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Abstract: The accurate classification of reservoir recovery factor is dampened by irregularities such as
noisy and high-dimensional features associated with the reservoir measurements or characterization.
These irregularities, especially a larger number of features, make it difficult to perform accurate clas-
sification of reservoir recovery factor, as the generated reservoir features are usually heterogeneous.
Consequently, it is imperative to select relevant reservoir features while preserving or amplifying
reservoir recovery accuracy. This phenomenon can be treated as a multi-objective optimization
problem, since there are two conflicting objectives: minimizing the number of measurements and
preserving high recovery classification accuracy. In this study, wrapper-based multi-objective feature
selection approaches are proposed to estimate the set of Pareto optimal solutions that represents
the optimum trade-off between these two objectives. Specifically, three multi-objective optimization
algorithms—Non-dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Grey Wolf
Optimizer (MOGWO) and Multi-Objective Particle Swarm Optimization (MOPSO)—are investigated
in selecting relevant features from the reservoir dataset. To the best of our knowledge, this is the
first time multi-objective optimization has been used for reservoir recovery factor classification. The
Artificial Neural Network (ANN) classification algorithm is used to evaluate the selected reservoir
features. Findings from the experimental results show that the proposed MOGWO-ANN outperforms
the other two approaches (MOPSO and NSGA-II) in terms of producing non-dominated solutions
with a small subset of features and reduced classification error rate.

Keywords: oil and gas; recovery factor; reservoir; multi-objective optimization; feature selection;
MOGWO; MOPSO; NSGA-II; classification

1. Introduction

The petroleum sector is characterized by a variety of uncertainties as requirements for
making critical investment decisions. To reduce these uncertainties, many approaches have
recently been implemented in critical sectors like data management, reserve assessment,
and reservoir characterization [1]. As a result, most exploration and production firms
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consider the recovery factor to be a crucial metric, particularly during the reservoir’s initial
life. This is based on the fact that most investment choices are predicated on the quantity
of hydrocarbon that can be recovered from the target inventory using present methods and
operating practices [2]. Furthermore, the recovery factor indicates the recoverable hydrocar-
bon measured in proven reservoirs. Engineers and geologists often estimate a reservoir’s
potential with a high degree of confidence. Consequently, understanding the reservoir
range as well as the recovery rate will aid in effective hydrocarbon production planning.
However, because of their heterogeneity, reservoir data are often noisy and complicated [3].
The reservoir recovery factor cannot be determined due to the heterogeneous characteristics
of the hydrocarbon reservoir. Many reservoir variables have a negative impact on the
recovery factor, resulting in a high risk of significant error. Thus, Artificial Intelligence (AI)
approaches, one of which is Machine Learning (ML), have become necessary to reduce
these inaccuracies and to deal with the complex reservoir datasets in order to properly
identify the recovery factor of reservoirs.

The rapid advancement of big data and analytics provides companies with the op-
portunity to automate high-cost, complicated, and error-prone operations [4]. Several oil
and gas firms are gradually increasing their attempts to seize these possibilities in order to
maximize profits, improve efficiency, and boost safety. While machine learning techniques
in reservoir engineering could provide value to different types of reservoirs, the growth of
unconventional has been marked by a data deluge, owing to the magnitude and velocity
of field development [5]. Despite physics-based approaches such as numerical simula-
tions and analytical modeling continue to be used [6], they pose significant challenges for
unusual assets, specifically:

• There are insufficient solid conceptual models to fully represent the underlying physics.
• Difficult characterization of the inputs needed.
• Sophisticated physics-based systems involve complex run durations, which conflicts

with the rapid decision cycles observed mostly in unusual developments.
• The computing demands of physics-based models typically involve a trade-off be-

tween accuracy and model complexity.

ML is one of the principle research fields of AI. It includes the development, evaluation,
implementation and enforcement of programs that are capable of learning [7,8]. According
to [9], the definition of a general machine learning problem is stated as: “A computer program
is said to learn from experience E with respect to some class of tasks T and performance measure
P, if its performance at tasks in T, as measured by P, improves with experience E”. As stated
by [10], machine learning algorithms can be classified into three major types: supervised
learning, unsupervised learning, and reinforcement learning. This research focuses mainly
on supervised learning, in which the inputs are provided as a labeled dataset, from which
a model is able to learn [11]. The meaning of a labeled dataset is that the desired output for
each dataset is also provided. The main purpose is to learn the function of mapping the
input to the desired output. Common tasks for this type of learning include classification
and regression [12]. Therefore, this paper mainly emphasizes the classification task. For
example, a set of samples introduced by features and consistent class labels is provided,
and the classification consists of learning a model to correctly predict the class membership
of each sample. Figure 1 shows how the supervised learning approach works.
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As previously stated, the primary focus of this paper is the application of a feature
selection approach in a classification process, as indicated by the title. Feature selection
has classically been defined as a selection of k features/measurements from the original
features/measurements m, (k < m), such that the value of a criterion function is optimized
over all subsets of size k [13,14]. In ML tasks, feature selection is important, since most
datasets contain duplicated and irrelevant features [15]. As a result, feature selection tends
to reduce the dimensionality of datasets and pick the most important features to improve
classification performance while decreasing computing cost [16–19]. The primary goal
of feature selection is to choose a subset of features from a dataset that exhibits excellent
classification performance, making it a multi-objective problem [20,21].

