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Abstract: Based on in situ observations, six episodes of near-inertial internal waves (NIWs) were
detected on the East China Sea (ECS) continental slope, and the mechanisms and characteristics
of them were examined. The generation mechanisms of the observed NIWs included typhoon,
wind burst, lateral propagation, and energy transfer from low-frequency flow. The depth-integrated
near-inertial kinetic energy (NIKE) showed no significant seasonal variation, and the annual mean
NIKE and near-inertial currents were 400 J/m2 and 3.50 cm/s, respectively. Downward propagation
of NIKE was evident in the small wavenumber band according to the rotary vertical wavenumber
spectra. The NIKE was subsurface-intensified, and the near-inertial vertical shear reached 0.01 s−1.
The vertical phase speeds of the NIWs ranged from 5 to 19 m/h. The frequencies of the NIWs were
mostly red-shifted, however, blue-shift also existed. One episode had both blue- and red-shifted
frequencies vertically, and had both upward and downward propagating vertical phase speeds. The
e-folding times of the observed NIWs ranged from 4 to 11 days, which were influenced by successive
wind bursts and background vorticity. On the left-hand side of Kuroshio, the background vorticity is
usually positive; however, the NIWs were almost red-shifted, which resulted from the Doppler shift
of the Kuroshio.

Keywords: near-inertial waves; continental slope; typhoon impact; East China Sea; Kuroshio

1. Introduction

Internal waves around local inertial frequency (f ) are significant components of oceanic
waves, and are called near-inertial internal waves (NIWs) or near-inertial oscillations
(NIOs). Wind forcing is the predominant generation mechanism of NIWs, and the global
power input from wind to NIWs is estimated to be 0.3–1.5 TW [1–4], which is comparable to
the converted energy from surface tide to internal tides [5] and the work done by wind on
the general circulation [6]. The tidal forcing, loss of stability of large-scale circulation, and
eddy-topography interactions are also potential forcing mechanics of NIWs [7–9]. NIWs
appear as a prominent peak in an internal wave spectrum, leading to intense vertical shear,
and are thought to be a potential energy source for oceanic internal mixing to maintain the
abyssal stratification [2–4,7].

NIWs generated by wind are observed both in the open ocean [7,10] and in the
marginal seas [11–16]. Most reported NIWs are induced by rapid changing wind, and
decay within one week [17]. Globally distributed mooring observations suggest that near-
inertial kinetic energy (NIKE) is surface-intensified and shows seasonal cycle [18]. In
the western North Atlantic Ocean, the NIKE exhibits a strong seasonal variation with a
wintertime maximum, and is dominated by downward energy propagation [19].

J. Mar. Sci. Eng. 2021, 9, 916. https://doi.org/10.3390/jmse9080916 https://www.mdpi.com/journal/jmse

https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-2624-0454
https://doi.org/10.3390/jmse9080916
https://doi.org/10.3390/jmse9080916
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmse9080916
https://www.mdpi.com/journal/jmse
http://www.mdpi.com/2077-1312/9/8/916?type=check_update&version=3


J. Mar. Sci. Eng. 2021, 9, 916 2 of 23

The East China Sea (ECS) is a marginal sea located between China, Korea, and Japan.
It has a wide continental shelf in the northwestern side which connects to a deep trough
in the southeastern side through a steep continental slope. The ECS has variable types
of internal waves, and previous studies have revealed characteristics of internal solitary
waves [20–23] and internal tides [20,24–27]. However, reports about near-inertial internal
waves in ECS are few. Based on mooring observations, Park et al. (2011) reported wind-
induced near-inertial waves with an upward-propagating phase speed of 112.32 m/day on
the ECS shelf break [24]. However, their observations lasted no more than one month. The
present study attempts at an investigation of seasonal variation and characteristics of the
NIWs in the southeastern ECS based on mooring observations lasting for nearly one year.

The paper is organized as follows: Section 2 provides details of the in situ observations,
typhoons, and the methodology; Section 3 focuses on the spectra, seasonal variation of
NIWs, and characteristics of episodes of NIWs; discussion is presented in Section 4; and
finally the conclusions are presented in Section 5.

2. Data and Methods
2.1. In Situ Observations and Typhoon

A mooring of Teledyne RD Instruments 75kHz Acoustic Doppler Current Profiler
(ADCP) was deployed in the ECS on 23 May 2017. Then, the mooring was recovered,
battery-updated, and redeployed on 19 September 2017. Finally, the mooring was recovered
on 19 May 2018. The mooring was located at 122◦35.6′ E, 25◦30.5′ N with a local water depth
of about 618 m (Figure 1). The local inertial frequency (f ) and period were 0.8613 cycles
per day (cpd) and 27.86 h. The ADCP was up-looking, and had temporal and spatial
resolutions of 1 h and 8 m, respectively. The ADCP observed horizontal velocity from the
sea surface to 480 m; however, the data near sea surface were contaminated by surface
reflection and were discarded. The collected horizontal velocity lasted for nearly 1 year,
that was, from 23 May 2017 to 18 May 2018.

