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Abstract: This study aimed to highlight a general lack of clarity regarding the scale of the temporal
averaging implicit in Ekman-type models. Under the assumption of time and depth-dependent eddy
viscosity, we present an analytical Fourier series solution for a wave-modified Ekman model. The
depth dependence of eddy viscosity is based on the K-Profile Parameterization (KPP) scheme. The
solution reproduces major characteristics of diurnal variation in ocean velocity and shear. Results
show that the time variability in eddy viscosity leads to an enhanced mean current near-surface and
a decrease in the effective eddy viscosity, which finally results in an intensified near-surface shear
and wakes a low-level jet flow. Rectification values are dominated by the strength of diurnal mixing,
and partly due to the nonlinear depth dependence of the eddy viscosity.

Keywords: surface current; Ekman model; diurnal cycle; eddy viscosity; Fourier series expansion

1. Introduction

Accuracy of the vertical structure of near-surface flow is of prime importance for
modeling the horizontal transport of pollutants, algae, chlorophyll, and so on. Though there
are some discrepancies between the observation and classical Ekman theory, the latter is
still the foundation of our understanding of ocean surface currents. The turbulent mixing in
the ocean boundary layer is known to vary with time, and many affected physical processes,
such as surface gravity waves, air entrainment, solar heating, density stratification, and
Langmuir circulations are not fully understood yet [1–4].

Diurnal heat flux between the air–sea boundary layer results in a daily cycle of
temperature, stratification, and mixing in the upper ocean, which probably leads to a
diurnal cycle in eddy viscosity. Recent observations declare the importance of diurnal
variations of stratification and eddy viscosity [1,2,5,6]. Shrira and Almelah [7] suggested
that the Ekman theory should be extended to take into account time-and depth-dependent
eddy viscosity, which is expected to be a better reflection of reality. McWilliams et al. [8]
used Large Eddy Simulation (LES) to prove that the effective eddy viscosity should not be
horizontally uniform or isotropic, but anisotropic vectors.

Observations proved the effects of surface gravity waves cannot be neglected in the
ocean surface current. Following the idea that the wave-averaged Stokes drift should also
be taken into account in the Ekman model by Huang [9], the wave-modified Ekman model
was analyzed theoretically [10–15] and numerically by wave-ocean coupled models [16,17]
or LES [3,18,19].

Most previous studies about the ocean surface boundary layer are based on the as-
sumptions of independence of time of both eddy viscosity and the Stokes drift. What
happens without this assumption is that one of the issues need to be interpretation. This
work was inspired by the study of Wenegrat and McPhaden [6], which applied the ap-
proaches used extensively in the dynamics of low-level jets in the atmospheric boundary
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layer [20–22] to oceanography. As pointed out in Wenegrat and McPhaden [6], under-
standing the effect of the time variability in eddy viscosity is critical to proper use of time-
averaged observations, since observations are often averaged in different time-scales in
order to remove noise contamination. Under the assumption of time- and depth-dependent
eddy viscosity, we propose a Fourier series solution for a non-stationary Ekman problem,
discuss the qualitative characteristics of this solution, and evaluate the rectification of
diurnal eddy viscosity.

The paper is organized as follows. In Section 2, we provide the mathematical model,
then a Fourier series solution for the time- and depth-dependent viscosity is derived in
Section 3. Section 4 is mainly about the discussion of the solution: the sensitivity to Fourier
modes is firstly tested, then a scenario of a diurnal cycle of KPP eddy viscosity in a wave-
modified Ekman model is presented; and finally, the rectification effect is conducted. Our
findings and conclusions are summarized in the last section.

2. Basic Equations and Boundary Conditions

When the effects of random surface waves are considered, with zero horizontal
pressure gradient and advection and no momentum flux through the lower boundary
layer, the wind-driven horizontal current satisfies the following modified momentum
equation [15,17,23,24] if we assume that the wave, velocity, and turbulent properties are
uniform horizontally:

∂U
∂t

=
∂

∂z

[
Av

∂U
∂z

]
− i fcorU − i fcorUs − Twds, (1)

where U = U(z, t) = u(z, t) + iv(z, t) is the complex horizontal velocity in the x− y plane,
and the horizontal coordinate axes are fixed on the still water level with z = 0. The
schematic diagram of the coordinate system is shown in Figure 1, in which we assumed the
wave direction is the same as the wind stress. However, in nature, the wave direction does
not need to be the same as the wind, and there always exists a wind–wave misalignment.
i =
√
−1, fcor is the vertical component of the Coriolis frequency and t is time, Av is

the vertical eddy viscosity, Us = us + ivs is the complex Stokes drift, and Twds is the
wave-induced momentum transfer from waves to the mean flow due to the dissipation
of wave energy. The velocity U discussed here is the quasi-Eulerian current, which is
equal to the Lagrangian mean current minus the Stokes drift and can be understood as the
Eulerian-mean current, as stated by Jenkins [23,25] and Perrie et al. [16].