A multi-objective problem is a multi-criterion decision-making field that deals with
optimization problems involving more than one objective function to be minimized or
maximized [22]. The output is a set of solutions that describe the optimal trade-off be-
tween competing goals. The multi-objective minimization problem may be expressed
mathematically as follows:

min fk (y) = [f 1 (y), f 2 (y), . . . , fi (y)] (1)

subject to:
gk (y) ≤ 0, i = 1, 2, . . . , m (2)

hk (y) = 0, i = 1, 2, . . . , l (3)

where fk (y) is the k-th objective that is a function of y, y is the decision variables vector,
i denotes the number of objective functions to be reduced. The constraint functions are
gk (y) and hk (y). The trade-offs between conflicting objectives highlight the superiority of
multi-objective algorithm solutions. For example, the i-objective minimization problem
consists of two solutions: c and d. If the following conditions are met, it can be said that c
dominates d or c over d:

∀i: fi (c) ≤ fi (d) and ∃fi (c) < fi (d) (4)

when c is not dominated by any other solutions, c is referred to as a non-dominated solution.
In summary, this study proposes wrapper-based multi-objective feature selection

approaches to approximate the set of Pareto optimal solutions that represents the optimum
trade-off between the number of reservoir features and the classification error rate of the
oil and gas reservoir recovery factor.
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The remainder of the paper is divided into the following sections: Section 2 explains
related studies succinctly. In Section 3, a detailed description of the proposed approaches
is provided. Section 4 presents the implementation of the methodology, while Section 5
discusses the experimental results. Section 6 reports the conclusions of this study.

2. Related Work

Many studies have investigated and conducted research to determine the relation-
ship between the recovery elements and the reservoir’s rock properties. The American
Petroleum Institute (API) developed a connection between reservoir rock properties and
produced fluid characteristics and oil recovery factors in 1967. For limestone, dolomite, and
sandstone formations, API performed research to establish the relationship between the
element of oil recovery and well spacing. Craze et al. [23] used API databases to perform
an experimental analysis to explain how oil recovery is affected by the well spacing, and
provided key parameters regarding the reservoir recovery variables being examined. With
the exception of the greater oil/gas solution rate, Arps and Roberts [24] argue that the final
recovery factor is usually proportionate to the oil gravity. To compute the recovery factor,

Gutherie et al. [25] proposed multiple similarities for sandstone reservoirs with wa-
ter drive mechanisms. Because of oil retractability phenomena caused by hydrocarbon
extraction, Musket et al. [26] proved that recovery factors have an inverse relationship
with oil viscidity, but a direct relationship with how the gas is soluble. Instead of using
experimental or theoretical evidence, API proposed several methodological associations
using real field output data from the period 1957 to 1985 to calculate the recovery factors.
Gulstad [27] proposed using multiple linear regression to identify the recovery factor of
two types of reservoirs (sandstone and carbonate reservoirs) with or without a solution
gas recovery factor. Using model-based multilinear regression, Oseh and Omotara [28]
evaluated the Nigerian delta recovery factor. Similarly, a study was proposed to test the
Nigerian Delta recovery factor for water-driven and depletion reservoirs [29]. Their study
has some limits due to the complexity of the reservoir data.

The study in [30] performed a root-cause analysis of 145 oil and gas projects in order
to investigate deficiencies in production attainment. A thorough statistical study of output
achievement using a detailed worldwide database of oil and gas enterprises was performed.
The findings revealed that low production was because of optimistic assumptions, failures
in the assurance process, and lack of accountability for production which has led to
unreliable predictions. In [31], Meddaugh reported that several key factors were the main
contributors to optimistic predictions, including well location optimization workflows,
areal subsurface model grid size, sparse data bias, and management bias. In [32], the
authors conducted a review on how modeling workflows lead to prediction optimism and
what reservoir designers, both geophysicists and scientists, could do to decrease forecast
optimism obtained when using their subsurface models through a better understanding of
how parameter values are used to restrict models.