During the observation period, there were two typhoons passing over the mooring
station, Nesat and Talim (Figure 1). The typhoon data were derived from the Japanese
Meteorological Agency (http://www.jma.go.jp/jma/index.html, accessed on 1 June 2021).
Nesat formed on 25 July 2017 and was the 9th typhoon of the northwestern Pacific. Nesat
passed over the mooring station on 29 July 2017 with a maximum wind speed of 40 m/s.
Talim formed on 8 September 2017, and was the 18th typhoon of the northwestern Pacific.
Talim passed over the mooring station on 14 September 2017 with a maximum wind speed
of 50 m/s. The mooring station was located at the western rim of the Kuroshio, which is a
strong, warm, and salty western boundary current of the northwestern Pacific.

The translation speeds of the typhoons Nesat and Talim when they got closest to the
mooring station were 9.73 and 2.02 m/s, respectively. The horizontal phase speeds of the
mode-1 internal gravity wave during the passage of Nesat and Talim were calculated using
the vertical mode equation [11], and were 1.32 and 1.29 m/s, respectively. Consequently,
the Mach numbers (the ratio between typhoon translation speed and internal gravity wave
phase speed) of Nesat and Talim were 7.37 and 1.57, respectively. For typhoon Nesat, the
Mach number was much bigger than unity, and near-inertial response of the upper ocean
was expected.

http://www.jma.go.jp/jma/index.html
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Figure 1. Location of the mooring station (the red star). The dashed black contours mark the
500 m and 1000 m isobaths. The red and black solid lines represent the track of typhoon Nesat and
Talim according to typhoon information accessed from the Japan Meteorological Agency (JMA). The
asterisks (tropical depression), diamonds (tropical storm), squares (severe tropical storm), and circles
(typhoon) denote the six-hour position of the typhoons. The blue arrows show the mean geostrophic
current according to the AVISO climatology dataset.

2.2. Satellite and Reanalysis Data

Climatological geostrophic current and daily geostrophic current anomaly derived from
satellite altimeter (https://www.aviso.altimetry.fr/en/home.html, accessed on 1 June 2021)
were used to examine Kuroshio intrusion to the ECS, mesoscale eddies, and calculate
geostrophic vorticity. The daily HYCOM+NCODA Global 1/12◦ Analysis dataset (https:
//www.hycom.org/dataserver, accessed on 1 June 2021) was an operational, data-assimilative
product, and was used to substitute for hydrography that was not measured during the ob-
servation period. The ERA5 1-h and 10-m wind data distributed by the European Centre for
Medium-Range Weather Forecasts (ECWMF) were used to calculate wind stress utilized in
the damped slab model. The reanalysis wind dataset combines model data with observations
from the world into a globally complete and consistent dataset using data assimilation.

2.3. Methods

The mooring occasionally had vertical displacements, and the effective observation
range of the current was 40–480 m. Firstly, the observed currents were linearly interpolated
to fixed depths and de-tided using tidal harmonic analysis method. Thereafter, a fifth-order
Butterworth filter was applied to extract the near-inertial currents with a pass-band of
0.85–1.05f and a stop-band of 0.75–1.15f. The filter successfully separated the near-inertial
and the diurnal signals apart despite that the local inertial frequency was close to the

https://www.aviso.altimetry.fr/en/home.html
https://www.hycom.org/dataserver
https://www.hycom.org/dataserver
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diurnal frequency. To eliminate phase distortion, the filter was employed twice in the
forward and backward direction, respectively. The NIKE was calculated as follows:

NIKE =
1
2

ρ0

(
u2

f + v2
f

)
(1)

where ρ0 = 1024 kg/m3 is the reference water density, uf and vf are zonal and meridional
near-inertial currents. The rotary vertical wavenumber spectra were estimated to examine
vertical energy propagation of NIWs. Vertical distributions of horizontal velocity can be
written as u(m) + iv(m) corresponding to vertical wavenumber m [28].

u(m) + iv(m) =
1
D

∫ D

0
[u(z) + iv(z)]e−imzdz (2)

where D is water depth. It can be divided into two parts based on positive and nega-
tive wavenumbers:

u(m) + iv(m) = u+(m)eimz + u−(m)e−imz (3)

where u− and u+ are velocity components which rotate clockwise and anticlockwise with
depth, respectively. The spectra of clockwise and anticlockwise rotating component are:

Cm =
1
2
〈u−u∗−〉 (4)

