Analytic hierarchy process (AHP) and Goal 
Programming (GP) 

Arunraj, N.S. & Maiti, J. (2010), Risk-based maintenance policy 
selection using AHP and goal programming. Safety Science, 48, 
238–247 
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2.2. PSE Approach Towards Addressing Rising Environmental Concerns 

In the last few decades the chemical process industries were looking for clean technological  
solutions [8] to minimize waste generation at the source rather than tackling it by using end-of-pipe 
treatment or remediation, not only because of the higher capital and operating cost associated with  
end-of-pipe treatment technologies, but also for better resource efficiency. Therefore, most of the 
methodologies for evaluating different process alternatives were restricted to specific problems, for 
example, minimization of waste materials, such as reaction byproducts, waste solvents, waste-water, vent 
losses, etc., or minimization of process water requirements. To understand the proposed solution 
methods, we discuss a few important methods and expert systems about the tools developed by the  
PSE community. 

Alidi [9] has proposed a multi-objective planning model based on a goal-programming (GP) 
approach and the analytical hierarchy process (AHP), for the appropriate treatment and disposal of 
hazardous wastes generated by the petrochemical industry. He demonstrated the method with a 
hypothetical but representative example composed of two petrochemical plants, each generating two 
types of hazardous waste and one landfill site. The AHP provides an organized framework for 
systematically ranking goals relative to their overall importance, along with a variety of dimensions. 
AHP has been used to rank the priorities of the conflicting goals in the above example. Goal 
programming does not attempt to maximize or minimize a single objective function as does the linear 
programming model. Rather, it attempts to minimize the deviations among the desired goals and the 
actual results according to the priorities. The objective function of a goal programming model may be 
expressed in terms of the deviations from the target goals. 

For the continuous plant, Halim and Srinivasan [10–12] presented a systematic methodology for 
waste-management and the intelligent system for the waste-minimization assessment. They proposed a 
methodology comprising three fundamental elements: process graph (P graph), cause-and-effect and 
functional knowledge. The P graph is a directed bipartite graph capable of abstracting the flow of 
materials in a process. An analysis based on the P graph provides a framework for diagnosing the 
origins of waste in the process and for deriving top-level waste minimization alternatives. These  
top-level alternatives can then be distilled further by using cause-and-effect and functional knowledge 
to obtain detailed alternatives. The application of the methodology is illustrated using an industrial 
case by the authors. In part 2, the authors proposed the architecture of ENVOPExpert, an expert system 
that implements this methodology. Given information concerning the process in the form of a flow 
sheet, process chemistry, and material information, ENVOPExpert can automatically detect the waste 
components in the process, diagnose the sources where they originate, and suggest intelligent design 
alternatives to eliminate or minimize them. In ENVOPExpert, waste minimization domain knowledge 
is organized into process-general waste minimization knowledge and process-specific information, 
whereas the inference engine contains algorithms for qualitative simulation, waste diagnosis, and 
alternatives generation, which use the process-specific information as a basis to perform the analysis. 
ENVOPExpert also assists the user to screen and rank the various alternatives using a waste 
minimization index. The application of ENVOPExpert to an industrial case study available in literature 
is illustrated, and the results obtained were found to be very close to the available experts’ solutions. 
Batch processes in a multi-product manufacturing facility have always imposed numerous challenges 
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to the environment due to fluctuating loads. Recently, Halil and Srinivasan [13,14] have extended their 
work using an intelligent simulation-optimization framework for batch processes in a comprehensive 
sustainability analysis. 

Karuppiah and Grossmann [15] used a superstructure approach for synthesizing an integrated water 
system comprising all process water as well as water treatment units. They have also shown the 
advantages of optimizing integrated networks by separate optimization of different sets of water using 
and treating operations. They have built a superstructure that incorporates all feasible design 
alternatives for water treatment, reuse and recycle and formulated the optimization of this structure as 
a non-convex Non-Linear Programming (NLP) problem. A new deterministic spatial branch and 
contract algorithm is proposed in which piecewise under- and over-estimators are used to approximate 
the non-convex terms in the original model to obtain a convex relaxation whose solution gives a lower 
bound on the global optimum. These lower bounds are made to converge to the solution within a 
branch and bound procedure. 