Figure 1. Schematic diagram of the wave-modified Ekman coordinate system. The red vector denotes
wind stress τa, the blue sinusoidal curve represents the propagation of waves, the blue vectors are
the Stokes drift at selected depth, hs is the Stokes depth scale, and hb is the boundary layer depth.
An example of the eddy viscosity A(z) in KPP is shown by the grey line.
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The vertical eddy viscosity is generally a function of both time and space. To better
explain the effects of the near-surface ocean diurnal cycle on horizontal currents in the
ocean surface boundary layer, a time-varying turbulent viscosity is considered. Following
Zhang and Tan [17] and Wenegrat and McPhaden [6], assuming the vertical eddy viscosity
varies with both time and depth, and the dependence on time and depth is non-related,
then it can be approximately written as

Av(z, t) = A(z)M(t), (2)

which ensures the known eddy viscosity can be separable in time and space. The time
dependence takes a particular form

M(t) = 1 + δ cos(ωt), (3)

where ω = 2π/86,400 stands for the diurnal frequency, which also equals to the angular
velocity of the Earth, and δ ∈ [0, 1) can be adjusted to determine the strength of the periodic
cycle of mixing. This assumption was commonly used in the study of the dynamics of low-
level jets in the atmospheric boundary layer [20,22,26,27]. Applied to the oceanographic
problem by Wenegrat and McPhaden [6], based on the observational data at the tropical
Atlantic from 13 October 2008 to 6 January 2009, which obtained the diurnal cycle of near-
surface eddy viscosity [5] and suggested a sinusoidal time-dependence is a reasonable first
approximation, as shown in Figure 1 of Wenegrat and MaPhaden [6]. This assumption was
accepted by other authors and used in diurnal cycling of submesoscale dynamics [28–30].

For the depth dependence of eddy viscosity A(z), it can be parameterized as the
simplified K-Profile Parameterization (KPP) scheme [1,8,15,31], which can be formulated
as the following:

A(z) = c1u∗hbG0(σ), G0(σ) = σ(1− σ)2, hb = c2
u∗
| fcor|

, σ = − z
hb

, (4)

In which u∗ is the oceanic friction velocity, hb is the boundary layer depth, and c1
and c2 are two constants. The normalized depth σ increases from 0 at the surface to 1 at
the bottom of the boundary layer. The values of c1 and c2 are taken as c1 = κ = 0.4 to be
consistent with a wall-bounded similarity layer (i.e., log layer), where A(z)→ −κu∗z as
z→ 0, and c2 is taken as 2.0, which is obtained by fitting the viscosity profiles of the LES
presented by McWilliams et al. [8]. As shown by Song and Xu [15], the wave-modified
Ekman current solutions calculated with the choice of c1 = 0.4 and c2 = 2.0 exhibit good
agreement with those well-known published observational data of the Ekman layer, and the
solutions are not sensitive to these two constant parameters. By the way, in order to avoid
zero eddy viscosity, the vertical coordinate always starts from z = −1 m to the rounding of
boundary layer depth.

The surface boundary condition for the wave-modified Ekman current is

Av
∂U
∂z

=
τa

ρw
− τin

ρw
, z = 0, (5)

where ρw is the water density, τin is the reduction of wind stress due to wave generations,
and τa is the complex wind stress, computed from surface wind field U10 at 10 m height,

τa = τax + iτay = ρaCd|U10|U10=ρwu2
∗ϑ̂∗, (6)

where ρa is the air density, ϑ̂∗ is the unit vector in that direction, and Cd is the air–sea drag
coefficient, which is related to U10 by the relation [32]

Cd = (0.8 + 0.065|U10|)× 10−3. (7)
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The lower boundary condition is taken as a no-slip bottom boundary

U → 0, z = −H. (8)

Generally, the lower boundary is assumed to lie well below the surface boundary
layer. Here, we assume that H = −hb. The influence of this assumption has been examined
with different c2; it will not change the pattern of the results shown below, and it generally
satisfies the bottom boundary condition in our model.