Am =
1
2
〈u+u∗+〉 (5)

where Cm (Am) is the clockwise (anticlockwise) rotary spectrum, the angled brackets
denote that the parameters within them are averaged, and the stars (*) denote the complex
conjugate. Cm (Am) indicates downward (upward) propagation of energy, and the energy
propagation direction is indicated by Cm − Am. Positive (negative) Cm − Am indicates
downward (upward) energy propagation of NIWs. As a preprocessing step, vertical and
temporal averages of the near-inertial currents were removed [19], and then the near-
inertial currents were Wentzel–Kramers–Brillouin (WKB) scaled [29]. The velocity at each
depth was normalized according to:

un =
u(z)√
N/N0

, vn =
v(z)√
N/N0

(6)

where N and N0 are buoyancy frequency and mean buoyancy frequency during the ob-
served period. The buoyancy frequency was calculated from the HYCOM data. To extract
the frequency and phase of NIWs, the plane wave fitting method was utilized [30]. To
minimize the effects of stratification, the near-inertial currents were also WKB-scaled in ad-
vance. Then, the WKB-scaled near-inertial currents were fitted to the plane wave equation
based on least square method

Ψ = Re
[
Ψ0ei(ω0t−mz−φ)

]
(7)

where Ψ0 is amplitude, ω0 is radius frequency, m is vertical wavenumber, and φ is phase.
The frequency shift of NIWs is known as blue-shift (red-shift) when the frequency of
NIWs is higher (lower) than local inertial frequency. The damped slab model proposed by
Pollard and Millard was adopted to calculate the oceanic near-inertial energy injected by
atmospheric wind [31]. The model is governed by the following equations:

∂u
∂t
− f v =

τx

ρ0H
− ru (8)

∂v
∂t

+ f u =
τy

ρ0H
− rv (9)
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where u and v are zonal and meridional mixed layer currents, f is local inertial frequency,
τx and τy are zonal and meridional wind stress, ρ0 is reference water density, H is mixed
layer depth, and r is an empirical damping coefficient. The results of the slab model include
Ekman currents and near-inertial currents, and the results were band-pass filtered to obtain
modeled near-inertial currents. The mixed layer depth was calculated based on HYCOM
data, and the damping coefficient r was set to be 0.25f [7]. Wind stress

→
τ was evaluated

according to:
→
τ = ρaCdU10

→
u 10 (10)

where ρa = 1.29 kg/m3 is air density, Cd is the drag coefficient, and U10 and
→
u 10 are the

magnitude and vector of 10 m wind. The drag coefficient was calculated according to the
formulation recommended by Oey et al. [32], which was applicable to both medium and
strong winds.

Parametric subharmonic instability (PSI) is one kind of triad interaction that requires
a constant phase difference between interacting waves. Bispectrum is a useful method to
estimate the phase locking between waves with different frequencies, and the normalized
bispectrum is called bicoherence. Bispectrum in frequency domain can be expressed as:

B(ω1, ω2) = E
[

Xω1 , Yω2 , Z∗ω1+ω2

]
= E

[
|Xω1 ||Yω2 ||Zω1+ω2 |e−i(θ1+θ2+θ3)

] (11)

where Xω , Yω , and Zω are the Fourier coefficients of variables x, y, and z in frequency space.
The bispectrum depends on the magnitudes (|Xω1 |,|Yω2 |,|Zω1+ω2 |) and relative phase (θ1,
θ2, θ3) of the respective Fourier coefficients. The bicoherence can be expressed as:

b2(ω1, ω2) =
|B(ω1, ω2)|2

E
[
|Xω1 |

2
]

E
[
|Yω1 |

2
]

E
[
|Zω1+ω2 |

2
] (12)

The influence of wave amplitude is eliminated in bicoherence, and consequently
bicoherence measures the phase locking between the interacting triads.

3. Results
3.1. Seasonal Variation

The depth–time evolutions of NIKE are shown in Figure 2. The NIKE shows significant
temporal intermittence, and notable high NIKE episodes mostly occur in the upper ocean,
that is, above 150 m (Figure 2). The NIKE of most episodes exceeds 5.0 J/m3. There are
several major large NIKE episodes, i.e., in mid-June of 2017, at the end of July 2017, in mid-
October of 2017, and at the end of April, 2018. The time and depth ranges of six episodes
of NIWs with depth-integrated NIKE exceeding one standard deviation are marked by
the white rectangles. There are also NIWs episodes happening in the ocean interior, such
as in December of 2017 and in January of 2018 (the dashed black rectangles in Figure 2).
Large-amplitude NIKE events occurred in the upper 100 m during June to November, and
they occurred below 100 m during December to May with tendencies that the magnitude
and duration of each event decreased but the occurrence frequency increased.
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Figure 2. Depth–time plot of the inertial period averaging near-inertial kinetic energy. The white
rectangles denote the significant episodes with NIKE exceeding one standard deviation. The black
rectangles represent the episodes of NIWs happening in the ocean interior.