The above papers cited in the literature discuss the usefulness of an expert system or a solution 
method in a given area of the process engineering. However, the sustainability studies are aimed at 
addressing the issues which are far beyond specific issues, such as waste-minimization or performance 
of a process. Therefore, for any sustainability assessment, it is logical to expand the boundaries of the 
existing process system or manufacturing unit to form a fairly large or more independent system  
or IEs. 

2.3. Managing Complex Systems 

Thus, the renewed chemical engineering approach [16] to the management of complex systems 
involving material and energy flows will be essential in meeting the challenges, mainly: 

1. Combining ecological balance of an industrial system with their other goals of productivity and 
economic profitability. 

2. Developing new operating model for industries 

Improvements in understanding at the micro and molecular levels are always sought after, both for 
existing systems as well as systems being innovated. At the same time, the integration of this 
knowledge into “macro systems” is warranted to enable process engineering solutions addressing the 
sustainability framework [17]. The current ongoing efforts (discussed in next sections) are largely 
aimed at broadening the scope of “process optimization” to include new thoughts, factors arising out of 
the sustainability of the industrial eco system. These studies can be broadly viewed as those which 
addressed the various features of mathematical models and sustainability metrics which combine the 
conventional process plant models with the new constraints/goals, optimization techniques etc., 
individually and combinations thereof. The efforts, though nascent, have looked at several aspects of 
industrial ecological sustainability. Before we discuss the methods, we must first understand the 
philosophy of IEs through the prominent examples that appear in the literature. 

There are many industrial ecoparks, industrial complexes and resource recovery parks being designed 
and developed across the globe with the support of local governments, non-governmental organizations, 
universities and research institutes, industries etc. These mainly originate based on the exchange of 
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resources between heavy industries in industrial complexes. These initiatives are generally referred to 
with the concepts of industrial symbiosis and eco-industrial parks [18]. We discuss five such examples in 
different parts of the globe: 

(i) The industrial complex in Kalundburg, Denmark, is a famous example of IE [19]. This project 
was triggered in 1961 with the objective to save or minimize ground water for a new oil 
refinery. Now, it contains a power station, an oil refinery, a biotechnology company, a 
plasterboard producer, a soil remediation firm and a waste management company; exchanging 
various resources, including steam, water, gas, gypsum, fly ash, sludge, liquid fertilizer, etc. 
through a co-operative network and protocol developed local municipality [20]. In this 
industrial complex, different industries together formed a highly integrated industrial system 
that was optimized for the use of its byproducts in order to minimize the amount of net waste 
material or heat disposed of, resulting in substantial savings [21]. For example, the combination 
of heat and power production resulted in ~30% improvement of fuel utilization compared to a 
separate production of heat and power: using wastewater recycling the power plant has reduced 
water consumption by ~60%. The reduction in the use of ground water has been estimated at 
close to 2 million cubic meters per year.  

(ii) A second example may be taken from Asian developing countries during recent years, where 
industrial ecology is emerging as a potential approach to reduce the environmental burden of 
rapid economic expansion [22]. Fang et al. [23] have studied industrial sustainability in China, 
where they described the Lubei industrial case. This ecosystem has 52 member enterprises and 
5300 employees, with total assets of 5 billion yuan. Since 2001, the Lubei Group has been the 
largest producer of phosphate fertilizer in China as well as the largest manufacturer of 
ammonium phosphate, sulfuric acid and cement in the world. There are three major industrial 
value chains. The first comprises the industries which are producing ammonium  
phosphate–sulfuric acid–cement. The major focus of the second chain is integrated sea water 
utilization, mainly consisting of chemical process units producing salt, gypsum, potassium 
sulfate, magnesium chloride, bromine etc. The third is a salt–alkali–electricity manufacturing 
chain. The Lubei integrated industrial system reveals synergy in the re-use of by-products, both 
within and among the three production chains. Sulfuric acid and seawater are the basic material 
flows, steam and electricity are the energy flows, and gypsum and furnace slag are the main 
“waste” flows. Fang et al. [23] also reviewed the sustainable development created by 
promoting a circular economy (CE) with optimal utilization of resources and energy; and 
maximization of integrated community profit. 

