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Abstract: The accurate calculation of the sound field is one of the most concerning issues in hy-
droacoustics. The one-dimensional spectral method has been used to correctly solve simplified
underwater acoustic propagation models, but it is difficult to solve actual ocean acoustic fields
using this model due to its application conditions and approximation error. Therefore, it is nec-
essary to develop a direct solution method for the two-dimensional Helmholtz equation of ocean
acoustic propagation without using simplified models. Here, two commonly used spectral methods,
Chebyshev–Galerkin and Chebyshev–collocation, are used to correctly solve the two-dimensional
Helmholtz model equation. Since Chebyshev–collocation does not require harsh boundary condi-
tions for the equation, it is then used to solve ocean acoustic propagation. The numerical calculation
results are compared with analytical solutions to verify the correctness of the method. Compared
with the mature Kraken program, the Chebyshev–collocation method exhibits higher numerical
calculation accuracy. Therefore, the Chebyshev–collocation method can be used to directly solve the
representative two-dimensional ocean acoustic propagation equation. Because there are no model
constraints, the Chebyshev–collocation method has a wide range of applications and provides results
with high accuracy, which is of great significance in the calculation of realistic ocean sound fields.

Keywords: ocean acoustic propagation; two-dimensional Helmholtz equation; Chebyshev–Galerkin
spectral method; Chebyshev–collocation spectral method

1. Introduction

In recent years, underwater acoustic technology has been widely used to detect under-
water targets [1], describe underwater overviews [2], measure hydrological information [3],
and perform other tasks [4]. Due to the influence of the water surface, water body, water
bottom, and other features, sound wave propagation in the ocean presents a complicated
distribution state [5]. According to the principle of ocean acoustic propagation, sound
waves of a fixed frequency satisfy the elliptic partial differential Helmholtz equation. The
sound pressure results throughout an entire space can be obtained after adding boundary
conditions to constrain the Helmholtz equation [6]. Recently, Wang et al. [7] used the one-
dimensional spectral method to correctly solve the parabolic equation model. Due to the
high accuracy and fast convergence speed of the spectral method, it has greatly promoted
the development of ocean acoustic calculation. However, there are still some problems in
the process of calculation. For example, the beginning of this calculation method solves
the simplified parabolic model of the Helmholtz equation. Although simplified models
make numerical solutions easier to obtain, their scope of application is very narrow, and
approximation errors are introduced. For example, the parabolic equation model replaces
the elliptic equation with the parabolic equation. It is thus suitable only for situations
in which the physical parameters change slowly with the horizontal distance and the
far-field assumption is adopted [8–11]. The contribution of the reverse acoustic wave to
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the full-field wave is ignored, and only the one-way acoustic propagation problem can be
solved [8]. The normal mode model is appropriate only for cases in which the physical
parameters are constant, and this model cannot be used to solve problems in which these
quantities change with distance, as in actual ocean environments [12]. The ray model can
be applied to high-frequency situations, that is, when the wavelength of the sound wave is
significantly smaller than any physical scale in the problems [6]. The mirror image method
uses the superposition of the real sound source point and the mirrored sound source point
to obtain the real sound field, but its requirements for sound speed are more stringent;
thus, this method can only be used to determine ocean sound fields with a constant sound
speed profile [13]. The wavenumber integration method is suitable only for horizontally
layered media and uses numerical integration to determine the sound field [13]. As a result,
the calculated sound does not reflect the real marine environment if the sea area does not
meet the constraints of the applied simplified model. Most actual marine environments are
relatively complex, and relatively few meet the constraints of various models. Therefore, it
is necessary to develop a direct solution to the two-dimensional Helmholtz equation of
acoustic propagation without using simplified models.

It is usually difficult to directly solve the partial differential Helmholtz equation’s ana-
lytical solution. The finite difference method, finite element method and spectral method
are commonly used discrete numerical methods for solving differential equations [14].
Among them, the finite difference and finite element methods are local approximation
methods, and the spectral method is a global approximation method. The finite difference
method is the most mature numerical method [15] and uses the difference quotient instead
of the derivative. Its theoretical background and calculation are simple, and its format and
structure are flexible. In 2007, a nine-point sixth-order accurate compact finite-difference
method for solving the Helmholtz equation was developed and analyzed, but it can only
solve the equation with the Neumann boundary condition [16]. In 2019, Zhu and Zhao
proposed a high-order fast algorithm for solving the two-dimensional Helmholtz equation
with Dirichlet and Neumann boundary conditions in polar coordinates [17]. Because the
finite difference method has difficulty dealing with the Helmholtz equation with complex
boundary conditions, it is commonly used to deal with the simplified partial differential
equation of the Helmholtz equation for ocean acoustic propagation. At present, some ma-
ture ocean acoustic calculation programs have been developed using the finite difference
method, such as RAM [18] based on the parabolic equation model and Kraken [19] based
on the normal mode model. However, the finite difference method is not flexible enough to
address complex boundary value problems in actual applications, and its approximation ac-
curacy is limited by the format itself. Moreover, it is prone to instability. The finite element
method decomposes a continuous area into a finite number of interconnected elements
that can be polygons or other geometric shapes. This method easily addresses complex
problems, but the accuracy of the approximation is also limited by the format itself [20].
Among the three commonly used numerical methods, the finite difference method and fi-
nite element method are both low-precision methods. With continued development of and
improvement through scientific research, the study of small-scale and delicate problems
has become increasingly important, and high-precision numerical methods have become
a research focus of many scholars. The spectral method theoretically has infinite-order
approximation accuracy and exponential-order convergence [21], and the spectral method
can obtain high-precision results with a small degree of freedom, unlike the results of the
finite difference method and the finite element method.