From the above momentum, for Equation (1), along with boundary condition (5),
three wave-related terms were included in the Ekman model, namely, the Coriolis–Stokes
Force (i fcorUs, here after CSF), the reduction of wind stress due to wave generations (τin),
and momentum transfer from waves to the mean flow due to wave dissipation Twds,
in which τin and Twds can be estimated by the source terms from a directional spectral wave
prediction model, which act to transfer momentum from wind to wave and wave to ocean,
as follows [13,17,23]:

τin = τinx + iτiny = 2πρw

∫∫ f
k

KSin( f , θ)d f dθ, (9)

Twds(z) = Twdsx(z) + iTwdsy(z) = 4π
∫∫

f KSds( f , θ)e2kzd f dθ, (10)

where f is the frequency of the wave, k is the moduli of the horizontal wavenumber K and
K = kx + iky = k cos θ + ik sin θ, their relationship is given by the deep water dispersion
relation ω2 = (2π f )2 = gk, and θ is the angle between the wave vector and the x-axis.
Sin( f , θ) is the source term of wind input energy to waves, and Sds( f , θ) is the source
term of wave energy loss due to wave dissipation; details of the related mechanisms and
parameterization schemes are described in third-generation WAM-type models [33,34].
Stokes drift Us can be expressed as in Kenyon [35]

Us(z) = 4π
∫∫

f kE( f , θ) · (cos θ + i sin θ)e2kzd f dθ, (11)

where E( f , θ) is the directional frequency spectrum of surface waves.

3. Solutions

Transforming U(z, t) = G(z, t) exp(−i fcort) reduces (1) to

∂G
∂t

=
∂

∂z

[
Av

∂G
∂z

]
+ D0(z, t), (12)

where
D0(z, t) = −[i fcorUs + Twds] exp(i fcort). (13)

Using (2) and (3), and transforming the time coordinate, such that ζ = t+ δ sin(ωt)/ω,
gives

∂G(z, ζ)

∂ζ
=

∂

∂z

[
A(z)

∂G(z, ζ)

∂z

]
+ D1(z, ζ), (14)

where

D1(z, ζ) =
D0(z, t)

M(t)

∣∣∣∣
ζ=t+δ sin(ωt)/ω

. (15)

Substituting (4) into (14) and (15), the wave-modified equation of (1) can be written as

∂G
∂ζ
− c1| fcor|

c2
x2(1− x)

∂2G
∂x2 −

c1| fcor|
c2

x(2− 3x)
∂G
∂x

= D(x, ζ), (16)
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where
x = 1− σ = 1 +

z
hb

, (17)

D(x, ζ) = D1((x− 1)hb, ζ). (18)

Then, the boundary conditions (5) and (8) become

x2(1− x)
∂G
∂x

∣∣∣∣
x→1

= τ ≡ (τa − τin)

c1u∗ρw
P(ζ), (19)

where

P(ζ) =
exp(i fcort)

M(t)

∣∣∣∣
ζ=t+δ sin(ωt)/ω

, (20)

and
G(x, ζ)|x→0 = 0. (21)

Following Song and Xu [15], a complex Fourier series solution can be founded by
expanding G(x, ζ) and forcing variables D(x, ζ), τ(ζ) into Fourier series

G(x, ζ) =
+∞

∑
n=−∞

Gn(x) exp[i( fcor + 2πνn)ζ], (22)

D(x, ζ) =
+∞

∑
n=−∞

Dn(x) exp[i( fcor + 2πνn)ζ], (23)

τ(ζ) =
+∞

∑
n=−∞

τn exp[i( fcor + 2πνn)ζ], (24)

where νn = n/Tζ is the discrete frequency, Tζ is the period of ζ, and Gn(x), Dn(x), and τn
are the complex Fourier coefficients of G(x, ζ), D(x, ζ), and τ(ζ) for the discrete frequency
νn, which are independent with time and can be determined by

Gn(x) =
1
Tζ

∫ Tζ

0
G(x, ζ) exp[−i( fcor + 2πνn)ζ]dζ, (25)

Dn(x) =
1
Tζ

∫ Tζ

0
D(x, ζ) exp[−i( fcor + 2πνn)ζ]dζ

=
1
T

∫ T

0
[i fcorUs(x) + Twds(x)] exp

{
−i
[

2πυnt + ( fcor + 2πυn)
δ

ω
sin(ωt)

]}
dt,

(26)

τn =
1
Tζ

∫ Tζ

0
τ(ζ) exp[−i( fcor + 2πνn)ζ]dζ

=
1
T

∫ T

0
(

τa − τin
ρw

) exp
{
−i
[

2πυnt + ( fcor + 2πυn)
δ

ω
sin(ωt)

]}
dt.