(iii) Heeres et al. [24] compared IE systems in The Netherlands and in the US and found that Dutch 
EIP projects are more successful in their initial development than the US cases. Although most of 
the projects were in the early stages, the initial success of the Dutch projects was attributed to two 
factors, the first being the active participation of companies in the project. This may be addressed 
by an association of the local entrepreneurs, which could be an effective platform to educate and 
inform companies of the potential benefits that can be achieved through the establishment of an 
IE. The second factor is the willingness to share the costs of EIP planning by companies. 
Participating companies should also be financially committed rather than depending on the 
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government to fund such initiatives. This would help to ensure the commitment of the 
participating companies in the later phases of the program. 

(iv) The Synergy Industrial Park at Carole Park is an important initiative by the Queensland 
government and private sector partners in demonstrating the application of industrial ecology in 
Australia. The important lesson learned from the Synergy Park project is the need to engage 
business and the community in a program of education to support eco-industrial development [25]. 

(v) In the US, the Mississippi River Corridor Industrial Complex comprises around 150 chemical 
plants. Research activities are in progress to minimize waste disposal and maximize material 
and energy reuse in such complexes [26]. 

As can be seen from these five examples, industrial ecosystems are those in which the utilization of 
various natural resources is maximized and waste generation minimized. The effort is to ensure that even 
as we address the growing needs of societies, we employ methods which will minimize the irrevocable 
damage done to nature. This leads us to view the industrial ecosystem as broadly as possible to include 
all the units and entities with which a given process industry exchanges mass and energy. This 
understanding therefore brings into focus not only the productivity of an industry, the waste generation, 
and effect on the immediate community (environment), but also the effect of the finished goods through 
their life cycles. The sweep of sustaining such a system is dauntingly large. To make it sustainability 
more manageable, we look at the efforts that have already been made in the next section. 

3. Sustainability Assessment of an IE 

As industries are realizing the importance of sustainability principles while making business 
designs, it is expected that sustainability indicators are easy to formulate. In addition, their utility in 
influencing various decisions must be clearly established, not only at the process level but also in the 
corporate balance-sheet and society. There are three major aspects of sustainability indicators, mainly 
economic, environmental and social [27]. The fourth aspect, institutional dimension proposals [28] are 
still quite rare. The economic indicators are mainly NPV (net present value), cash-flow after tax, 
research expenditure and fines. Environmental performance indicators mainly deal with hazardous 
waste, emissions and spills where social aspects take into account social and community investments, 
accident rates, injury frequency and fatalities. In this section we firstly describe briefly the 
environmental indicators currently being used in the industry and then discuss improved models for the 
environmental assessment which are within the scope of PSE.  

3.1. Environmental Performance Indicators  

There is a strong influence of environmental indicators on environmental management and  
policy-making at all levels of decision-making. However, the scientific basis of the selection process 
of the indicators used in environmental reporting can be significantly improved [29]. Life cycle 
assessment (LCA) is considered to be a systematic approach to evaluate the environmental burdens 
caused by a material, a product, a process, or a service throughout its lifespan. Information from an 
LCA can be used to assess design options for a given product or a manufacturing process, or it can be 
used for comparing different products for the same application. In general, there are two kinds of LCA 
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methods available that can generate one single score for every product. The first type of indicator 
analyzes all potential environmental impacts occurring during the life cycle, whereas the second type 
generates input-related indicators [30]. The first type of methods are quite common in practice, such as 
Ecoindicator 99 [31], which accounts for the depletion of non-renewable resources and various 
impacts resulting from a chosen manufacturing process and the use of the products under 
consideration. A single score per product may be obtained by applying appropriate weighting factors. 
The LCA approach, typically followed by a sustainability analysis, mainly relies on the database 
established in different impact or damage categories, such as global warming potential, carcinogenic 
effect etc. The LCA method can provide a comparative analysis of different design schemes of an 
industrial ecosystem to evaluate the corresponding environmental impacts. However, this analysis is 
still not able [32,33] to account for all ecological products and services, mainly due to  
following issues: 