Consequently, many studies have been undertaken that use AI and ML methods to
better classify reservoir recovery factor. ANN, genetic algorithm (GA), support vector
regression (SVR), and fuzzy logic are some of the AI/ML methods deployed [33–36]. These
methods have been used in the petroleum industry to improve, discover, and quantify a
variety of properties, leading to remarkable results in terms of reservoir characterization,
rock identification, anomaly detection, and stranded drill pipe classification [37]. However,
such approaches still suffer from problems like local optima stagnation, overfitting, and
a lack of proper architectural guidance, and they have not been able to address the issue
of imbalanced data [34–36]. The ensemble method is another viable ML approach with
promising performance that has been used for oil and gas problems. The ensemble method
primarily involves the mixture of at least two (weak) supervised learner algorithms to
provide an aggregated (final) solution for a given classification or regression tasks. As
reported by [3], for instance, an ensemble estimator model combining wavelet filters with
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GA in addition to the Relief method was developed to approximate the reservoir recovery
factor from data obtain from a US Oil & Gas.

The work in [38] used deep learning to develop a surrogate model for recovery-factor
forecasting. Based on simulation results, the performance of reservoir is dependent on
fault permeability, length, and orientation, as well as undeformed reservoir permeability.
With respect to recovery factor prediction, a dataset consisting of 395 Deepwater Gulf
of Mexico oilfields was used to calculate dimensionless numbers [39]. In the proposed
approach, principal component analysis (PCA) and K-means clustering are applied to
classify oilfields. The relationship between dimensionless numbers and recovery factor is
then determined by partial least square regression.

In addition, Al-Tashi et al. [37] used Binary Grey Wolf Optimizer (BGWO) as a feature
selection method to select relevant features in a reservoir recovery factor problem. The
proposed GWO was implemented with KNN, and its performance was compared with
Binary Dragonfly Algorithm (BDA [40], and the Binary Whale Optimization algorithm
(BWAO) [41]. On the basis of their experimental results, it was reported that BGWO
outperformed BDA and BWAO in terms of selected features and accuracy values. However,
the proposed BGWO was used as a single objective optimization approach. Formulating the
selection of relevant features in reservoir recovery as a multi-objective optimization problem
could select optimum features since sets of non-dominated solutions will be considered.
Moreover, multi-objective optimization techniques can choose optimum features that
provide better results than single-objective optimization approaches in a single run.

Consequently, this study proposes a wrapper-based multi-objective feature selection
approach for selecting optimal features for reservoir recovery factor classification with a
low classification error rate and a small number of reservoir features.

3. Proposed Methods

This section provides clear explanations of the proposed methods; it starts with ANN
classifier used to train the models, followed by the objective function, then the multi-
objective feature selection algorithms: MOGWO followed by MOPSO and the NSGA-II.
This section concludes with the transfer function used to convert the search space to binary
form. Figure 2 illustrates the methodology of this study. Please note that the dataset used
in this study is explained in the following Section 4 Implementation of the methodology.
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3.1. Artificial Neural Network Classifier (ANN)

A neural network consists of neurons organized into multiple layers, where the first
layer receives an input vector and transforms it into an output vector. Each neuron takes
input and applies a function to it, which is typically a non-linear function, before passing
the output to the next layer. [42,43]. The network is generally meant to be feed-forward;
information flows only in one direction: forward, from the input nodes to the hidden nodes
(if any) and finally to the output nodes. The network has no cycles or loops [44].

An ANN classifier is used in order to compute the classification error and estimate the
discrimination value for each feature. ANN has a superior computational time performance
as it only needs to compute the important distances indicated by the selected feature,
resulting in a reduction in the overall computational cost of the classification process [45].
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3.2. Objective Function

As previously stated, while designing a multi-objective issue, there are two objectives:

• Minimizing the number of reservoir data measurements.
• Minimizing classification error rate.

The multi-objective feature selection minimization problem is expressed mathemati-
cally as follows:

minimize OBJ(x) =
{

obj1(x) = K
M K ∈ M, M ∈ R+

obj2(x) = FP+FN
TP+TN+FP+FN × 100 (P + N) ∈ R+ (5)

where M represents the whole measurements of a dataset while K denotes the selected
measurements. True positives, true negatives, false positives, and false negatives are
represented by TP, TN, FP, and FN, respectively. obj1(x) is the first objective, and indicates
the selected measurements, while obj2(x) is the second objective, representing the error
rate of classification.

3.3. Multi-Objective Grey Wolf Optimizer (MOGWO)

MOGWO is a recent effective multi-objective optimizer developed by Mirjalili et al. [46],
which is an extension of the original Grey Wolf Optimizer (GWO) [47], and aims to solve
optimization problems with multiple objectives. Similar to GWO, MOGWO consist of four
different wolves namely Alpha (α), Beta (β), Delta (δ) and Omega (ω) that form the social
hierarchy of grey wolf. The best three solutions are α, β, and δ, whereas ω is the rest of
solution. Mathematically, three well-designed stages that GWO obeys during the process
of optimization. First, the encircling behavior was mathematically calculated as follows:

→
D =

∣∣∣∣→C ×→Xp(t)−
→
X(t)

∣∣∣∣ (6)

→
X(t + 1) =

→
Xp(t) +

→
A×

→
D (7)

where t denotes the iteration number,
→
X and

→
Xp are two vectors that describe the wolf’s

and prey’s locations, respectively, while
→
A and

→
C are two vectors coefficient that are given

as follows: →
A = 2

→
a ×→r1 −

→
a (8)

→
C = 2×→r2 (9)

where
→
r1 and

→
r2 are two random vectors that can have values in the range of [0, 1], whereas

→
a is a vector that linearly decreases over the iterative process from 2 to 0.