(27)

Here, υn = n/T and T is the period of the diurnal cycle. Substituting (22)–(24) into
(16)–(21), the nth component of the nth momentum equation of (16) can be written as

x2(1− x)
d2Gn

dx2 + x(2− 3x)
dGn

dx
− ic2

c1| fcor|
( fcor + 2πνn)Gn = Dn (28)

with the boundary conditions

x2(1− x)
dGn

dx

∣∣∣∣
x→1

= τn, (29)

Gn|x→0 = 0. (30)
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Note that (28)–(30) are the same as the results of Song and Xu [15]. Hence, the general
solution of Equation (28) can be given by

Gn(x) = An1(x)Gn1(x) + [cn2 + An2(x)]Gn2(x), (31)

where
Gn1(x) = xαn F(αn, αn + 2; 2αn + 2; x), (32)

Gn2(x) = xβn F(βn, βn + 2; 2βn + 2; x), (33)

An1(x) = − 1
βn − αn

∫ x

0
Gn2(x′)Dn(x′)dx′, (34)

An2(x) =
1

βn − αn

∫ x

0
Gn1(x′)Dn(x′)dx′, (35)

cn2 = dnτn −
1

βn − αn

∫ 1

0
Gn1(x)Dn(x)dx +

en

βn − αn

∫ 1

0
Gn2(x)Dn(x)dx. (36)

Here,
αn =

[
−1−

√
1 + iµn

]/
2, (37)

βn =
[
−1 +

√
1 + iµn

]/
2, (38)

dn =
2(βn + 1)

βn(βn + 2)
[F(βn, βn + 2; 2βn + 3; 1)]−1, (39)

en =
αn(αn + 2)(βn + 1)
βn(αn + 1)(βn + 2)

F(αn, αn + 2; 2αn + 3; 1)
F(βn, βn + 2; 2βn + 3; 1)

, (40)

µn = 4c2(2πνn + fcor)/c1| fcor|. (41)

and F(a, b; c; x) is the hypergeometric function in (39) and (40).
According to the above derivation, the wave-modified Ekman current for the time-

dependent vertical eddy viscosity formulated by the KPP scheme (4) has the Fourier series
solution as follows:

U(z, t) = G(z, t) exp(−i fcort) =
+∞
∑

n=−∞

{[
cn2 + An2

(
1 + z

hb

)]
Gn2

(
1 + z

hb

)
+An1

(
1 + z

hb

)
Gn1

(
1 + z

hb

)}
exp

{
i
[
2πυnt + (2πυn + fcor)

δ
ω sin(ωt)

]} . (42)

4. Discussion of the Solution

Since we focus on the specific diurnal cycle of eddy viscosity here, we do not consider
the transient wind, but simply assume steady wind forcing. Along with steady wind
forcing, we suppose that the wave is fully developed and that the mean wave propagates
in the same direction as the wind stress. We use the commonly monochromatic approx-
imation for Stokes drift profiles Us(z) = Us0 exp(z/hs), since it had been effectively used
in theoretical illustration and idealized numerical modeling [5,12,36,37], where Us0 is the
surface Stokes drift velocity and hs is the Stokes depth scale. τin and Twds were ignored
here, as their effects were much smaller than CSF, for there is a counterbalance between
the wind-input-wave stress and wave-to-ocean dissipation for a fully developed wind
wave [13,24].

The validation of the KPP scheme in the Ekman model has been discussed and
compared with some numerical simulations and observations [1,2,38]; therefore, we believe
it can be used to provide a reasonable result for the problem of rectification in an ocean
surface boundary layer under a time-varying eddy viscosity. For the eddy viscosity in the
KPP scheme, (4) has a dependence on the latitude, and is expected to give a difference
rectification characteristic.
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4.1. Sensitivity to the Fourier Modes n

As the solution given by (42) is related to Fourier modes n, which is closely related to
the accuracy of the results, it is of critical importance to determine a reasonable order of
n in a different strength of the periodic cycle of mixing. Because an order of n that is too
high would largely increase the computational burden, while an order that is too low could
bring about irregular errors for the surface current, an economic cut-off order of n needs to
be examined and selected during the calculation. As shown in Figure 2, under the diurnal
cycle of eddy viscosity, for the same periodic strength as δ = 0.7, the surface zonal velocity
u0 displays different degrees of fluctuation at the first few lower Fourier modes, when
n = ±5, ∂u0/∂t fluctuates over time; while smooth u0 is shown in the last few high modes,
∂u0/∂t continuously changes and shows a daily trend. With the increase of δ, the minimum
of the Fourier modes n resulted in a smooth time-varying velocity getting higher, and
for δ = 0.9, the order of Fourier modes needs to be larger than 55, while for δ = 0.3, n = ±5
is sufficient to give a rather stable and accurate result. Therefore, the following contents
are based on reasonable and effective Fourier series modes.