(i) Higher degree of uncertainty or lack of data in the impact assessment of various categories, 
such as global warming, ozone depletion, eco-toxicity, human toxicity etc. We believe that the 
majority of these are due to the lack of a quantitative assessment of ecological processes and 
the impact of their emissions.  

(ii) Difficulty in the traceability or quantification of some of the streams or species. This is mainly 
due to the fact that the ecological system boundaries are not well established or understood, and 
also that these streams or species are not included in the economic analysis, as the industrial 
system does not pay a price to these, hence, the go unaccounted. 

(iii) Not all types of impacts are equally well covered in a typical LCA. For example, assessment of 
land use, including impacts on biodiversity and resource aspects, including freshwater resources, 
are problematic and need significant improvement.  

In our opinion, some of these may never be solved completely, but a comprehensive assessment 
methodology is required which would encompass the principles of process economics, environmental 
systems and ecological systems. This may help to understand and address the complexity and impact. 
However, the more versatile input-output modeling approach and the extension of the same, is 
discussed below. This will possibly help to establish the relationship of various products and services 
in an IE with the performance parameters. 

3.2. Input-Output Analysis (IOA) 

This approach was familiar in the macro-economic study of the monetary flows through various 
economic sectors, but recently it was applied to the industrial systems to model the material and energy 
flows in environmental impact analysis by Bailey et al. [34]. In this modeling approach, source and 
destination of each material or energy flow in a given industrial system at a given point in time are 
tracked, and a mathematical framework considers direct and indirect relationships among conserved 
flows. If the mathematical expressions derived from an ecological standpoint or for an eco-system are 
included, it is known as Ecological Input-Output Analysis (EIOA). EIOA may be considered as an  
“all-inclusive model” for the assessment of an IE because of its ability to capture the economics, 
environmental, and societal behavior of an IE. Also, it could be utilized to illustrate the detailed  
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inter-relationships among the entities in an IE. Bailey and coworkers have developed a tool called 
“environ analysis” for considering all direct and indirect paths taken by material or energy flows 
through an industrial system. A typical EIOA consists of the analysis of a system’s nodes and flows, 
where a node represents any processing unit, industrial entity, or individual subsystem of interest and a 
flow characterizes an interested material, energy, or other conservative input and output from a node. 
The EIOA presented by Bailey and co-workers does not differentiate between waste and product 
output from a node; rather, all outputs from the system are lumped into a single term. Accountability of 
various streams, and, hence, ultimately ecological products and services, would be a lot easier if there 
is a distinction between a consumer product and a waste to the environment. Piluso et al. [35] have 
further modified EIOA by making a provision to distinguish between consumer product and 
environmental waste. However, the authors have not illustrated the optimization of a network to 
achieve the optimal design with regard to the “triple bottom lines” (economic, environmental and 
social aspects) of sustainability. Also, this methodology relies on the end-users to provide potential 
network modifications. As there are various conflicting objectives, multi-objective optimization 
techniques are often employed to tackle such an optimization problem. Some of the challenges not yet 
encountered by the scientific community for employing such multi-objective optimization techniques 
for ecological studies involving commercial chemical plants are discussed in the next section. 