The classical numerical discrete methods are derived from the weighted residual
method (MWR). The MWR linearly expands the solution under a set of trial functions,
selects a set of test functions and approximate solutions as inner products, and finally forces
the residual to zero. The spectral method is different from other numerical calculation meth-
ods, mainly in the selection of a class of globally smooth function clusters as trial functions
and test functions. Commonly used function clusters include Chebyshev polynomials [22],
Legendre polynomials [23], and Fourier functions [24]. The test function clusters are mainly



J. Mar. Sci. Eng. 2021, 9, 892 3 of 19

divided into Galerkin, Tau and collocation types. Among them, the Galerkin and Tau types
require that the trial function and test function are exactly the same, and the collocation
type requires that the boundary conditions are met at the preselected grid points (i.e., collo-
cation points). The name of each spectral method is described as an “A–B” type, where A is
the type of trial function, such as Chebyshev, Legendre or Fourier, and B is the classification
of the test function, such as Galerkin or collocation. Commonly used spectral methods
include the Chebyshev–Galerkin spectral method and Chebyshev–collocation spectral
method. In the 1980s, studies by Quartreroni, Canuto, Guo Benyu and others showed that
the spectral method has infinite-order convergence, and the spectral method was applied
to solve partial differential equations. Since then, the spectral method has been widely
used to solve mathematical and physical problems [25–30]. The spectral method also has
obvious advantages in solving atmospheric circulation problems [31]. In terms of the nu-
merical eddy flow problem, the spectral method can be used to calculate the fluid flow in a
straight channel, and the calculated laminar flow and turbulent flow results are in good
agreement with the theoretical results [32]. The step-by-step pseudospectral method is
used in the calculation of the water wave motion problem, and the pseudospectral method
is established to numerically solve the two-dimensional tidal wave equation calculation
model. As a result, the water wave motion caused by the perturbation of the water column
of a uniform square pool is simulated and calculated [33]. In recent years, some scholars
have begun to apply the spectral method to acoustic problems. Wise et al. [34] used the
Fourier–collocation method to re-express the distribution of arbitrary sound sources and
sensors, Wang et al. [35] proposed an improved sound propagation operator expansion
scheme based on the spectral method, and Lan et al. [36] introduced an algorithm based on
the spectral collocation method and were the first to explained the basic governing equa-
tions. In the calculation of ocean acoustics, Evans et al. [37] proposed a Legendre–Galerkin
spectral method to solve the differential eigenvalue problem of complex and discontinuous
coefficients in ocean acoustics.

In recent years, many scholars have studied direct solutions of two-dimensional partial
differential equations using the spectral method. In 1995, Shen [38] used the Chebyshev–
Galerkin spectral method to directly solve the two-dimensional Helmholtz equation with
Dirichlet and Neumann boundary conditions, which achieved good results. In 2009,
Wang et al. [39] used the Chebyshev-Tau and Chebyshev–Galerkin spectral methods to
solve the two-dimensional Poisson equation. In 2019, Sahuck [40] successfully used the
Chebyshev–Galerkin spectral method and quasi-inverse technique to directly solve the two-
dimensional Poisson equation and Helmholtz equation with Dirichlet boundary conditions.

In this paper, the Chebyshev–Galerkin and Chebyshev–collocation spectral methods
are used to directly solve the two-dimensional Helmholtz equation with Robin bound-
ary conditions, and the results are compared with those of the corresponding analytical
solutions. Because the Chebyshev–Galerkin spectral method requires trial functions to
meet the boundary conditions, its boundary condition requirements are more stringent. In
consideration of the complicated boundary conditions of the actual marine environment,
the Chebyshev–collocation spectral method is used to solve the Helmholtz equation of two-
dimensional ocean acoustic propagation. Similarly, the correctness of the method is verified
by analytical solutions for an example of ocean acoustic propagation. Upon comparing the
numerical calculation results of the collocation method with those of Kraken, the results
show that the calculation accuracy of the collocation method is higher than that of Kraken.
Therefore, it is feasible to use the spectral method to directly solve two-dimensional ocean
acoustic propagation problems. The spectral method does not utilize simplified models, so
there are no restrictions on the application conditions; thus, no approximation errors are
introduced by the model. This method has a wide range of applications, high calculation
accuracy, and high practical application value.

This paper is composed as follows. In Section 1, we introduce the current situation
and main problems of ocean acoustic field solutions. Then, the Chebyshev–Galerkin and
Chebyshev–collocation spectral methods are explained in Section 2 by applying them to
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solve the Helmholtz equation. In Section 3, we apply our method to the Helmholtz model
equation and ocean acoustic program examples and analyze the results of the numerical
calculations. Our conclusions are described in Section 4.

2. Solutions of the Two-Dimensional Helmholtz Equation

The basic idea of the spectral method is to approximately expand the solution of the
problem on a cluster of smooth basis functions and convert the problem solved in the
physical space into the problem of solving the expansion coefficient in the spectral space.
The spectral method discretizes the differential equations in the entire solution domain into
linear equations, and the core numerical algorithm is to solve the linear equations. In this
section, we mainly study how to use the Chebyshev–Galerkin and Chebyshev–collocation
spectral methods to directly solve the two-dimensional Helmholtz equation with Robin
boundary conditions. Consider the two-dimensional boundary value problem:

∂2u
∂x2 +

∂2u
∂y2 + α

∂u
∂x

+ β
∂u
∂y

+ γ u = f , −1 ≤ x, y ≤ 1(
u + k1

∂u
∂x

)∣∣∣∣
|x|=1

=

(
u + k2

∂u
∂y

)∣∣∣∣
|y|=1

= 0
(1)

where u(x, y) is the quantity to be solved and the other variables are known. When solving
the above partial differential equations, first, it is necessary to discretize the equations
to form an algebraic equation group that can be solved by mature numerical calculation
methods. Here, we use the global approximation method, that is, the spectral method, to
discretize the original equations. The continuous and smooth functions u(x, y) and f (x, y)
in Equation (1) can be approximated by the linear combination of the complete and linearly
independent function cluster φk,l(x, y):

u(x, y) ≈
N

∑
k=0

N

∑
l=0

ûk,lφk,l(x, y) (2)

f (x, y) ≈
N

∑
k=0

N

∑
l=0

f̂k,lφk,l(x, y), (3)

where ûk,l and f̂k,l are coefficients of u(x, y) and f (x, y), respectively, and the function
cluster φk,l(x, y) is a two-dimensional trial function. φk,l(x, y) can be expressed as the
product of two one-dimensional trial functions:

φk,l(x, y) = φk(x)φl(y). (4)

In the Chebyshev–Galerkin and Chebyshev–collocation spectral methods, the two one-
dimensional trial functions are both Chebyshev polynomials or their linear combinations.

2.1. The Definition and Properties of a One-Dimensional Chebyshev Polynomial

The Chebyshev polynomials Tk(x) defined in the interval [−1,+1] are:

Tk(x) = cos (k cos−1 (x)) k = 0, 1, 2 . . . (5)

Definition 1 (inner product and orthogonality). The Chebyshev polynomial cluster {Tk(x)}
satisfies the following (weighted) orthogonal relationship after introducing the following weighted
inner product definition:

〈Tm, Tn〉ω :=
∫ +1

−1
Tm(x)Tn(x)w(x)dx =


0, m 6= n

π, m = n = 0
π
2 , m = n 6= 0

(6)
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where the weight function w(x) is:

w(x) =
1√

1− x2
. (7)

Define the coefficient ck:

ck =

{
2, k = 0
1, k > 0

. (8)

Considering the convenience of writing, if the polynomials are, at most, of the N-th power,
Equation (6) can be rewritten in matrix form as:

K = diag{kii}, kii :=
π

2
ck (9)

where the matrix K is a diagonal matrix with dimensions of (N + 1)× (N + 1) and the diagonal
element value is determined by ck in Equation (8).

Definition 2 (Chebyshev transform). The continuous smooth function v(x) defined in the
interval [−1,+1] can be approximately expanded with Tk(x) as follows:

v(x) ≈
N

∑
k=0

v̂kTk(x) (10)

where N is the truncation order of the spectral method and v̂k is the Chebyshev expansion coefficient
of function v. The expansion coefficient is:

v̂k =
1
dk

∫ +1

−1
v(x)Tk(x)w(x)dx,

dk =
∫ +1

−1

T2
k (x)

√
1− x2

dx =

{
π, k = 0
π
2 , k > 0

(11)

Equations (10) and (11) are called the inverse and forward Chebyshev transforms [41]. If the effect
of the truncation order is not taken into account, a one-to-one correspondence can be established
between the original function v(x) and its Chebyshev expansion coefficient vk using this pair of
transformations, and they are located in the original physical space and spectral space.

Definition 3 (numerical integration method to calculate spectral expansion coefficient). In
the forward Chebyshev transform Equation (11), the Gauss–Lobatto integral is usually used to
calculate the weighted integral formula:

v̂k ≈
1
dk

N

∑
i=0

v(xi)Tk(xi)wi (12)

where N is the number of integration nodes, which is taken as the truncation order of the spectral
method. The integration nodes and weights are defined as:

x0 = 1, xN = −1, xi = cos
(

πi
N

)
, w0 = wN =

π

2N
, wi =

π

N
(13)

Definition 4 (the spectral coefficient of the derivative function). For any continuous smooth
function v(x) whose domain is [−1,+1], if the first derivative v′(x) of v(x) is still a smooth function,
v′(x) can also be expanded with Tk(x) as:

v′(x) ≈
N

∑
k=0

v̂
′
kTk(x) (14)
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It can be proven that the expansion coefficient v̂′k of the first derivative of v(x) and the expansion
coefficient v̂k of the original function satisfy the following relationship [29]:

v̂
′
k ≈

2
ck

N

∑
p=k+1

p+k=odd

pv̂p, k ≥ 0 (15)

where ck is defined in Equation (8). Equation (15) can then be rewritten in matrix form:

v̂′ = Dv̂ (16)

where v̂′ and v̂ are 1 ∗ (N + 1) arrays defined as: v̂′ = [v̂′0, v̂′1 . . . v̂′N ] and v̂ = [v̂0, v̂1 . . . v̂N ]. The
matrix D is an upper triangular square matrix with dimensions of (N + 1)× (N + 1). Similarly,
the expansion coefficient v̂′′ of the second derivative v′′(x) can be written as:

v̂′′ = D2v̂ (17)

2.2. The Construction and Properties of One-Dimensional Chebyshev–Galerkin Trial Functions

In the one-dimensional Chebyshev–Galerkin spectral method, the construction of
the trial function needs to satisfy not only the orthogonality described in Section 2.1 but
also the boundary conditions of the equation to be solved. Therefore, in practice, the trial
function φk(x) is usually taken as the linear combination of the Chebyshev polynomial
Tk(x) and is called the Chebyshev–Galerkin trial function. Its general structure can be
expressed as:

φk(x) = Tk(x) + akTk+1(x) + bkTk+2(x) , k = 0, 1, 2, . . . , N − 2 (18)

where the undetermined combination coefficients ak and bk can be determined by specific
boundary conditions. In matrix form, Equation (18) can be rewritten as:

φ0(x)
φ1(x)

...
φN−2(x)

 = ST
x


T0(x)
T1(x)

...
TN(x)

 (19)

ST
x =


1 ak bk

1 ak bk
. . . . . . . . .