There exists no significant seasonal variation of the depth-integrated (40–480 m) NIKE
(Figure 3a). Higher NIKE appears in May and August, which is induced by energetic NIKE
episodes. Wind-induced NIWs are caused primarily by the passage of storms. In the ECS,
tropical cyclones mainly occur from May to September. Although the East Asia monsoon
is strongest during winter, the NIKE is weaker due to the lack of rapid-changing tropical
storm intensity winds. The annual mean depth-integrated NIKE is about 400 J/m2. The
depth mean amplitude of near-inertial velocities shows similar seasonal variation to the
NIKE (Figure 3b). The annual mean near-inertial current amplitude from 40 to 480 m is
about 3.50 cm/s. The most energetic NIKE and near-inertial velocity emerge in August
with NIKE of 550 J/m2 and near-inertial velocity amplitude of 4.00 cm/s.
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Figure 3. (a) Depth-integrated NIKE; (b) depth mean near-inertial velocity amplitude. The gray lines
represent the upper and lower standard deviation.

Vertical propagation of NIKE is examined using rotary vertical wavenumber spectra
(Figure 4). The NIWs are dominated by clockwise rotating with a depth component
which suggests downward energy propagation. However, downward propagation of
NIKE appears in different wavenumber bands for different seasons. In spring, downward
propagation of NIKE occurs in 4 × 10−3 to 1 × 10−2 cycles per stretched meter (cpsm)
wavenumber band, and it is noteworthy that upward propagation of NIKE emerges in
the (1−2) × 10−2 cpsm wavenumber band. In summer, downward propagating NIKE
occurs in a much wider wavenumber band, that is, less than 2 × 10−2 cpsm. In autumn
and winter, downward propagation of energy is concentrated in frequency bands of less
than 1 × 10−2 cpsm.
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Figure 4. Rotary Vertical Wavenumber spectra of near-inertial currents for (a) spring, (b) summer,
(c) autumn, and (d) winter. The blue and red lines represent the anticlockwise and clockwise rotating
with a depth component. The unit of vertical wavenumber is cycles per stretched meter (cpsm).

The seasonal mean NIKE and near-inertial currents show an evident subsurface inten-
sified trend whose maximums range from 50 m to 100 m below the sea surface (Figure 5).
Autumn has a maximum at a depth of 50 m, and in summer, the maximum deepens to 65 m.
In spring, the NIKE maximum further deepens to about 100 m, and the NIKE maximum
emerges at 130 m in winter. The NIKE and near-inertial currents below 200 m are almost
unchanged, and resemble the trend of their annual mean. Summer has the most energetic
NIWs, with NIKE of more than 3.00 J/m3, and near-inertial currents of 6.60 cm/s; spring and
autumn have comparable maximum NIKE (2.50 J/m3) and near-inertial currents (6.00 cm/s).
The near-inertial currents are relatively weaker in winter with maximum NIKE of 1.50 J/m3

and near-inertial currents of 5.00 cm/s.
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Figure 5. (a) Seasonal mean NIKE; (b) seasonal mean near-inertial currents.

3.2. Episodes of NIWs
3.2.1. NIKE and Excitation Mechanism

The evolution of low-pass filtered NIKE, wind stress, and near-inertial energy flux
from wind to the ocean is denoted in Figure 6. There are six episodes of NIWs with
depth-integrated NIKE exceeding one standard deviation, which are coded E1 to E6 in
chronological order (Figure 6). The occurrence of a large NIKE episode relates to the
near-inertial variation of wind stress. The strongest episode, i.e., E2, occurring at the end
of July and lasting to mid-August in 2017, was induced by typhoon Nesat. Besides the
typhoon, a rapid enhancement of wind (in mid-June and mid-October) led to large NIKE
episodes E1 and E4. However, there was no evident wind burst and near-inertial energy
flux during episodes 3, 5, and 6. Episode 4 had two energy peaks, and the former one was
not induced by wind; however, the latter one is related to wind.
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Figure 6. (a) Low-passed filtered depth-integrated NIKE; (b) zonal and meridional wind stress;
(c) near-inertial energy flux from wind to ocean. In figure (a), the blue and red dashed horizontal lines
represent the mean and upper one standard deviation of the depth-integrated NIKE, respectively. In
figure (b), the blue and red lines represent the zonal and meridional wind stress. The six episodes
with NIKE exceeding one standard deviation are gray-shaded.

Oceanic near-inertial responses to typhoons relate to oceanic initial states such as
mixed layer depth, stratification, background currents, and characteristics of typhoons
such as translation speed and the rotation of wind [12,33,34]. The wind field of typhoon
Talim did not generate significant NIWs, which is distinctive from typhoon Nesat. The
slow translation speed of Talim led to a smaller Mach number of 1.57, and the right-side
track of Talim relative to the mooring station led to counterclockwise-rotating-dominated
wind. Moreover, the mixed layer depth prior to the passage of Talim was 30 m, which
was 10 m deeper than that of Nesat. The insignificant NIWs during Talim suggest that the
right-side-passing and slow translating typhoon could not efficiently generate NIWs when
coinciding with the deep mixed layer in the ECS.