3.3. Challenges with “LCA-Centered Optimization” and Traditional Optimization Tools for IEs 

The major objective of any industrial system is to determine the configuration of an entire network 
with the goal of maximizing the economic performance and minimizing the environmental, health and 
safety impact. The decisions that should be made include the technologies to be installed in the plants, 
the capacity or production rates and location of the plants, and warehouses for raw materials and 
products. To solve such complex optimization problems, the general approach cited in the literature is 
to formulate a large-scale mixed integer program which includes all supply-chain associated units. 
Various traditional optimization strategies mentioned in Section 2.1 may be employed. Hugo and 
Pistikopoulos [36] have described a methodology for environmental impact minimization by using a 
generic mathematical programming model to assist strategic long-term planning and the design of 
chemical supply chain networks. They have combined the classical features of the capacitated plant 
location problem with the concept of LCA and multi-enterprise supply chain management. A 
mathematical programming-based methodology was used for the explicit inclusion of LCA criteria as 
part of the strategic investment decisions related to the design and planning of supply chain networks. 
By considering the multiple environmental concerns together with the traditional economic criteria, the 
planning task was formulated as a multi-objective optimization problem. Over a long-range planning 
horizon, the methodology utilizes mixed integer modeling techniques to address strategic decisions 
involving the selection, allocation and capacity expansion of processing technologies and the 
assignment of transportation links required to satisfy the demands of the markets. At the operational 
level, optimal production profiles and flows of material between various components within the supply 
chain were determined. The solution to this kind of problem is known as the set of efficient or Pareto 
optimal solutions. A similar approach was also proposed by Guillen-Gosalbez & Grossmann [37] and 
Gebreslassie et al. [38]. 
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For an IE, while the boundaries of an industrial process are expanded further, multi-objective 
optimization involving economic performance and environmental performance using conventional 
LCA approach is complex. For example, it may not be practical to integrate LCA tools with the 
existing ERP (enterprise resource planning) tools or process modeling tools typically used by financial 
analysts or process engineers in various industries. Also, there are uncertainties with LCA as discussed 
in the previous section, which makes the optimization further complicated. Hence, the sustainability 
assessment tools, in the form of sustainability indicators, which are easy to formulate and interpret by 
different users across the industrial eco-system, would be beneficial. Therefore, in the next section we 
discuss the simplified form of sustainability indicators available in the literature which are based on 
embodied energy concept. 

3.4. Sustainability Assessment of An IE Using Embodied Energy 

The growth potential of an IE is estimated not only based on the availability of energy, both in 
terms of quality and quantity, but also its capacity to convert it to useful work. As we move higher in 
the value chain of products or fuels [39], the quality of energy is improved but the quantity may be 
substantially reduced. For example, the useful energy per unit mass of the final product such as  
bio-ethanol or bio-diesel could be lot higher than its bio-mass source. The ecological cost of nature’s 
products and services may be estimated as the amount of energy used directly or indirectly in its 
manufacture, which is called emergy [40]. Thus, emergy is the embodied energy or energy memory in 
any product or service. For convenience, various energy units can be simplified by converting them 
into a common unit of solar energy. Odum proposed a concept of Solar emergy which is the amount of 
solar energy used directly or indirectly to make a product or service. Solar emergy is measured in 
solar: transformity [41] is derived. Transformity is defined as the emergy of one kind of available 
energy required to make 1 joule of energy of another type. The unit of transformity is “solar emjoule 
per joule” as the emergy can be calculated in terms of solar energy. In some cases where the 
transformity is not known, the emergy to money ratio is used in estimating the emergy of the products 
or the services. For example, Emdollars, can be calculated by dividing the total emergy use of a 
country by its gross economic product. A detailed example of the emergy evaluation and its 
application to a complex system is illustrated by Wang et al. [42] for an eco-industrial park.  