1 ak bk

 (20)

where the constant matrix ST
x is a rectangular matrix with dimensions of (N − 1)× (N + 1).

Similar to the previous section, a series of properties of the Chebyshev–Galerkin trial
functions can also be obtained. According to the orthogonality satisfied by the Cheby-
shev polynomials in Equations (6)–(9), the inner product of the Chebyshev–Galerkin trial
functions can also be written in matrix form:

bk,j =
〈
φj, φk

〉
ω

, Bx = ST
x KSx (21)

where Sx is the transpose of matrix ST
x . The inner product of the Chebyshev trial function

and Galerkin trial function can be written as:

hk,j =
〈

Tj, φk
〉

ω
, Hx = KSx (22)

Similarly, the inner product of the Galerkin trial function and its derivative function can be
written as:

ck,j =
〈

φ′j, φk

〉
ω

, Cx = ST
x KDSx (23)
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ak,j =
〈

φ′′j , φk

〉
ω

, Ax = ST
x KD2Sx (24)

2.3. Chebyshev–Galerkin Spectral Method for Solving the Two-Dimensional Helmholtz Equation

We first determine the two-dimensional Chebyshev–Galerkin trial function using
Equations (4) and (18) and then discuss how to discretize Equation (1). According to the
principle of the MWR, it is necessary to approximate the value of the function u to be
solved using the Chebyshev–Galerkin trial function for a finite N-term expansion and
then make the residual of the equation orthogonal to the space of the test function; that is,
the weighted inner products of the residual and each test function are zero. According to
Equation (1), we can obtain:〈

∂2u
∂x2 , ϕk,l

〉
ω

+

〈
∂2u
∂y2 , ϕk,l

〉
ω

+ α

〈
∂u
∂x

, ϕk,l

〉
ω

+

β

〈
∂u
∂y

, ϕk,l

〉
ω

+ γ
〈
u, ϕk,l

〉
ω
=
〈

f , ϕk,l
〉

ω

(25)

where ϕk,l represents the two-dimensional test function. According to the different methods
used in the test function, the spectral method discussed in this paper can be further
divided into the Chebyshev–Galerkin spectral method and the Chebyshev–collocation
spectral method.

In the Chebyshev–Galerkin spectral method, the test function is taken as the Chebyshev–
Galerkin trial function itself. Therefore, each item in Equation (25) can be expressed in a
concise matrix form. For instance, the inner product of the second-derivative term is:〈

∂2u
∂x2 , ϕk,l

〉
ω

=

〈
N

∑
m=0

N

∑
n=0

ûm,n φ
′′
m(x)φn(y), φk(x)φl(y)

〉
ω

=
N

∑
m=0

N

∑
n=0

ûm,n

∫∫ +1

−1
φ
′′
m(x)φk(x)w(x)φn(y)φl(y)w(y)dxdy

=
N

∑
m=0

N

∑
n=0

ûm,n

〈
φ
′′
m(x), φk(x)

〉
ω
〈φn(y), φl(y)〉ω = AxUBT

y .

(26)

Similarly: 〈
∂2u
∂y2 , ϕk,l

〉
ω

= BxUAT
y (27)

The inner product of the first-derivative term can be rewritten as:〈
∂u
∂x

, ϕk,l

〉
ω

=

〈
N

∑
m=0

N

∑
n=0

ûm,n φ
′
m(x)φn(y), φk(x)φl(y)

〉
ω

=
N

∑
m=0

N

∑
n=0

ûm,n

∫∫ +1

−1
φ
′
m(x)φk(x)w(x)φn(y)φl(y)w(y)dxdy

=
N

∑
m=0

N

∑
n=0

ûm,n

〈
φ
′
m(x), φk(x)

〉
ω
〈φn(y), φl(y)〉ω = AxUBT

y .

(28)

Similarly: 〈
∂u
∂y

, ϕk,l

〉
ω

= BxUCT
y (29)
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The inner product of the original-function term can be rewritten as:

〈
u, ϕk,l

〉
ω
=

〈
N

∑
m=0

N

∑
n=0

ûm,n φm(x)φn(y), φk(x)φl(y)

〉
ω

=
N

∑
m=0

N

∑
n=0

ûm,n

∫∫ +1

−1
φm(x)φk(x)w(x)φn(y)φl(y)w(y)dxdy

=
N

∑
m=0

N

∑
n=0

ûm,n 〈φm(x), φk(x)〉ω 〈φn(y), φl(y)〉ω = BxUBT
y .

(30)

The inner product of the right-hand-side known-function term is:

〈
f , ϕk,l

〉
ω
=

N+2

∑
m=0

N+2

∑
n=0

f̂m,n 〈Tm(x)Tn(x), φk(x)φl(y)〉ω

=
N+2

∑
m=0

N+2

∑
n=0

f̂m,n 〈Tm(x), φk(x)〉ω 〈Tn(y), φl(y)〉ω = HT
x f̂Hy.

(31)

where f̂ is the spectral expansion coefficient of the known function f under the Chebyshev
trial function in Equation (1) and U is the spectral expansion coefficient of the unsolved
quantity u(x, y) under the Galerkin trial function. Substituting Equations (26)–(31) into
Equation (25) gives:

AxUBT
y + BxUAT

y + αCxUBT
y + βBxUCT

y + γBxUBT
y = HT

x f̂Hy (32)

To solve U conveniently, the two-dimensional matrices U and f̂ are compressed into one-
dimensional vectors by columns, which are denoted as ū and f̄, respectively. Equation (32)
can be rewritten as:(

By ⊗Ax + Ay ⊗ Bx + αBy ⊗Cx + βCy⊗Bx + γBy ⊗ Bx
)
ū = HT

y ⊗HT
x f̄ (33)

where ⊗ is the Kronecker product. This is a linear equation system for the unknown vector
ū, which can be solved by using standard numerical methods to obtain the expansion
coefficient ū of the function u(x, y). Then, we can obtain the value of the function u(x, y)
according to Equation (2).