Figure 2. Mode dependence of surface zonal velocity u0 for (a) δ = 0.3, (b) δ = 0.5, (c) δ = 0.7,
(d) δ = 0.9, under the same steady wind stress and at a latitude of 45° N.

The latitude will also influence the flatness of the surface velocity varying with time;
as shown in formulation (42), both the eddy viscosity in the KPP scheme and CSF are
related to the latitude. However, it will not significantly influence the critical cut-off of n
for the same δ. As shown in Figure 3, a slight increase of the order of n will be sufficient to
ensure validity for all the latitudes.

It is worth mentioning that the Fourier series solution will also encounter a similar
problem, as discussed in Appendix B of Wenegrat and McPhaden [6]. When fcor + 2πνn = 0,
which happens when n = ±1, 2 at the latitude 30° and 90°, this will lead to a zero denomi-
nator for An1 and An2 in (34) and (35). However, as shown in Figure 3b, when the latitude
equaled 30°, the Fourier series solution still performed well. It again confirmed that the
contribution of these specific modes to the total solution is rather small, as interpreted in
Wenegrat and McPhaden [6].
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Figure 3. Mode dependence of surface zonal velocity u0 at (a) lat = 10◦, (b) lat = 30◦, (c) lat = 50◦,
(d) lat = 70◦, assuming δ = 0.5.

4.2. Qualitative Characteristics

Under middle latitude and forced by a constant zonal wind stress of U10 = 10 m/s,
Figure 4 gives an example of the time-averaged velocity profile with diurnal eddy viscosity
(δ = 0.6) compared with no time-varying eddy viscosity (δ = 0). The dotted lines in
Figure 4 stand for δ = 0 without considering CSF, and the result is the same as in Song
and Xu [15]. From the velocity profiles in Figure 4, we found that no matter whether CSF
was included or not, the structure of time-averaged current profiles in the four cases were
resembled. When including CSF, the magnitude of the surface current decreased, and
the direction of the surface current rotated clockwise. Here, for a zonal wind, the surface
stokes velocity can be approximated as Us0 = 0.24 m/s with the Stokes depth scale hs as
5 m [37,39]. The magnitude and direction of the surface current in the four cases are shown
in Figure 4c, where in the cases of δ = 0 and δ = 0.6, surface currents rotate about 30°
right to the wind and the velocity spirals are very flat, which is obviously different from
the classic Ekman spiral, that is mainly due to the depth dependence of eddy viscosity
in KPP. It is likely a convincing factor in explaining the discrepancies between observed
surface currents and the classic Ekman theory. Once CSF is included in the Ekman model,
this is equivalent to adding extra wave-induced stress to partly balance the wind-driven
force. Therefore, relative to the cases without CSF (δ = 0 and δ = 0.6), a decrease in surface
current was found and the surface flow rotated anticyclonically in the cases of δ = 0 + CSF
and δ = 0.6 + CSF.

Figure 5 gives an Ekman-like spiral hodograph of the Fourier series solution, where
the eddy viscosity is cycling daily with the minimum occurring at 12:00 h, and the left panel
does not consider the CSF, while the right panel includes CSF. Similar with the results from
Wenegrat and McPhaden [6], the trajectory of velocity vectors is closed as the ellipse circles
during a 24 h period in the left panel (Figure 5a) and the time average of the Ekman-like
spiral (dotted-dashed black line) can be compared with the steady-state solution (dotted
black line). Differences between these lines represent the rectification effect of the diurnal
variability of Av.



J. Mar. Sci. Eng. 2021, 9, 664 9 of 17

Figure 4. Time-averaged current profile in (a) diurnal period for zonal velocity, (b) meridional velocity,
and (c) the Ekman-like spiral, under steady wind stress and at the latitude of 45° N. The dotted and
dotted-dashed black lines stand for cases without considering CSF, while the dashed and solid black
lines stand for cases including CSF, in which δ = 0 and δ = 0.6 stand for non-periodic and periodic
cycles of mixing cases, respectively. U0 shown in c is the magnitude of the surface current, and θ is the
angle between the wind and surface current, while the negative sign in θ means clockwise rotation.