The Emergy analysis helps to express the economic values and environmental factors in a 
generalized mathematical form. It also provides a common platform for the comparison of the 
economic and environmental status of different units. Thus, the sustainability performance of the 
ecosystem could be assessed using a set of emergy-based indices proposed by several researchers. 
Earlier emergy-based sustainability indices reported in the literature, [43] and Brown &  
Herendeen [44], were developed from the study of agricultural or natural ecological systems and the 
new indices are devised by addressing the unique features of industrial systems, i.e., waste treatment, 
recovery, reuse and recycling, while considering all of the material/energy flows and investments in 
industrial systems. The applicability and effectiveness of the emergy-based indices in analyzing 
industrial systems can be improved significantly. Lou et al. [45] have introduced a set of indices to 
quantitatively assess the environmental and economic performances as well as the sustainability of 
industrial systems. These indices are as follows:  
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(i) Index of Economic Performance (IEcP): This index is the ratio the sum of the emergy of the 
main product and byproduct and the yield generated from waste, divided by the emergy of the 
total investment to obtain the required quantity and quality of the product while satisfying 
environmental regulations. A process can be made profitable by maximizing the production 
while minimizing the total investment. 

(ii) Index of Environmental Performance: The index of environmental performance (IEvP) is the 
ratio of the sum of the emergy of non-renewable resources consumed and the waste disposed of 
into the environment, with or without treatment, during the production process to the total 
emergy of the renewable resources used in the process and the internal recycle streams for 
renewable and non-renewable resources generated from treated as well as untreated waste. A 
low value of IEvP is always desirable, because it indicates less pressure on the environment. 
The value of IEvP can be improved by replacing non-renewable resources with appropriate 
renewable resources. Implementing the internal recycling of waste as renewable or  
non-renewable resources can also largely reduce the value of the IEvP. 

(iii) Index of Sustainable Performance: The index of sustainable performance (ISP) is the ratio of 
IEcP and IEvP. It is a measure of the overall sustainability of a process, because it combines 
the economic as well as the environmental performance of a process.  

The above-mentioned indices are more comprehensive, which could potentially quantify the 
realistic value of all the resources, services, and commodities irrespective the financial value, and 
could be easily applied to a wide range of industries. It is expected that the sustainability must consider 
economic performance and environmental stress simultaneously; hence, it is more appropriate to use 
both the IEcP as well as the IEvP explicitly to evaluate the overall performance rather than using  
ISP alone.  

It is not only important to know the cumulative environmental impact of an IE but there is also a 
need to understand the contribution of an individual unit and the relationship between various units 
from the sustainability viewpoint. This would allow one to identify opportunities to improve the 
overall sustainability of an IE while protecting economic interests of the individual units. Cao and 
Feng [46] have shown that the emergy indices of an IE can be expressed as the sum of distribution of 
emergy indices (DEI) of individual units, whereas DEI is equal to the product of the weighing 
coefficient of a unit and the corresponding emergy index. The weighing coefficient generally 
corresponds to the fraction by which it affects the IE. This analysis could be imperative to solve the 
complex multi-objective or multi-criteria optimization problem. 

4. Simplified Approach for Optimization of an IE 

For a larger size chemical process network, existing optimization algorithms may not deal 
efficiently with such complex problems. Computational issues/difficulties could arise, mainly due to 
highly non-linear functions, a large number of variables and the interactions among these variables. To 
solve such complex problems, it is generally preferred to structure the complex optimization problem 
using principles of hierarchical decomposition as illustrated by Zondervan et al. [47]. In this approach, 
an industrial system is viewed as having multiple levels of decision-making. As a complex system is 
separated into several independent sub-systems at different hierarchy levels, the complex optimization 
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problem is also separated into several sub-problems which have fewer variables and simplified 
functions. Such simplified independent problems could be solved using conventional optimization 
techniques. These independent sub-systems are then coupled through variables which could be 
manipulated at a higher level to obtain an optimal solution for a given larger industrial system.  