In addition, GWO does not change the three best solutions (α, β and δ), while it forces
the other candidate solutions that belong to ω to change their positions to in order to match
them. As a result, the GWO’s hunting process is performed in accordance with several
equations for each candidate solution, as follows:

→
Dα =

∣∣∣∣→C1 ×
→
Xα −

→
X
∣∣∣∣ (10)

→
Dβ =

∣∣∣∣→C2 ×
→
Xβ −

→
X
∣∣∣∣ (11)

→
Dδ =

∣∣∣∣→C3 ×
→
Xδ −

→
X
∣∣∣∣ (12)

→
X1 =

→
Xα − A1 ×

( →
Dα

)
(13)
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→
X2 =

→
Xβ − A2 ×

( →
Dβ

)
(14)

→
X3 =

→
Xδ − A3 ×

(→
Dδ

)
(15)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(16)

Moreover, in GWO,
→
a represents the attacking procedure which comprises random

vectors between [−a, a] that linearly decrease from 2 to 0 as the number of iterations
increases. The vector

→
a is mathematically expressed as follows:

→
a = 2− t× 2

maxIter
(17)

where t is the current iteration, while maxIter denotes the maximum number of iterations.
For GWO to be suitable for multi-objective problems, two new procedures were

made as follows: an archive is introduced that is responsible for storing the obtained
non-dominated solutions. The second procedure develops a leader selection strategy for
choosing the best three solutions, represented by α, β, and δ, from the archive. Additionally,
there is a controller within the archive responsible for deciding which solutions are to
be saved in the archive and for controlling the archive if it becomes full. The attained
non-dominant solutions are contrasted with previous representatives of the archive in each
iteration. As a result, the following scenarios could be considered for an archive:

• The new solutions should not be stored in the archive if dominated by existing ones
in the archive.

• Existing members in the archive should be omitted if new solutions dominate them;
the new solutions will be stored instead of the omitted ones.

• In case neither solution (i.e., the existing and the new one) dominates the other, the
new solutions will be stored in the archive.

• In case the archive becomes full, the grid strategy is used to omit the most crowded
segment solutions that are stored in the archive and insert the new solutions.

On the basis of the concept of the Pareto front, solutions cannot be easily compared;
therefore, a leader selection technique is proposed to solve this problem. In GWO, the
best three solutions, represented by α, β, and δ, act as leaders to guide other search agents
towards promising regions that can lead to better solutions and converge to the global
optimal solution. The leader selection selects the smallest crowded portion of the searching
space and offers one of its non-dominated solutions such as α, β, or δ wolves.

The selection procedure is performed using the roulette-wheel method according to
the likelihood for hypercubes, as given in the following:

Pj =
m
Hj

(18)

where m is a constant that can have a value more than one while H represents the total
number of gained Pareto front in the jth segment.

3.4. Multi-Objective Particle Swarm Optimization (MOPSO)

The concept of the MOPSO algorithm is to have a global repository where each
particle deposits its flight experiences after completion of a flight cycle [48]. Moreover,
the fitness values of each particle build a geographical system that helps to update the
repository. Particles use the repository to select a leader that is responsible for guiding the
search, where each particle may select a different leader. The algorithm strategies rely on
hypercubes that can be produced by splitting the explored search space. The following
presents the MOPSO Algorithm 1:
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Algorithm 1 MOPSO Algorithm

1. Initialize the population N, and the velocity of all particles (set to zero initially).
2. Evaluate the fitness of all particles in POP.
3. Particles positions which denote non dominant vectors in the repository represented by REP

are stored.
4. Generate hypercubes of the searching space that has been explored so far. Using the

generated hypercubes, locate the coordinates of particles where their finesses form a
coordinate system.

5. Initialize the history of all particles and store it in REP.
6. while t < maximum number of cycles do

For i = 1: N

(a) Calculate the velocity based on Equation (19).
(b) Update the position of all particles:

N[i] = N[i] + V[ i]

End for
(c) Maintain the particulate matter inside the search area if it goes past its limits

(generating solutions that are out of search space are not considered).
(d) Evaluate the fitness of all particles.
(e) The contents of REP and the geographical representations of the hypercubic

particles are updated including removing dominant sites from the archive. In
addition, unreported places are added. Until the size of the archive is complete, a
high priority is given to particles located in less crowded target areas over particles
that reside in densely populated regions.