Episodes 3 to 6 are not excited by the wind stress, and the probable reasons may be
lateral propagation, parametric subharmonic instability, and loss of stability of large-scale
circulation (herein the Kuroshio). Time-averaged mixed layer NIKE one day before each
episode obtained from the slab model are presented in Figure 7. For episode 4, there
is conspicuous NIKE west of the station with NIKE of about 15 J/m3 corresponding to
near-inertial currents of 0.17 m/s. For episode 5, intensive NIKE emerges southeast of the
mooring station, and the NIKE reaches 20 J/m3, corresponding to near-inertial currents of
0.20 m/s. The mode-1 internal waves near the station have a horizontal phase speed of
about 1.30 m/s, which suggests that they can propagate more than 110 km within one day.
Consequently, the occurrences of episodes 4 and 5 are resulted from lateral propagation
of NIWs. However, before the occurrences of episode 3 and 6, there was no significant
wind-induced mixed layer NIKE.
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Figure 7. Time-averaged NIKE in the mixed layer one day before each NIWs episode obtained from
the slab model with damping coefficient r = 0.25f and mixed layer depth calculated from the HYCOM
data. Figures (a–f) correspond to episode 1 to 6, respectively.

The parametric subharmonic instability (PSI) mechanism can also induce NIWs [35,36],
and the latitude of the mooring station leads to a local inertial frequency close to the diurnal
frequency. The bicoherence between the near-inertial (f) and D1 + f, D2 + f, D2-f zonal currents
are shown in Figure 8. The bicoherence surpasses the 80% confidence level only for episode 1
around 130 m. However, episode 1 concentrated above 100 m (see Figure 9a), suggesting that
PSI is not the stimulation mechanism of episode 1. The results suggest that the observed NIW
episodes 3 and 6 are not induced by the PSI mechanism. The motivator of episodes 3 and 6
remains unknown. The Kuroshio intrudes on the mooring station during episode 6 according
to AVISO sea level anomaly data. The loss balance of the Kuroshio and the related Kuroshio
front are probable excitation mechanisms for episode 6 [37,38]. However, it is insufficient to
testify concerning the mechanism of episode 6 with one site observation.
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Figure 8. Bicoherence between near-inertial frequency (f) and D1 + f (red lines), D2 + f (black lines),
and D2-f (blue lines) frequency detided zonal currents. Figures (a–f) correspond to episode 1 to 6,
and the black vertical lines denote the 80%, 90%, and 95% confidence intervals, respectively. D1 and
D2 represent the diurnal and semi-diurnal frequency, respectively.

Figure 9. Zonal near-inertial currents of the six NIWs episodes. Figures (a–f) correspond to episodes
1 to 6. The contours start at ±0.05 m/s with intervals of 0.05 m/s. In Figure (b), the passaging time
of typhoon Nesat is denoted by the black rectangle in the upside.
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3.2.2. Near-Inertial Currents and Shear

The evolutions of near-inertial currents corresponding to each episode are shown in
Figure 9. The near-inertial currents of episodes 1 to 6 show different temporal and spatial
(vertical) patterns. Episodes 1 and 4 show subsurface intensified patterns with near-inertial
currents reaching 0.15 m/s. Episodes 2, 3, 5, and 6 show baroclinic patterns with significant
upward propagating vertical phase speed, i.e., downward propagating vertical group
speed. The subsurface intensified near-inertial currents suggest an excitation source in
the surface layer, which is consistent with the excitation mechanism of episodes 1 and 4.
Moreover, episodes 5 and 6 show significant high mode patterns, that is, the near-inertial
currents have frequent phase inversions in the vertical direction. Episodes 2, 5, and 6 cover
rather extensive vertical ranges, and have near-inertial currents of 0.05 m/s at a depth of
300 m.

The vertical shear of near-inertial currents shows distinct patterns in comparison
with the near-inertial currents (Figure 10). Strong vertical shear does not appear at the
depth with the strongest near-inertial currents but appears where near-inertial currents are
relatively small. The vertical shear of near-inertial currents reaches 0.005–0.010 s−1. The
high mode patterns of episodes 5 and 6 lead to prominent vertical shear. The patterns of
near-inertial vertical shear verify the upward propagating vertical phase speed of NIWs,
especially for episodes 2 to 6.

Figure 10. Vertical shear of near-inertial currents. Figures (a–f) correspond to episodes 1 to 6. The
contours start at ±0.005 s−1 with an interval of 0.005 s−1.