From the discussion in the previous section, it is evident that maximum sustainability could be 
obtained at maximum IEcP and minimum IEvP. Therefore, it is necessary to formulate the 
optimization problem as a multi-objective optimization (MOO) problem at a higher level in the 
hierarchy. In such cases, generally it is challenging for decision-makers to arrive at a solution that 
provides them with the best values simultaneously for all criteria and often a trade-off is essential. For 
example, in the Pareto optimality concept, a solution of a MOO problem is considered Pareto optimal, 
if there are no other solutions that better satisfy all the objectives simultaneously. This is called  
non-inferiority. Solution methods for generating the Pareto front are broadly divided in two classes 
[48]. One class of solution methods is deterministic in nature. Examples are (i) weighted-sum; (ii) 
normal boundary intersection; (iii) normalized normal constraint etc. They generally transform the 
MOO problem into a series of single objective optimization problems and Pareto-set is obtained by 
varying the parameters of the method employed. The other classes of methods are population-based 
stochastic methods, such as evolutionary algorithms and particle swarm optimization, which are 
capable of finding solutions much quicker for the complex optimization problem. 

It is expected that applying hierarchical decomposition along with the MOO solution method would 
make the optimization of a larger system manageable. The hierarchical-Pareto optimization 
methodology proposed by Singh and Lou [49] is one such plausible hybrid technique where a linear 
weight method is used to generate the Pareto frontier. In their work, they have illustrated how the 
maximum sustainability of an IE could be obtained for a given plant size under normal operations. 
Typically, in a given IE in a lower level of hierarchy, individual economic and environmental 
objectives of each individual industry are identified independent of the objectives of the other 
industries in an IE. At the upper level, the optimization algorithm calculates the overall objectives of 
the entire IE, i.e., to maximize the overall economic performance and minimize the environmental 
pressure and eventually maximize the overall sustainability of the entire ecosystem. In their study, very 
little emphasis is given to understanding and resolving the typical problems encountered by the 
participating industries due to the uncertainties or improving flexibility of an individual industry. 
Robustness of the network is essential from an overall sustainability standpoint. The robust optimization 
of chemical processes is a key to the success of the entire network. Developing an optimization 
framework for an individual industry is fairly complex. Essentially, a lower level, i.e., individual industry 
model, requires further decomposition.  

5. Robust Optimization of Chemical Processes 

There are possibilities of process upsets or unplanned shut-downs experienced in chemical process 
plants which disturb the production planning and scheduling for that industry, and as a result other 
units of IEs may experience some pressure or short-supply. To avoid such a situation, a general 
tendency of the industries is to over-design the critical units. This over-design can potentially affect the 
economic performance index. There have been few attempts to address the uncertainties at different 
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levels and on different time scales. Diwekar [50–52] has combined AI approaches with optimization 
methods while using the system constraints based on thermodynamics and physics and extended 
traditional process design framework to green process design and industrial ecology, leading to 
sustainability. For this purpose, Diwekar proposed a multi-layer (five layers) algorithmic framework in 
order to simplify complex optimization problems, as discussed in the next paragraph.  

The innermost layer (layer-5) corresponds to models for process simulation, thus capturing the 
thermodynamics and physics of the problem. This would essentially capture possible chemical and 
process alternatives for a particular process. This may be formulated using conventional tools, such as 
Aspen Plus. Layer-4 is considered as sampling loop, which deals with the diverse nature of uncertainty, 
such as estimation errors and process variations, and can be specified in terms of probability 
distributions. In layer-3 the objective function is formulated using only continuous variables, such as 
process conditions, whereas discrete variables are separately dealt with in layer-2, which is the most 
difficult to handle due to the discrete decision variables. The outermost layer (layer-1) is a large array of 
analytical techniques to solve the multi-objective optimization problem which could be either the 
preference based methods for example goal programming or the generating methods which result in 
pareto optimal solutions. 