(f) In case a particle position is greater than its previous position, its position changes
as follows: The criterion for determining the location from memory is precisely that
Pareto superiority should be applied

• The position in memory is kept in case the current position is dominated by the
position in memory, else the position in the memry is replaced by the
current position.

• In case none of the current position or the position in momery dominates the
other, then one of them is selected randomly.

(g) t = t + 1.

END WHILE

The following expression shows the computation speed of particle i:

V[i] = W × V[i] + R1 × (PBESTS[i] − N[i]) + R2 × (REP[h] − N[i]) (19)

where w denotes the inertia weight that has a value of 0.4. R1 and R2 are two numbers
generated with a random distribution in the range of [0, 1]. PBES[i] denotes the best
historical position of particle i. REP[h] is a taken value from the repository where h is
selected based on the following: hypercubes that have more than one particle are equivalent
to the division of any number z > 1 (in this work, z = 10) by the population size in it. This
procedure attempts to reduce the fitness of these hypercubes which can generate additional
particles and as illustrated in [5], this approach is a one way of fitness sharing [5]. To
select hypercube where the relevant particle is taken, the roulette wheel selection method
is implemented. After hypercube selection, a particle is chosen randomly. The value of
particle i is denoted as N[i].

3.5. Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

According to [49], due to its quick non-dominated trial, simple congested comparison
operator, and fast overcrowded distance valuation, NSGA-II can be considered to be one of
the most prominent optimization algorithms, efficiently solving problems with multiple
objectives. The work in [50] implemented the NSGA-II approach, and it was shown that
NSGA-II outperforms PAES and SPEA in obtaining diverse solutions. Generally, the steps
of NSGA-II are described as follows:
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• Step 1: Initialize the population based on limitation and the issue.
• Step 2: Non-domination sort Sorting is performed with a focus on population non-

dominance criterion.
• Step 3: Crowd distance After the sorting step, assigning crowding distance is per-

formed. Individuals are chosen according to their crowding distance and ranking.
• Step 4: Selection A binary selection tournament is applied along with crowded-

comparison operator in order to select individuals.
• Step 5: Crossover and mutation of real coded GA are implemented.
• Step 6: Recombination and selection Current population and offspring population are

merged together. The population of next generation is selected, and it is filled till the
size of its population is more than the size of the current population.

3.6. Transfer Function

Initially, MOGWO and MOPSO were suggested to solve continuous optimization prob-
lems. The problems of multi-objective feature selection cannot be explicitly addressed. The
search space needs to be transferred from continuous into a binary one, so the algorithms
suit the nature of feature selection.

The search space bounds for feature selection are 0 and 1, indicating that feature
selection is a binary dilemma. Using original MOGWO and MOPSO to handle the feature
selection dilemma is not an option. As a result, it is crucial to develop a binary version
of MOGWO. The transfer function in (20) is introduced to convert the positions of search
candidates for the MOGWO and MOPSO algorithms to a binary search space [51,52]:

S(x) =
1

1 + e(−10∗(x−0.5))
(20)

4. Implementation of the Methodology

This section describes the dataset used to implement this study as well as the parame-
ter settings of the multi-objective algorithms.

4.1. Dataset

The experimental data used in this investigation were obtained from the literature [3,23,27].
As shown in Table 1, the dataset contains 367 sandstone and carbonate lithology primitive
reservoirs, of which 209 reservoirs are driven by dissolved gas and 158 reservoirs are driven
by water. As a result, Table 1 illustrates the study’s target class.

Table 1. Reservoir class types [3,23,27].

Class Label Reservoir Class #Data Samples

0 Sandstone reservoirs (Water drive) 128 samples
1 Carbonate reservoirs (Water drive) 30 samples
2 Sandstone reservoirs (Solution gas drive) 139 samples
3 Carbonate reservoirs (Solution gas drive) 70 samples

Table 2 indicates that 23 reservoir measurements were used as input data for de-
termining the reservoir’s recovery factor. As a result, the input data used in this study
were actual data performance from oil and gas fields in the United States. These input
data/measurements were acquired via well logs, core analyses, sensors, and drill stem
tests performed during real-world operations.
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Table 2. Measurements of the reservoir [3,23,27].

Measurement Name Abbreviation

1 Bo at initial pressure Boi
2 Rock permeability to air K
3 k/Uob ratio k/Uob
4 Temperature T
5 Oil Formation Volume Factor Bo
6 Oil viscosity at initial pressure Uoi
7 Water viscosity Uw
8 Oil Formation Volume Factor at abandonment pressure Boa
9 Pressure at the end of Primary Pep
10 Oil viscosity at bubble point Ubp
11 Solution gas ratio at bubble point Rsb
12 Oil viscosity at Abandonment pressure Uoa
13 Solution gas ratio at abandonment pressure Rsa
14 Net pay thickness h
15 Effective Porosity Por
16 Connate water saturation Sw
17 Initial reservoir pressure Pi
18 Solution gas ratio at initial reservoir pressure Rsi
19 Bo at bubble point pressure Bob
20 Oil Gravity API
21 Calculated (OOIPcal) OOIPcal
22 Pressure ratio Pb/Pa
23 Original-oil-in-place at initial pressure as reported by the operator OOIP