3.2.3. Frequency and Phase of NIWs

Vertical profiles of the NIWs’ frequency obtained through the plane wave fitting
method are presented in Figure 11. The near-inertial currents are concentrated at certain
depths, i.e., mostly the subsurface layer. In the following analysis, we focus on the depths
with near-inertial currents stronger than 0.05 m/s. Episode 1 has a red-shifted frequency
of 0.950f –0.975f, and has negligible vertical variation. Episode 2 also has a red-shifted
frequency of 0.950f –0.975f, and the frequency varies slightly with depth. The frequency of
episode 3 is also red-shifted, and has a vertical mean value of 0.970f. However, episode 4
has a blue-shifted frequency in the subsurface, and the frequency is about 1.035f. Episode 5
has a red-shifted frequency in most depths, which can reach 0.900f in the subsurface layer,
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and the vertical mean frequency is 0.950f. The frequency of episode 6 is red-shifted in
the subsurface layer and below 150 m; however, it has a slight blue-shift between 75 m to
150 m.

Figure 11. Vertical profiles of frequencies of NIWs obtained by the plane wave fitting method. Figures
(a–f) correspond to episode 1 to 6, and the blue plus signs and red circles represent the result of
the zonal and meridional near-inertial currents. The shaded depth ranges highlight the area with
energetic NIWs; and the vertical solid lines denote the frequency of 1.00f.

Figure 12 shows vertical profiles of the phase of the observed near-inertial waves. The
phase of episode 1 is approximately uniform in the subsurface layer, that is, from 40 m to
80 m, and there is a 90◦ phase difference between the zonal and the meridional near-inertial
currents. The temporal-mean mixed layer depth during episode 1 is 14 m, suggesting that the
phase of episode 1 in the thermocline hardly changes vertically, which is distinctive from most
downward propagating NIWs. For episodes 2 to 4, the phases show a depth-leading trend,
which corresponds to upward vertical phase speed and downward vertical group speed. The
phase of episode 5 presents a uniform structure in the subsurface layer and a depth-leading
trend in the ocean interior. The phase of episode 6 shows a subsurface-leading trend in the
subsurface layer and a depth-leading trend in the ocean interior, suggesting that there are
both upward and downward propagations of vertical group speed (energy). Based on the
vertical profiles, the vertical phase speeds of episodes 2 to 5 are estimated to be 11.84 m/h,
6.10 m/h, 4.85 m/h, 8.62 m/h, respectively. The upward phase and downward vertical phase
speeds of episode 6 are 4.49 m/h and 5.92 m/h, respectively.
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Figure 12. Vertical profiles of phase of the NIWs obtained by the plane wave fitting method. Fig-
ures (a–f) correspond to episodes 1 to 6, and the blue plus signs and the red circles represent the
phase of the zonal and meridional near-inertial currents. The dashed green lines denote the slope
of the phase and are utilized to estimate the vertical phase speed. The temporal-mean mixed layer
depth during episodes 1 to 6 are 14 m, 13 m, 13 m, 28 m, 34 m, and 23 m.

3.2.4. E-Folding Time of NIWs

Autocorrelations of the depth-integrated NIKE are shown in Figure 13. The e-folding
time of each NIWs episodes are estimated through the autocorrelations, and the e-folding
times of episodes 1 to 6 are 5 days, 11 days, 5 days, 11 days, 4 days, and 11 days, respectively.
Episodes 2 and 4 have e-folding times of more than 10 days because they are induced by two
consecutive wind bursts (Figure 6c). The persistent time of NIWs is related to background
vorticity, especially the vorticity of mesoscale eddies. Mesoscale eddies around the mooring
station are detected according to AVISO sea level anomaly data (Figure 14). The occurrences
of episodes 1 and 3–6 are accompanied by mesoscale eddies. Episodes 1, 3, and 4 coincide
with anticlockwise eddies (positive relative vorticity) which facilitate dispersion of NIWs.
Consequently, episodes 1 and 3 have short e-folding times; however, episode 4 has an e-
folding time of 11 days because it has two peaks that are induced by lateral propagation and
wind burst. Episodes 5 and 6 coincide with clockwise eddies (negative relative vorticity),
which lead to trapping of NIWs. Consequently, episode 6 has a long e-folding time of 11 days;
however, episode 5 has an e-folding time of only 4 days which results from the high mode
characteristics of episode 5 (see Figure 9e). The frequencies, vertical phase speed, and e-folding
time of each episode are summarized in Table 1.



J. Mar. Sci. Eng. 2021, 9, 916 16 of 23

Figure 13. Autocorrelations of the depth-integrated NIKE. Figures (a–f) correspond to episodes E1 to
E6, and the horizontal red lines denote the value of 1/e.

Figure 14. Sea level anomaly (color) and geostrophic current anomaly (arrow) during episodes 1 to 6
according to AVISO dataset.
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Table 1. Depth-mean frequencies, vertical phase speed, and e-folding time of each episode.