2.4. Chebyshev–Collocation Spectral Method for Solving the Two-Dimensional Helmholtz Equation

In Equation (25), if the test function cluster is selected as the following special function,
it is called the Chebyshev–collocation spectral method. Taking the x direction as an example,
specific (N + 1) points

{
xj
}N

j=0 in the solution domain are selected as collocation points,

and the δ function (δ(x) = 0, (x 6= 0)) is used as the weight function:

wj(x) = δ
(
x− xj

)
(34)

According to the principle of the MWR, the residual is required to be zero at the (N + 1)
collocation points, which means that the differential equation is strictly established at the
(N + 1) collocation points.

It is still possible to discretize a system of equations in spectral space, as discussed
in Section 2.2, and then transform them back to physical space to obtain approximate
solutions of the original equations. However, due to the feature of the test function, the
Chebyshev–collocation spectral method can directly form a system of equations in the
original physical space without having to resort to spectral space. Because of this feature,
the collocation-type spectral method can easily address variable coefficients and nonlinear
problems. We discuss this method and solution in detail as follows.
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The calculation of the collocation-type spectral method is mainly carried out in grid-
point space, and the calculation accuracy is related to the selection of the collocation point.
For convenience, the Gauss–Lobatto node is selected as the grid collocation point, and the
detailed definition is shown in Equation (13). First, we construct the Chebyshev deriva-
tive matrix. On the discrete point, x is used to represent the (N + 1) dimensional vector
composed of discrete point coordinates, and u is used to represent the (N + 1) dimen-
sional vector composed of the function values at these points. Then the (N + 1)× (N + 1)
Chebyshev derivative matrix D̃ satisfies:

u′(x) = D̃u (35)

Similarly, the second-order derivative matrix is D̃2.
The function u in Equation (1) is discretized at the collocation points. Similar to

the solution process of the Galerkin method, if the function u is compressed into a one-
dimensional vector in columns, then Equation (1) on the left-hand side can be rewritten as:

∂2

∂x2 → D̃2
N ⊗ IM+1 (36)

∂2

∂y2 → IN+1 ⊗ D̃2
M (37)

α
∂

∂x
→ αD̃N ⊗ IM+1 (38)

β
∂

∂y
→ βIN+1 ⊗ D̃M (39)

γ→ γI(N+1)(M+1) (40)

where the number of discrete points in the x direction is (N + 1), that in the y direction
is (M + 1), and IM is an M-order identity matrix. The matrix forms of the boundary
conditions Rx and Ry are as follows:

u + k1
∂u
∂x
→ Rxu(N+1)(M+1) = I(N+1)(M+1) + k1

(
D̃N ⊗ IM+1

)
(41)

u + k2
∂u
∂y
→ Ryu(N+1)(M+1) = I(N+1)(M+1) + k2

(
IN+1 ⊗ D̃M

)
(42)

The rows of the matrices Rx and Ry corresponding to the boundaries |x| = 1 and
|y| = 1 are placed into the corresponding positions in matrix L (Equation (43)).

∂2

∂x2 +
∂2

∂y2 + α
∂

∂x
+ β

∂

∂y
+ γ→ L

L = D̃2
N ⊗ IM+1 + IN+1 ⊗ D̃2

M + αD̃N ⊗ IM+1 + βIN+1 ⊗ D̃M + γI(N+1)(M+1)

(43)

The symbol “-” above L indicates the modified matrix operator. Then, Equation (44) is
solved to obtain u.

u(N+1)(M+1)×1 = L−1f (44)

where the vector f is a discretized description of f (x, y). f is modified as follows: the
elements at the boundary |x| = 1 and |y| = 1 are taken as zero (according to the boundary
conditions of Equation (1)).

3. Numerical Test and Results Analysis

In this section, we first apply the Chebyshev–Galerkin and Chebyshev–collocation
spectral methods to solve the two-dimensional model Helmholtz equation and then
compare the results and calculation times of the two numerical calculations. Since the
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Chebyshev–collocation spectral method has a wide range of applications and does not
require strict boundary conditions as Galerkin method, it is applied to solve actual ocean
acoustic calculation examples, and analytical solutions are used to verify the correctness of
the numerical results. Then, we compare the numerical calculation results of the collocation
method with those of Kraken to improve the calculation accuracy. The truncation order N
in the two directions is not required to be the same; however, to facilitate this test, the N
values in the two directions are assumed to be the same in the numerical experiments. In
the following, N refers to the truncation order in one direction unless otherwise specified.
The numerical calculation program is written in GNU Octave code, and the test platform
is a Dell XPS8930 desktop computer equipped with an Intel i7-8700K CPU and 32 GB of
memory.

3.1. Two-Dimensional Model Helmholtz Equation

In this section, we take the solution of the following model equation as an example for
numerical testing and analysis.

∂2u
∂x2 +

∂2u
∂y2 +

∂u
∂x

+
∂u
∂y

+ u = f , (x, y) ∈ (−1, 1)× (−1, 1)

u− 1
π

∂u
∂x

∣∣∣∣
|x|=1

= u− 1
2π

∂u
∂y

∣∣∣∣
|y|=1

= 0

f (x, y) =
(
−5π2 + 1

)
sin
(

πx +
π

4

)
sin
(

2πy +
π

4

)
+ πcos

(
πx +

π

4

)
sin
(

2πy +
π

4

)
+ 2πsin

(
πx +

π

4

)
cos
(

2πy +
π

4

)
(45)

The exact solution of Equation (45) is u = sin (πx + π
4 ) sin

(
2πy + π

4
)
.