4.2. Parameter Settings

This subsection describes the parameter settings of the three approaches; the dataset
was divided into two sets at random: training (70%); and testing and validation (30%). With
a random seed, all algorithms were executed 10 times using the MATLAB 2017a platform.
The ANN classifier was configured with 10 hidden layers and a learning rate of 0.8. The
three algorithms used in this study are wrapper-based techniques, which need the use of a
classifier for evaluating the classification error for the measure chosen during the training
evolutionary phase. Table 3 presents the parameter settings of the three algorithms.

Table 3. Parameter setting of the three multi-objective algorithms.

Parameter MOGWO MOPSO NSGA-II

Max Iteration 100 100 100
Number of Populations 50 50 50

Storage Capacity 100 100 100
Alpha 1.5 1.5 -
Beta 2 2 -

Gamma 4 4; -
nGrid 20 20 -

c1 - 1; -
Wdamp - 0.99; -

c2 - 2; -
W - 0.5; -

pMutation - - =0.4;
Mu - 0.1; 0.1;

nMutation - - Round (pMutation *nPop);
pCrossover - - 0.9
nCrossover - - 2 *round (pCrossover *nPop/2);

5. Results and Discussion

This section presents the results and comparison of the three algorithms, as well as
the discussion.
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5.1. Experimental Results

This subsection presents the obtained results for the three proposed approaches. It
starts first with the proposed MOGWO-ANN. As can be seen from Figure 3, the x-axis
represents the number of measurements while the error rate of classification is on the y-axis.
Figure 3 illustrates that the MOGWO-ANN produced seven non-dominated solutions that
efficiently selected fewer measurements and obtained a lower error rate with respect to
classification than using all original features, where the error rate using the original feature
was 0.229. The proposed MOGWO-ANN selected approximately 40% from the original
features (8 from 23). A clear detail of the produced non-dominated solutions is shown in
Table 4, where the best attained result in solution 1 with a lower classification error rate of
0.120 and a small number of measurements, with the eight most critical measurements of
the reservoir heavily contributing to the accurate classification of the reservoir recovery
factor which are (h, API, Pep, Uoa, Uw, Bob, OOIP and OOIPcal).
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Table 4. Results of the MOGWO-ANN.

#No of Solutions #No Selected Features Error Rate Measurements Selected

1 8 0.120 h, API, Pep, Uoa, Uw, Bob, OOIP and OOIPcal
2 7 0.128 API, Pep, Uoa, Uw, Bob, OOIP and OOIPcal
3 1 0.425 Bob
4 5 0.130 h, API, Bob, OOIP and OOIPcal
5 2 0.199 Bob and OOIP
6 4 0.133 Pep, Bob, OOIP and OOIPcal
7 3 0.143 Bob, OOIP and OOIPcal

Secondly, the MOPSO-ANN approach. As can be seen from Figure 3, the horizontal
axis and the vertical axis represent the number of measurements and the error rate of
classification, respectively. Figure 4 shows that the MOPSO-ANN produced five non-
dominated solution which are efficiently able to select fewer measurements and obtain a
less error rate of classification than using all original features, where the error rate using the
original feature is 0.229. MOPSO-ANN selected nine features from the original 23 features,
which is approximately 45%. A clear detail of the produced non-dominated solutions is
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shown in Table 5, where the best obtained result in solution 4 with less classification error
rate of 0.136 and small number of measurements with 9 most critical measurements of the
reservoir that contribute to accurate classification of the reservoir recovery factor which are
(k/uob, Sw, PI, Pep, Uoi, Rsa, Bob, Bol and OOIP).
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Table 5. Results of the MOPSO-ANN.

#No of Solutions #No Selected Features Error Rate Measurements Selected

1 6 0.148 Sw, PI, Pep, Uoi, Bob and OOIP
2 5 0.162 Sw, Pep, Uoi, Bob and OOIP
3 8 0.138 Sw, API, PI, Pep, Uoi, Rsa, Bob and OOIP
4 9 0.136 k/uob, Sw, PI, Pep, Uoi, Rsa, Bob, Bol and OOIP
5 7 0.146 Sw, PI, Pep, Uoi, Rsa, Bob and OOIP

Lastly, the NSGAII-ANN approach. As can be seen from Figure 4, the horizontal axis
and the vertical axis represent the number of measurements and the error rate of classi-
fication, respectively. Figure 5 shows that NSGAII-ANN produces nine non-dominated
solution which efficiently can select fewer measurements and obtain a less error rate of
classification than using all original features, where the error rate using the original fea-
ture is 0.229. MOPSO-ANN selected 14 features from the original 23 features, which is
approximately 55%. A clear detail of the produced non-dominated solutions is shown in
Table 6, where the best obtained result in solution 2 with a lower classification error rate of
0.112 and the 14 most critical measurements of the reservoir contributing to the accurate
classification of the reservoir recovery factor, which are (h, Sw, T, API, PI, Pep, Pb/Pa, Uoa,
Rsb, Rsa, Bob, Boa, OOIP and OOIPcal).