Episode Frequency (f) Phase Speed (m/h) E-Folding Time (Days)

1 0.960 NA 1 5
2 0.960 11.84 11
3 0.970 6.10 5
4 1.035 4.85 11
5 0.950 8.62 4
6 0.960 4.49 2/5.92 3 11

1 NA denotes not applicable; 2 upward propagating phase speed; 3 downward propagating phase speed.

4. Discussion

In the southeastern ECS, NIWs have annual mean and maximum horizontal velocities
of 3.50 cm/s and 15 cm/s, respectively. They occur frequently and show significant
temporal intermittence because NIWs are dominated by episodes. During the observation
period, the NIKE shows no significant seasonal variation. Rapid-changing atmospheric
wind and lateral propagation, respectively, drive two NIWs episodes, and excitation
mechanisms of the remaining two episodes are unknown. According to satellite altimeter
remote sensing geostrophic current data, the Kuroshio intruded on the ECS and influenced
the background current of the station during the observation period. It is noteworthy that
the right-side-passing and slow-moving typhoon Talim did not induce significant NIWs;
however, the left-side-passing and rapid-moving typhoon Nesat induced energetic NIWs.
The counterclockwise-rotating-dominated wind as Talim passed over from the right side of
the mooring station, the slow-translating speed of typhoon Talim and the deeper mixed
layer caused the ineffective excitation of near-inertial waves [33,34].

The observed NIWs episodes can be low mode NIWs and high mode NIWs. The
vertical shear of near-inertial currents can reach 0.01 s−1, especially for high mode NIWs.
The frequency of NIWs can be modified by background vorticity and background cur-
rent [39–41]. Background vorticity can modify the effective Coriolis frequency ( fe f f ) as:

fe f f = f +
ζ

2
, (13)

where f is local inertial frequency, and ζ is the background vorticity. Kuroshio can enable
poleward-propagating NIWs along the right-hand side of the Kuroshio path where Kuroshio
has negative relative vorticity [42]. Our observations were located on the left-hand side of
Kuroshio, and the relative vorticity was positive during all episodes (Figure 15c). However,
all episodes except episode 4 have red-shifted frequencies, which is contrary to the positive
background relative vorticity.

The Doppler shift induced by the background currents (herein the Kuroshio) is a
probable mechanism for the red-shift. The Doppler shift can be estimated according to

ω0 = ω−
(→

k ·
→
V
)

(14)

where ω0 is the intrinsic frequency, and
(→

k ·
→
V
)

is the Doppler shift by background currents.

The Kuroshio has a velocity of about 0.20–0.50 m/s during episodes 1–6 (Figure 15a,b), and
considering typical near-inertial waves with wavenumber of 6.28× 10−5 m−1 (corresponding
to a wave length of O (100 km)). Assuming the horizontal phase speed of NIWs parallels the

Kuroshio flow, the corresponding Doppler shift is
→
k ·
→
V = −(0.20 ∼ 0.50) f , and the negative

Doppler shift results from northward-dominated Kuroshio (dominated along the Kuroshio
path flow, see Figure 15a,b) and southward propagating NIWs (lower inertial frequency at
lower latitude allows southward free propagation of NIWs). The relative vorticity during
episodes 1–6 varied from 0.10f to 0.50f, corresponding to an effective Coriolis frequency
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of (1.05–1.25)f. Consequently, the Doppler shift is capable of resulting in a red-shift to the
observed NIWs.

Figure 15. Time–depth plot of cross (a) and along the Kuroshio path (b) low frequency currents
derived from a low-pass filter with pass frequency of 30 days. (c) Time series of total strain (blue
line, left axis), relative vorticity (red line, left axis), and Okubo–Weiss parameter (yellow line, right
axis). Total strain and vorticity are normalized by local inertial frequency and the Okubo–Weiss
parameter is normalized by the square of the local inertial frequency (f 2). (d) Time series of the rate of
energy transfer from mesoscale fields to internal waves. Red (blue) color denotes positive (negative)
Okubo–Weiss parameter. The periods of each episode are marked by green rectangles in (a,b), and
are grey shaded in (c,d).

Low-frequency flows can transfer energy to near-inertial waves when and where the
strain of low-frequency flows dominates its relative vorticity [43–45]. Based on the AVISO
dataset, strain and relative vorticity (ζ) of geostrophic flows at the station are calculated
according to:

Sn = ∂U
∂x −

∂V
∂y

Ss =
∂V
∂x + ∂U

∂y
ζ = ∂V

∂x −
∂U
∂y

(15)

where Sn and Ss are normal and shear strain, U and V are zonal and meridional geostrophic
currents from the AVISO dataset. The relative importance of total strain and relative
vorticity is diagnosed with the Okubo–Weiss parameter, defined as:

α2 =
1
4

(
S2

n + S2
s − ζ2

)
(16)

The rate of energy transfer from the mesoscale field to NIWs is estimated follow-
ing [44]:

P = −0.5(〈uu〉 − 〈vv〉)Sn − 〈uv〉Ss (17)



J. Mar. Sci. Eng. 2021, 9, 916 19 of 23

where the angle brackets represent the running mean over three inertial periods. During
episode 1, the total strain exceeded relative vorticity, resulting in a positive Okubo–Weiss
parameter and a positive rate of energy transfer of about 1.0 × 10−8 m2s−3 (Figure 15c,d).
For episodes 2–6, there are no significant energy transfers from mesoscale field to NIWs.