Equation (45) is solved by the Chebyshev–Galerkin and Chebyshev–collocation spec-
tral methods, and the approximate solution images obtained are shown in Figure 1. The
accuracy is determined by the relative L2-norm of the error between the numerical solution
and the exact solution and the definition of L2-norm of vector x are:

error =
‖u− uana‖2
‖uana‖2

‖x‖2 =
√
|x1|2 + |x2|2 + |x3|2 + ... + |xn|2

(46)

where ‖·‖2 represents the L2-norm of the error, u represents numerical results, and uana
represents the exact solution.

Figure 1 shows the images of the exact solution and the numerical solutions of the
two methods. This function has good smoothness and symmetry, but the image is more
complex, and the gradient changes greatly. Table 1 shows that the two spectral methods
show a similar order of accuracy until N = 24. At N = 30, all the numerical solutions
nearly reach the machine accuracy (∼10−16) under double precision. This shows that these
two methods can obtain high-precision approximate solutions when the truncation order
N is small, which verifies the high-precision approximation of the spectral method. The
approximation accuracy of the two numerical methods increases rapidly with increasing
truncation order. For almost every increase in order, the accuracy of the numerical solution
increases by an order of magnitude, which verifies the rapid convergence of the spectral
method. The Chebyshev–Galerkin method achieves the highest accuracy at N = 30,
when the error magnitude is 10−14, and the Chebyshev–collocation method achieves the
highest accuracy at N = 24, when the error magnitude is 10−12. By comparison, the two
spectral methods are both high-precision calculation methods. However, the Chebyshev–
collocation spectral method uses fewer orders to achieve the highest accuracy and can
effectively reduce the amount of calculation required to solve complex and large-scale
problems.
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(a)

(b)

(c)

Figure 1. The results of Equation (45) obtained by analytical solution (a), Chebyshev–Galerkin
spectral method (b) and Chebyshev–collocation spectral method (c).
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Table 1. The error of the results calculated by the Chebyshev–Galerkin and Chebyshev–collocation
spectral methods varies with the truncation order N.

N Galerkin Error Collocation Error

8 1.19× 10−5 5.60× 10−2

16 2.73× 10−6 2.68× 10−6

22 5.62× 10−11 6.24× 10−11

24 1.04× 10−12 2.84× 10−12

30 2.51× 10−14 8.15× 10−12

32 2.57× 10−14 5.51× 10−12

The calculation times of the Chebyshev–Galerkin and Chebyshev–collocation methods
vary with N, as shown in Table 2. The results listed in the table are the average results of
ten runs. The running time results of the two spectral methods show that the Chebyshev–
collocation method runs faster than the Chebyshev–Galerkin spectral method. Comparing
the calculation errors of these two methods, the Chebyshev–collocation method can achieve
a higher calculation accuracy in a shorter time and with less truncation order. Therefore,
compared to the Chebyshev–Galerkin method, the Chebyshev–collocation method can
calculate more quickly and efficiently while ensuring accuracy when solving realistic
problems of ocean acoustic propagation. In addition, the Galerkin-type spectral method
requires trial functions to meet the boundary conditions, and the corresponding trial
functions need to be designed for specific boundary conditions. However, when solving
realistic ocean acoustic field problems, the construction of the Galerkin trial function is
very difficult if the boundary conditions change with distance. Therefore, the next section
introduces the application of the Chebyshev–collocation spectral method in solving realistic
ocean acoustic fields.

Table 2. The calculation times of the Chebyshev–Galerkin and Chebyshev–collocation methods vary
with N.

N Galerkin Time (s) Collocation Time (s)

8 0.007 0.003
16 0.014 0.005
22 0.020 0.008
24 0.023 0.010
30 0.032 0.022
32 0.042 0.025

3.2. Ocean Acoustic Propagation Example Test

The test in Section 3.1 verified that the Chebyshev–collocation spectral method directly
solves the two-dimensional Helmholtz model equation with a high accuracy and fast con-
vergence. Therefore, we apply it to solve the two-dimensional ocean acoustic propagation
equation. Two ocean acoustic propagation examples, spherical waves and ideal fluid
waveguides, with analytical solutions are selected for analysis and comparison to verify
the effectiveness of the Chebyshev–collocation method in solving the ocean acoustic field.

When the ocean topography and ocean environment parameters are axisymmetric, the
circumferential guide number in the cylindrical coordinate system is zero, that is, ∂/∂θ = 0.
The Helmholtz equation in cylindrical coordinates can be simplified into a two-dimensional
axisymmetric form [13]:

∂

∂r

(
1
ρ

∂P
∂r

)
+

1
rρ

∂P
∂r

+
∂

∂z

(
1
ρ

∂P
∂z

)
+

k2P
ρ

= 0 (47)

where P is the sound pressure, ρ is the density, k is the wavenumber, r is the horizontal
axis, and z is the vertical axis. The boundary conditions are also required to obtain the
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specific sound pressure distribution. To simulate the sound field characteristics of a real
large-scale sea area, it is often necessary to set the radiation boundary conditions, that
is, the conditions that the solution of the wave equation needs to meet at infinity (the
sound propagation direction at infinity can only be outward). The Sommerfeld radiation
condition expression is:

∂P
∂n
− ikP = 0 (48)

This condition indicates that on the virtual boundary far from the sound source point, the
normal derivative of sound pressure and the sound pressure itself satisfy Equation (48).