J. Mar. Sci. Eng. 2021, 9, 888 13 of 18
J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 14 of 19 
 

 

 

Figure 5. Non-dominated solutions obtained by NSGAII-ANN. 

Table 6. Results of the NSGAII-ANN. 

#No of Solutions #No Selected Features Error Rate Measurements Selected 

1 2 0.216 Bob and OOIP 

2 14 0.112 
h, Sw, T, API, PI, Pep, Pb/Pa, Uoa, Rsb, Rsa, 

Bob, Boa, OOIP and OOIPcal 

3 4 0.145 Pep, Bob, OOIP and OOIPcal 

4 3 0.206 Uw, Bob and OOIP 

5 8 0.123 Sw, PI, Bp, Pep, Bob, Boa, OOIP and OOIPcal 

6 11 0.115 
Por, k/uob, Sw, PI, Pep, Uw, Rsi, Bob, Boa, 

OOIP and OOIPcal 

7 6 0.144 Sw, T, Pep, Bob, OOIP and OOIPcal 

8 7 0.128 PI, Pep, Rsi, Bo, Bob, Boa and OOIP 

9 12 0.113 
Sw, T, API, Pep, Pb/Pa, Uoi, Uoa, Rsa, Bob, Boa, 

OOIP and OOIPcal  

5.2. Comparison of Algorithms 

In this subsection, the three algorithms were compared against each other in order to 

clearly state which method perform best. As can be seen from Figure 6, the reservoir data, 

the error rate, and the number of measurements using all measurements are illustrated 

above the graph. The number of measurements chosen is shown by the x axis, while the 

classification error rate is represented by the y axis. The one in red color represents 

MOGWO-ANN approach, blue color represents MOPSO-ANN, and the cyan color indi-

cates the NSGAII-ANN. 

As illustrated in Figure 6, the MOGWO-ANN approach attained better results than 

both the MOPSO-ANN and NSGAII-ANN methods, both in number of measurements 

and the obtained error rate. It produced seven solutions, seven of them have less error 

rate compared to the error rate of the original measurements. Additionally, it outperforms 

both NSGAII-ANN and MOPSO-ANN in terms of the reduction of measurement and er-

ror rate. Nevertheless, MOGWO-ANN produced one solution contains only one measure-

ment with high error rate, which is normal. NSGAII-ANN produced nine solutions which 

Figure 5. Non-dominated solutions obtained by NSGAII-ANN.

Table 6. Results of the NSGAII-ANN.

#No of Solutions #No Selected Features Error Rate Measurements Selected

1 2 0.216 Bob and OOIP

2 14 0.112 h, Sw, T, API, PI, Pep, Pb/Pa, Uoa, Rsb, Rsa, Bob,
Boa, OOIP and OOIPcal

3 4 0.145 Pep, Bob, OOIP and OOIPcal
4 3 0.206 Uw, Bob and OOIP
5 8 0.123 Sw, PI, Bp, Pep, Bob, Boa, OOIP and OOIPcal

6 11 0.115 Por, k/uob, Sw, PI, Pep, Uw, Rsi, Bob, Boa,
OOIP and OOIPcal

7 6 0.144 Sw, T, Pep, Bob, OOIP and OOIPcal
8 7 0.128 PI, Pep, Rsi, Bo, Bob, Boa and OOIP

9 12 0.113 Sw, T, API, Pep, Pb/Pa, Uoi, Uoa, Rsa, Bob, Boa,
OOIP and OOIPcal

5.2. Comparison of Algorithms

In this subsection, the three algorithms were compared against each other in order to
clearly state which method perform best. As can be seen from Figure 6, the reservoir data,
the error rate, and the number of measurements using all measurements are illustrated
above the graph. The number of measurements chosen is shown by the x axis, while
the classification error rate is represented by the y axis. The one in red color represents
MOGWO-ANN approach, blue color represents MOPSO-ANN, and the cyan color indicates
the NSGAII-ANN.
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Figure 6. Comparison between MOGWO-ANN, MOPSO-ANN and NSGAII-ANN.