Figure 5. Diurnal cycle velocity in the Ekman model without CSF (left) and with CSF (right) under a
steady wind stress, assuming δ = 0.6 and latitude at 45° N. Plotted for selected depths (thin grey
lines) with a color scale indicating the hour of the day. The time-averaged diurnal velocity is shown
(dotted-dashed black line in (a), solid black line in (b), as the steady-state solution (dotted black line

in (a), dashed black line in (b). All the velocities are normalized by |τa|
/(

ρw
√
| fcor|A0

)
, in which

A0 = max(A(z)).

When including CSF in the Ekman model, the time-averaged surface current solid
black line in right panel rotates clockwise relative to without CSF (dotted line in the left
panel, and the magnitude of the surface current reduced, as part of the turbulent stress is
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used to balance the wave stress caused by CSF. It is interesting that the velocity vector traces
a closed loop circle like the arabic numeral ‘8’ when including CSF in the Ekman model
(Figure 5b). This structure is related to the strength of CSF, which is directly proportional
to the latitude and Stokes drift. As shown in Figure 6, under the same τa, Us and δ, with the
increase of the latitude, the CSF enhanced, which leads to a larger disturbance in a non-
stationary Ekman model, and results in a changeable loop circle of surface current. This
also explains the time-averaged surface current direction in the case of δ = 0.6 + CSF, which
did not rotate anticyclonically to the case of δ = 0.6, but a little cyclonically, shown in
Figure 5.

Figure 6. Diurnal cycle of surface current velocity at (a) lat = 10◦, (b) lat = 30◦, (c) lat = 50◦,
(d) lat = 70◦, assuming δ = 0.6, under the same wind stress and CSF. The color scale indicates
different hours of the day.

Further insight into the Fourier series solution can be found in Figure 7, under the
same forcing as shown in Figure 5. The tendency of the velocity varying along with
time and depth is similar to the low-level jet stream in the atmosphere [6,21]. In the first
half of 24 h, Av gradually reduces with time, and the Ekman layer depth starts from the
deepest end. As Av decreases towards its midday minimum, the Ekman layer begins
to shoal, and it can be easily found from the lower zero zonal velocity line from −hb
to −0.6hb in Figure 5a, and the zero meridional velocity line form −0.6hb to −0.3hb in
Figure 5b. A surface-intensified diurnal jet develops, associated with a high shear near the
surface layer. Below the high-shear region, weak anticyclonic oscillations with an upward-
propagating phase are developed. Instead of this pattern, which is often due to inertial
waves with downward energy propagation in the near-surface, here it is aroused by the
diurnal cycle in eddy viscosity, while the right panel, including CSF, gives an enhancement
of the shear and oscillation in the subsurface, along with a decrease in the magnitude of
the surface current.

The zonal momentum balance is shown in Figure 8; the top three do not consider
CSF, while the bottom three include the effect of CSF. It is similar to the inertial oscillations
observed in the atmospheric boundary layer. Near the surface, there is an acceleration and
deceleration of the flow on the side of the diurnal jet maximum. Deep in the layer, there
are upward-propagation signals in acceleration, as a signature of inertial oscillations. This
pattern is also like the results of Wenegrat and McPhaden [6] under a constant vertical
eddy viscosity with the same time-dependence. After considering the CSF in the Ekman
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model, the basic pattern of momentum balance is unchangeable, but with an intensified
up-propagation and vertical shear for the three momentum balance terms.

Figure 7. Diurnal evolution of zonal and meridional velocity without CSF (a,c) and with CSF (b,d)
at a latitude of 45° N and δ = 0.6. All the velocities are normalized as in Figure 5. Contours are
nonlinearly spaced to emphasize the deep variability.

Figure 8. Zonal momentum balance terms from the case in Figure 7, without CSF (top, (a–c)) and

including CSF (bottom, (d–f)), with values normalized by |τa|/
(

ρw
√

2A0/| fcor|
)

.