The premise of the radiation boundary conditions is that that they correspond to
an infinite distance from the sound source point. However, due to the limitation of the
calculation area, an “absorption layer” needs to be set at the boundary to avoid false
reflections of the sound field by the radiation boundary conditions. The inner side of the
absorption layer is connected to the sound field, and the radiation boundary condition is
set on the outer side. The absorption coefficient in the absorption layer increases rapidly
with increasing coordinate values, such that the sound pressure can be rapidly reduced
within a short distance. The wavenumber expression in the absorption layer [13] is:

K2 = k2
[

1 + i
(

γr + γz +
β

27.287527

)]
γr =

{
0, r ≤ L
µ
(

r−L
4L )

2, r > L
γz =

{
0, z ≤ H
µ
(

z−H
4H )2, z > H

(49)

where the coefficient µ is usually zero, γr represents the change coefficient of the absorption
layer in the horizontal direction, γz represents the change coefficient of the absorption
layer in the vertical direction, L represents the horizontal coordinate of the inner side of
the absorption layer in the horizontal direction, and H represents the vertical coordinate
of the inner side of the absorption layer in the vertical direction. To simulate real ocean
conditions, the absorption coefficient β is zero.

To show the calculation results of the sound field, the transmission loss of the sound
pressure is defined as:

TL = −20log10

(
|P|
P0

)
(50)

where P0 refers to the sound pressure 1 m from the sound source. In displays of sound
field results, TL is commonly used, and the unit of TL is decibels(dB).

3.2.1. Spherical Wave

The density of the ocean is uniform ρ(z) = 1 g/cm3, the speed of underwater sound
propagation is constant c = 1500 m/s, the sound source is set at the coordinate origin (0,0),
and the frequency is 150 Hz. To avoid singularities in the calculation area, the horizontal
solution area is (1, 100), and the vertical solution area is (−50, 50). The analytical solution
of the spherical wave is:

P =
eikR

R
, R =

√
x2 + y2 (51)

The upper boundary, lower boundary and right boundary of the solved rectangular area
are all assigned radiation conditions, and the thicknesses of the three boundary absorption
layers are all 20 m. The left boundary is described by the analytical solution formula.

The truncation order N = 160 is taken as an example to focus on the nonabsorbent
layer area, that is, (1, 80) in the horizontal direction and (−30, 30) in the vertical direction.
The corresponding calculation results are shown in Figure 2.
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(a) (b)

Figure 2. TL field of a spherical wave: the result of the analytical solution (a); the result of the
collocation method (b).

Figure 2 shows that the sound field value calculated by the Chebyshev–collocation
spectral method in the nonabsorbent layer area is very similar to the results calculated
by the analytical solution. However, due to the influence of the radiation conditions,
strong reflections are generated near the boundary, resulting in a certain jitter in the sound
field value near the inner boundary. Upon comparing the TLs at the sound source depth
computed by the analytical solution (red solid line) with the results by the collocation
method (black dashed line), as shown in Figure 3a, the TLs are basically the same. Figure 3b
shows the error between the numerical solution and the analytical solution. Figure 3 shows
that there is a slight difference in the calculation results of the collocation method in the
area beyond 60 m due to the reflection of the radiation boundary.

(a) (b)

Figure 3. The TL curve calculated by the analytical solution (red solid line) and Chebyshev–
collocation spectral method (black dashed line) at the depth of the sound source (a); the error
between the numerical solution and the analytical solution (b).

We use the analytical solution of spherical waves to analyze the accuracy of the
numerical calculation results. The analysis is focused on the result in the nonabsorbent
layer, so the absorption layer is ignored. The error between the numerically calculated
sound field and the analytical solution is measured by the relative L2-norm defined by
Equation (46). Table 3 shows the error in the entire solution domain (except the absorption
layer), and the depth of the sound source varies with the number of discrete points N.
Table 3 also shows that with the increase in N, the calculation error of the Chebyshev–
collocation spectral method gradually decreases, and the numerical calculation accuracy
gradually improves.
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Table 3. The numerical calculation error of the entire solution domain and the depth of the sound
source vary with N.

N Error in the Entire Domain Error at the Depth of the Sound Source

60 1.32700463× 10−1 1.34443432× 10−1

80 4.73780863× 10−3 4.87139228× 10−3

100 2.09898576× 10−3 2.08030059× 10−3

120 1.64301023× 10−3 1.17537743× 10−3

140 1.54173280× 10−3 9.60149598× 10−4

160 1.48522444× 10−3 9.31331082× 10−4

We analyze the execution time of the spectral method as the scales of problem change.
We guarantee that the calculation error in the whole solution domain is on the order of 10−3.
Then, the speed of sound and the size of the solution domain are fixed, the frequency of
the sound source is changed, and the variation in the execution time with the wavenumber
changing in the solution domain is analyzed. Under the premise of ensuring accuracy,
Table 4 shows the change in the truncation order N and the execution time of the program
with the frequency of the sound source. According to Table 4, as the frequency increases,
the wavelength decreases, and the wavenumber contained in the solution domain increases.
To ensure the calculation accuracy, the value of N must be increased, which also makes
the scale of the discrete matrix L of Equation (43) further increase. Similarly, the scale
of solving linear equations of Equation (44) increases, which leads to an increase in the
execution time.

Table 4. The truncation order N and the execution time vary with the frequency of the sound source.