As illustrated in Figure 6, the MOGWO-ANN approach attained better results than
both the MOPSO-ANN and NSGAII-ANN methods, both in number of measurements
and the obtained error rate. It produced seven solutions, seven of them have less error
rate compared to the error rate of the original measurements. Additionally, it outperforms
both NSGAII-ANN and MOPSO-ANN in terms of the reduction of measurement and error
rate. Nevertheless, MOGWO-ANN produced one solution contains only one measurement
with high error rate, which is normal. NSGAII-ANN produced nine solutions which also
good in terms of error rate compared to the one of the original measurements. However,
it comprises more measurements compared to MOGWO-ANN and MOPSO-ANN. The
MOPSO-ANN produced five solutions only, with a lower error rate compared to the error
rate of the original data. Nevertheless, the error rate obtained by MOPSO-ANN is worse in
most cases compared to NSGAII-ANN and MOGWO-ANN.

A further comparison was performed among the statistical results of for number of
selected measurements obtained by MOGWO-ANN, MOPSO-ANN and NSGAII-ANN.
First, it is obviously shown in Table 7 that MOGWO-ANN attains the smallest average
number of measurements with the average of 4.29, compared to MOPSO-ANN and NSGAII-
ANN, with averages of 7 and 7.45 measurements, respectively.

Table 7. Results of the statistical analysis on the number of selected measurements.

Measures MOGWO-ANN MOPSO-ANN NSGAII-ANN

Min 1 5 2
Max 8 9 14

Range 7 4 13
STD 2.56 1.58 4.19

Average 4.29 7 7.45
Computational
Time/Minutes 109 150.84 127.84
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Similarly, in terms of minimum selected measurements, maximum selected measure-
ments as well as the computational time spent, in most cases the MOGWO-ANN obviously
outperforms the benchmarking methods MOPSO-ANN and NSGAII-ANN. In terms of the
range between the minimum and maximum selected measurements as well as standard
division the MOPSO-ANN outperformed the other two approaches. In summary in most
cases the MOGWO-ANN approaches dominates both NSGAII-ANN, as well as MOPSO-
ANN, especially in terms of the reduction of measurements as well as the computational
time. This is due to the unique properties that MOGWO owns such as the same number of
parameters as well as the small memory size it requires. A complete discussion is provided
in the next section.

5.3. Discussion

The findings demonstrated that MOGWO-ANN outperforms the other two algorithms
in most cases. This is due to the fact that MOGWO employed a variety of strategies to
keep the selection of wolf leader diverse. It also contains a regulator that regulates which
solutions are saved in the archive and nominate the leader that is in charge of selecting the
best option to maintain the variety of the wolves and protect them from being imprisoned
in local areas, the algorithm’s unique properties, which allow it to maintain the balance
of two essential elements, exploration and exploitation, resulting in the escape of being
trapped in local optima. Having fewer parameters is another benefit of this approach
over others. Furthermore, it requires a minimal amount of memory as a result of having a
single position vector that is more useful for big datasets in the matter of time consuming,
whereas MOPSO has the vectors of position and velocity. In addition, the leader selection
mechanism selects the less congested part of the search area and presents one of the non-
dominant solutions, such as alpha, beta, or delta wolves, that are temporarily omitted so
that selecting the same solutions is prevented, and then when the maximum iteration is
finished, the optimal solutions are archived as non-dominated solutions.

Moreover, a further component is that the gird technique, which is accountable for
omitting the existing solution once the archive becomes full and adding a better solution,
whereas MOPSO stores the previously found solutions, resulting in repeated solutions,
which is the main cause of the issue of premature convergence. Correspondingly, the NSGA-
II used an identical method to store non-dominated solutions. The NSGA-II additionally
implements different strategies such as mutation, which may greatly impact the search.
Choosing only one solution from the acquired non-dominated solution, on the other hand,
is regarded as a serious challenge. In the problem of feature selection, there are two
competing aims: a trade-off between reducing feature subsets and optimizing classification
performance when choosing among them.

6. Conclusions

A multi-objective feature selection approach based on three algorithms, namely,
MOGWO, MOPSO and NSGA-II, was proposed for the classification of reservoir recovery
factor. The ANN classifier was applied to assess the goodness of the selected features and
sigmoid transfer function employed to transmit the search space into a discrete one to
satisfy the feature selection condition. The findings showed that MOGWO-ANN produced
better results compared to the other two algorithms in terms of reducing the number of
measurements, the error rate, and the computational time. The following summarizes the
major contributions of this work:

• Multi-objective optimization algorithms have efficiently addressed complex reservoir
data and accurately classified the reservoir recovery factor.

• Eight significant reservoir measurements that contribute to recovery factor were
identified by MOGWO-ANN, namely k/uob, Sw, PI, Pep, Uoi, Rsa, Bob, Bol and OOIP.

• In this research, MOGWO-ANN was considered to be the best approach for choosing
the most useful measurements of the U.S.A. reservoir data.
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The multi-objective feature selection approaches in this research are essential for
dealing with the oil and gas domain to identify informative measurements with high
classification performance. For future work, other oil and gas big data will be investigated
as well other multi-objective optimizations algorithms such as multi-objective whale op-
timization algorithm, multi-objective arithmetic optimization algorithm could be used.
Additionally, different classifiers could be used to assist the selected measurements.
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