4.3. Rectification

Understanding the effect of time variability of eddy viscosity is important to reflect
the true nature of Ekman dynamics. The colored dots in Figures 5 and 6 already reveal a
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local rectification effect of diurnal eddy viscosity, such as in Figures 7 and 8. Similarly to
Wenegrat and McPhaden [6], they define the diurnal average of a variable X(t) as

〈X〉 = ω

2π

∫ 2π/ω

0
X(t)dt. (43)

For comparison with the steady solution (δ = 0), which can be used to evaluate the
rectification effects of the diurnal cycle in eddy viscosity, here, ω/2π is a period of the
diurnal cycle which equals to 24 h. Additionally, with a simple normalized measure of
rectification as

X̂R =
||X| − |〈X〉||
|X|

, (44)

the bar notation represents the steady-state solution, assuming no time varies in eddy
viscosity. The rectification effect of diurnal eddy viscosity relies on the strength of δ and its
own vertical structure. For KPP shown in (4), that is the latitude (represented by fcor/ω) and
u∗. Under a constant wind stress force, two parameters fcor and δ determined the temporal
and vertical structure of diurnal Av. Compared to Wenegrat and McPhaden [6], we have
adopted a different depth-dependent eddy viscosity (KPP) and solve the Ekman problem
in a Fourier series expansion, where a different rectification effect would be expected.

The angle of the time-averaged surface current 〈θsur f 〉 as the function of fcor/ω and δ
is shown in Figure 9, and the alteration of 〈θsur f 〉 due to diurnal varying Av is almost linear
to fcor/ω when δ is smaller than 0.2, while with the increase of δ, the linear relationship
with fcor/ω intensifies and the modification of 〈θsur f 〉 enlarges significantly. This is very
different to the non-depth-dependent eddy viscosity shown in Wenegrat and McPhaden
([6], Figure 11). The friction velocity u∗ also has an influence on the structure of Av;
however, in ideal cases here, we did not consider the situation of time-varying wind and
waves, so the rectification effect shown here is only arising from temporal variability of Av.

Figure 9. Direction of the time-averaged surface currents under positive zonal wind stress; negative
values indicate clockwise rotation.

Both the normalized rectification values of surface velocity (ûR and v̂R) and shear (ûzR
and v̂zR) are shown in Figure 10. The velocity rectification intensifies with the increase of δ,
when δ < 0.4, and the rectification of surface velocity is smaller than 0.1. The distribution
of ûR and v̂R holds a decreasing tendency near the equator, probably due to the increase of
absolute velocity as fcor → 0. However, the rectification of the shear is also proportional to
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δ and almost unrelated with the latitude, with robust growth at high δ, and the maximum
values of ûzR � 1 and v̂zR � 4 as δ→ 0.9. In general, the velocity shear is more strongly
rectified than velocity, and the magnitude of rectification values are dominated by δ and
weakly related to the latitude.

Figure 10. Parameter dependence for the normalized rectification values (25) for: (a). zonal velocity
ûR, (b). meridional velocity v̂R, (c). zonal shear ûzR, and (d). meridional shear v̂zR.

In the middle and high latitudes, the rectification values in meridional are generally
larger than in the zonal, as shown in Figure 10, where v̂zR is obviously larger than ûzR,
and v̂R is a little greater than ûR. It can be interpreted from the ellipse circles in Figure 11,
that they project the major and minor axes of ellipse circles into the zonal (x) and meridional
(y) directions, and we can get the corrected major and minor axes, which reflect the scale of
variation in zonal and meridional velocity. Since the projected zonal axis is generally longer
than the projected meridional axis, the oscillation frequency in the meridional axis would
be higher in a diurnal period (24 h). This gives a proper explanation for the intensified
rectification values in meridional velocity and shear.

To interpret the mean turbulent mixing due to rectification of diurnal Av, an effective
eddy viscosity was defined to make the momentum balance equation without a tendency
term satisfied for the mean velocity [1,2,6]. As defined in McWilliams et al. (19)–(21) [2]
and Wenegrate and McPhaden (33) [6], we calculated the effective eddy viscosity AvE f f
from our Fourier series solution to review the diurnal rectification as

AvE f f (z) =

∫ z
−∞ i fcor〈U〉dz
〈U〉z

, (45)

which is expressed in complex form, and there are two components of AvE f f , and any
nonzero imaginary (or nonzero meridional) component in AvE f f stands for evidence of a
rectification effect. The eddy viscosity in the KPP scheme holds a Gaussian vertical struc-
ture, and the normalized effective eddy viscosity ÂvE f f also holds the same convex profile
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shape, but the extents of magnitude and depth vary somewhat due to the rectification effect
(Figure 12). In the near surface, ÂvE f f gets a little smaller than Â (black dashed line, which
stands for non-time-dependent eddy viscosity), and strengthens the diurnal mixing δ, and
the stronger decline in ÂvE f f . Below the near surface, ÂvE f f gradually gets close to Â and
sequentially exceeds Â at a different depth, where for δ = 0.9, the critical depth is about
z/hb = −0.2, while for the weaker strength of δ, the deeper the critical depth is. Angles
of the effective eddy viscosity θAvE f f are generally positive under diurnal eddy viscosity
and less than 45°, which means the effective viscosity rotates anticyclonically relative to
the local mean shear. The angles change slowly with the depth, except near the surface
and bottom layer. Strengthened diurnal mixing of δ means larger angles. Fluctuation of
angles occurring at the bottom of the boundary layer is due to AvE f f → 0. The bottom
two panels of Figure 12 give the magnitude of the real (zonal) and imaginary (meridional)
components of ÂvE f f , respectively. The intensified imaginary (meridional) component of
Ây

vE f f at different δ interprets the growth of θAvE f f in Figure 12b, which again confirms the
existence of the rectification effect.