Frequency (Hz) N Execution Time (s)

150 100 14.1058
300 110 27.5516
400 130 77.5650
450 137 105.7993
500 145 145.8439

3.2.2. Ideal Fluid Waveguide

The density of the ocean is uniform at ρ(z) = 1 g/cm3, the speed of underwater sound
propagation is constant at c = 1500 m/s, the sound source is at a depth of 36 m, and the
frequency is 20 Hz. The upper and lower boundaries of the solved rectangular area are
the pressure release boundary conditions, the left boundary is described by analytical
solutions, and the right boundary is described by the radiation boundary condition. The
thickness of the absorption layer is 200 m. Therefore, we mainly analyze the calculation
area within 1600 m in the horizontal direction. The truncation order N = 120 is considered,
and the result is shown in Figure 4.

Figure 4 shows that the sound field solution of the nonabsorbent layer calculated by
the collocation method is very similar to the analytical solution but that there is a small
difference in the position of the sound shadow area. Figure 5 shows the TL curves of the
two calculation methods at a sound source depth of 36 m. The calculation results of the
collocation method and the analytical solution are very similar, but there is a certain error
in the sound shadow area. The result in the sound shadow area is relatively complicated,
and the calculation is difficult, which leads to errors in the calculation of the collocation
method. The analytical solution of the ideal fluid wave is used to analyze the accuracy
of the numerical calculation in the nonabsorbent layer region, and the results are shown
in Table 5. The results in Table 5 indicate that when the value of N increases to 80, the
accuracy of the numerical calculation can reach 10−4. This example is also solved by the
classic Kraken program based on the normal mode method. As shown in Table 5, even if
the number of discrete points is increased, the magnitude of the error is still 10−1, a very
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important reason is that Kraken program uses the normal mode approximation does not
accurately reproduce the field near the sound source. Table 6 shows the errors of the two
numerical calculation methods at the sound source depth of 36 m. The calculation accuracy
of the collocation method is lower at N = 70, and the results of Kraken reach a higher
accuracy of approximately 10−3. The calculation accuracy of the collocation method is
rapidly improved with increasing N. At N = 120, the accuracy of the collocation method
exceeds that of Kraken by approximately 10−4. Comparative analysis indicates that the
accuracy of the Chebyshev–collocation method is higher than that of Kraken, which verifies
the high-precision characteristics of the spectral method. For the above two calculation
examples with complex boundary conditions, the Chebyshev–collocation spectral method
can achieve a higher calculation accuracy when the truncation order is small. For ocean
acoustic propagation examples with complex boundaries and propagation characteristics
that are difficult to solve by other methods, the Chebyshev–collocation spectral method
can be solved efficiently and accurately.

(a) (b)

Figure 4. TL field of an ideal fluid wave: the result of the analytical solution (a), the result of the collocation method (b).

(a) (b)

Figure 5. The TL curve calculated by the analytical solution (red solid line) and the Chebyshev–collocation method (black
dashed line) at the sound source depth (a); the error between the numerical solution and the analytical solution (b).
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Table 5. The numerical calculation error in the entire solution domain varies with N.

N Chebyshev–Collocation Kraken

70 2.06853038× 10−1 2.41551098× 10−1

80 5.67631508× 10−4 2.41551093× 10−1

100 7.09835092× 10−4 2.41551112× 10−1

120 4.75639831× 10−4 2.41551129× 10−1

Table 6. The numerical calculation error at the sound source depth varies with N.

N Chebyshev–Collocation Kraken

70 3.32036066× 10−1 2.06786673× 10−3

80 1.52415237× 10−3 2.06475574× 10−3

100 1.73634299× 10−3 2.06635146× 10−3

120 9.33660302× 10−4 2.06476704× 10−3

4. Conclusions and Outlook

This paper uses the Chebyshev–Galerkin and Chebyshev–collocation spectral meth-
ods to directly solve two-dimensional Helmholtz model equations and uses an analytical
solution to verify the correctness of the two methods. The Chebyshev–Galerkin spectral
method first constructs a trial function that satisfies the boundary conditions, then interpo-
lates at the Gauss–Lobatto node, forms a system of linear equations in the spectral space,
and finally obtains the original function. However, the two-dimensional ocean acoustic
propagation Helmholtz equation is relatively complicated due to the variable boundary
conditions, and the trial function is difficult to construct. Therefore, realistic ocean acoustic
examples can be solved by the more widely applicable Chebyshev–collocation spectral
method. The Chebyshev–collocation spectral method approximates the function value at
the Gauss–Lobatto node, interpolates physical quantities such as the boundary conditions
and sound velocity to the Gauss–Lobatto node, and then directly solves the system of linear
equations in the physical space to obtain the original function. The analytical solution
is used to verify the correctness of the Chebyshev–collocation method, and compared
with the classic Kraken program, the Chebyshev–collocation method has a higher cal-
culation accuracy. The Chebyshev–collocation method can be used to directly solve the
two-dimensional underwater acoustic propagation Helmholtz equation without being
restricted and constrained by other simplified model application conditions and will not
introduce model errors. This spectral method can be used to solve the situation where the
sound velocity in the domain changes with the horizontal and vertical directions, and it
is applicable to Dirichlet Neumann and Robin boundary conditions. The nonflat seabed
and the multilayered medium with strong reflection of bottom sediments are still under
further exploration. The Chebyshev–collocation method could solve the two-dimensional
ocean acoustic Helmholtz equation and obtain high-precision results. It can effectively
solve the ocean sound field when the marine environment does not satisfy the simplified
model. Moreover, high-precision sound field calculation has a wide range of applications
for human life, such as underwater topographic surveys, marine hydrological information
measurements and animal protection.

This paper mainly introduces the use of the Chebyshev–collocation spectral method
to solve relatively simple sound propagation problems in ocean media. The calculation of
more complicated sound propagation examples such as non-flat seabed and the multilay-
ered medium in the actual ocean and the use of parallel methods to increase the calculation
speed are the next key research issues.
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