Diwekar’s work, discussed above, reveals that for real world large-scale combinatorial problems, 
stochastic programming solutions are more promising compared to the deterministic solution, and that 
stochastic annealing algorithms are recommended to optimize any probabilistic objective function. In 
the stochastic annealing algorithm, the optimizer not only obtains the decision variables but also the 
number of samples required for the stochastic model, which may be also used for a trade-off between 
accuracy and efficiency. Having a set of representative samples from the multivariate probability 
distribution is critical in measuring performance statistics. Diwekar’s approach of using the  
quasi-Monte Carlo scheme, such as a Hammersley sequence sampling which gives more uniform 
samples for a multivariate probability distribution, was found to improve the computational efficiency 
of the stochastic annealing framework. This research group has used this algorithmic framework for 
synthesizing a power plant and design of a separation process in two separate case studies. However, 
they did not discuss the utility of sustainability indicators in their decision-making processes. 
However, the optimization philosophy presented by Diwekar may provide a way to address the issues 
arising due to uncertainties for a large size chemical process plant. 

In another approach to simplify the optimization of steady-state chemical processes, the use of less 
complex metamodels or surrogate models is suggested [53–55]. This technique is often used by 
mechanical engineers or structural engineers while dealing with optimization involving complex finite 
element method (FEM) simulations. Such FEM simulations could be time-consuming or there may be 
the risk of an optimization program being confined in the local optima. Metamodels establish the 
relationship between design parameters and response parameters.  

6. Towards Robust Optimization of An IE 

Economic and environmental sustainability are achieved through the optimal use of renewable 
feedstock, and a need exists for a PSE approach to ensure maximum economic and societal benefit 
through minimizing the use of raw material and energy resources as well as the cost involved in supply 



Challenges 2012, 3 64 
 

 

chain operations [56]. Also, the robustness assessment or robust optimization of fully integrated 
industrial systems (or IE) is not explicitly addressed in the references given in the earlier sections. In 
our opinion, success in obtaining a reliable and optimal solution for a sustainability of a given IE lies 
in decomposing the complex system into various sub-systems, integrating the sub-systems through 
coupling variables, selecting the appropriate mathematical programming and optimization techniques 
to solve individual sub-problems as well as selecting appropriate process intensification techniques. 
Essentially, a large size IE comprising many industries could have two levels (as explained in Section 
4). But at an individual industry level, further hierarchical decomposition is looked for to address 
uncertainties associated with the individual processes or other operations in a given industry. A  
multi-level framework is more frequently used [57–59] for an individual process industry rather than a 
single level. At the uppermost level of an individual industry, planning is based on current and future 
market demands. In the middle level, detailed scheduling over a short-term time horizon is generally 
considered, whereas in the bottom level, individual processes are considered in detail for individual 
products or intermediates. This three-level hierarchical framework could be coupled with two 
independent blocks which would perform sustainability analysis as well as robust optimization as 
shown in Figure 2 for an individual industry. The constraints and decisions may be imposed from other 
layers, whereas the values of control variables (CV) are optimized locally using a suitable optimization 
solution method, this would probably improve the efficiency. The decisions taken at the individual 
level regarding the optimized parameters and the respective value of the objective functions (y’s) are 
further communicated to the other blocks and thus the optimization may be performed from the bottom 
to the top. This process could be iterative, if the feedback loop is established. Essentially, Figure 2 
shows the hierarchical decomposition of an individual industry, which may be able to address the 
issues arising due to uncertainties as well as help to improve the flexibility of an individual industry. 
Further, this proposed multi-level robustness assessment or robust optimization philosophy of an 
individual industry may be translated to the two level IE model proposed by Singh and Lou [49]. The 
major advantage of this methodology is that it conceptually simplifies the complex system and 
modularizes each individual subsystem. But because of the decomposition of a monolithic problem 
into several sub-problems, we may encounter a higher error in the model predictions or lose the focus 
on the global optimality. In order to overcome this problem, it is necessary to build high fidelity 
models and improve communication between various levels, as well as establish feedback mechanisms 
which would help to improve the effectiveness of the method. Metamodeling techniques look 
promising when such hierarchical decomposition is attempted.  
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Figure 2. Proposed framework to assess the robustness of an industrial system. 
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