There were interesting NIWs episodes that happened in the ocean interior, i.e., in
December and January (see the black rectangles in Figure 2). We analyzed characteristics
of the two NIKE events, and the near-inertial currents of the two events are shown in
Figures 16 and 17. The NIWs in December were concentrated from 150 m to 300 m and
show an evident depth-leading vertical phase, which indicates downward propagation
of energy. The depth mean frequency and vertical phase speed of NIWs in December are
0.975f and 10.08 m/h. However, the NIWs in January were concentrated from 80 m to
200 m, and the NIWs in January have a vertical mean frequency of 0.925f and a vertical
phase speed of 19.12 m/h. The occurrences of NIWs events in December and January
were accompanied by strong Kuroshio currents (see Figure 15a,b), and consequently the
generation and frequency shift of them may relate to the Kuroshio [46].

Figure 16. Zonal (a) and meridional (b) near-inertial currents in December 2017. The contours start
at ±0.05 m/s with a stride of 0.05 m/s.
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Figure 17. Zonal (a) and meridional (b) near-inertial currents in January 2018. The contours start at
±0.05 m/s with a stride of 0.05 m/s.

5. Conclusions

Based on in-situ observations as well as reanalysis and satellite data, the mechanism
and characteristics of NIWs on the continental slope of the southeast ECS were examined.
The in-situ observations lasted for almost 1 year, and there were six detected energetic
episodes of NIWs. Episode 1 was the most energetic one, which is induced by wind burst,
and episode 2 was generated by the wind of typhoon Nesat. Episode 4 was excited by
a combination of lateral propagation and wind burst, and episode 5 was generated by
lateral propagation. The generation mechanisms of episodes 3 and 6 remain unknown. It is
noteworthy that the right-side-passing (with counterclockwise-rotating-dominated wind)
and slow-moving typhoon Talim with a Mach number of 1.57 does not induce significant
NIWs in the ECS.

The depth-integrated NIKE does not show significant seasonal variation. The annual
mean depth-integrated NIKE is 400 J/m2, and the annual mean depth-integrated near-
inertial current amplitude is 3.50 cm/s. According to the rotary vertical wavenumber
spectra, downward propagation of NIKE is evident in a smaller wavenumber band (less
than 2 × 10−2 cpsm). Vertically, the NIKE is subsurface-intensified from 50 m to 100 m.
The depth of maximum seasonal mean NIKE is largest in winter (130 m), and smallest
in autumn (50 m). Based on vertical profiles of seasonal mean NIKE, summer has the
most energetic NIWs with NIKE values of more than 3.00 J/m2 and near-inertial current
of 6.60 cm/s, and winter has the weakest NIWs with NIKE of 1.50 J/m2 and near-inertial
current of 5 cm/s.

Episode 1 shows a vertically uniform phase profile, and episodes 2 to 6 show evident
baroclinic vertical patterns. Moreover, episodes 5 and 6 show high mode vertical patterns.
The vertical shear of near-inertial currents can reach 0.01 s−1. The frequencies of the
observed NIWs are mostly red-shifted; however, episode 4 is blue-shifted and 6 has both
blue-shift and red-shift. The background vorticity is positive during most episodes. The
frequency shifts are related to the Doppler shift induced by the Kuroshio. The upward
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vertical phase speeds of episodes 2 to 5 are 11.81 m/h, 6.10 m/h, 4.85 m/h, and 8.62 m/h,
respectively. Episode 6 shows downward vertical phase speed in the upper layer and
upward vertical phase speed in the deep layer, and the phase speeds are 5.92 m/day and
4.49 m/h, respectively. The e-folding time of the observed NIWs is 4 to 11 days. Episodes 2
and 4 have e-folding times of 11 days because they were induced by two consecutive wind
bursts, and 6 is influenced by a clockwise mesoscale eddy with negative vorticity. Episode 5
has an e-folding time of 4 days which results from its high mode feature.

The Kuroshio, a strong western boundary current, influences many oceanic processes
of the ECS. The excitation mechanism of ECS NIWs can be a typhoon, wind burst, lat-
eral propagation, and an energy transfer from low-frequency flows to NIWs also has a
contribution. There exists a positive rate of energy transfer from low-frequency flows to
NIWs when and where the total strain of Kuroshio exceeds its relative vorticity. On the
left-hand side of Kuroshio, the background relative vorticity is always positive, however,
the observed NIWs usually have red-shifted frequencies. The Doppler shift induced by
Kuroshio is estimated to be sufficient to induce the red-shift of NIWs. Recent research
reveals that NIWs around the Kuroshio can be induced by inertial instability and have a
significant influence on oceanic turbulent layers and nutrient supply [46–48]. The Kuroshio
mainstream meanders in the southeastern ECS and the modification of Kuroshio on the
generation and propagation of NIWs in the ECS need further research.
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