Figure 11. Diurnal cycle of surface two-layer velocity at latitude 45°N under (a) δ = 0.2, (b) δ = 0.4,
(c) δ = 0.6, (d) δ = 0.8, and the large circle in each panel stands for the velocity circle at z = −1 m,
while the smaller one stands for the velocity at z = −2 m. The color scale indicates different hours of
the day. All the velocities are normalized the same as in Figure 5.

It can be inferred that large δ deepens the penetration depth and amplifies mixing
efficiency, and this generally follows from a previous study [1,2,6]. Latitudes also have
an influence on the magnitude and angle of effective eddy viscosity, but do not revise
the essential characteristics of AvE f f , since the rectification values of velocity and shear
demonstrate a weak correlation with latitude.

It should be mentioned that the rectification effect shown above solely arises from the
diurnal variation of eddy viscosity. The wave-modified terms in momentum Equation (1)
are not considered in this section, for the evolution of wave properties will interfere with
the rectification from time-varying eddy viscosity, and this issue will not be pursued
further here.
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Figure 12. Effective eddy viscosity inferred from the diurnal averaged velocity under various δ at
latitude 60° N. (a) ÂvE f f , the magnitude of AvE f f normalized by A0; (b) θAv E f f

, the angle of AvE f f ,
which is relative to the local mean shear direction; (c) Âx

vE f f , the real (zonal) component of ÂvE f f ,

and (d) Ây
vE f f , the imaginary (meridional) component of ÂvE f f . The black dashed line in (a,c,d)

stands for the normalized vertical eddy viscosity from KPP (Â = A/A0).

5. Summary

Under the assumption of time- and depth-dependent eddy viscosity, we presented
a Fourier series solution for a wave-modified Ekman model, and illustrated how the
diurnal eddy viscosity alters the ocean’s response to steady surface wind stress and rectifies
time-averaged velocity.

In nature, the eddy viscosity does depend on time, although the dependence might
be more complicated than we assumed. The time-related term in (2) breaks the structural
constraint of eddy viscosity on time, and provides a simple insight into the physical realism
of turbulent mixing. It has been shown that time-varying eddy viscosity modifies both
the magnitude and vertical structure of ocean currents. Though diurnal period variation
in eddy viscosity introduces no significant modification in time-mean velocity (Figure 4),
an obvious upward propagation inertial oscillation appears in the vertical structure of
velocity and momentum balance terms (Figures 7 and 8), along with a shoal Ekman
boundary layer. These tendencies rectify the surface current in Ekman layer as a low-
frequency flow, like a low-level jet stream in the atmosphere [21].

Temporal dependence other than the vertical structure of eddy viscosity affects the
rectification effect on velocity shear; therefore, ûzR and v̂zR are highly linearly related
to δ, but less related to latitude. Velocity shear is more strongly rectified than velocity,



J. Mar. Sci. Eng. 2021, 9, 664 16 of 17

and rectification values in the meridional axis are larger than the zonal, probably due to
the zonal steady wind force.

Some of these results are similar to previous studies and some are new, particularly
those related to rectification from time- and depth-dependent eddy viscosity in the KPP
scheme. In this work, we did not attempt a comparison with observational data, and this
study just aimed to emphasise a general lack of clarity regarding the scale of spatial and
temporal averaging implicit in Ekman-type models.

Only the CSF was simply considered in the discussion of the solutions, as pointed
out by Shrira and Almelah [7], where even under a constant wind, the Stokes drift cannot
remain constant, and the dominant wavelength increases with time on a time-scale which
might be comparable to or smaller than the scale of an Ekman layer formation. At present,
there are very few studies of Ekman currents subjected to variable winds interacting with
an evolving wave field. Rarely, wave-current-coupled numerical modeling can clearly
illustrate the wave–current interaction. Since our Fourier series expansion solution can be
extended to include wave effects, further work needs to be pursued for this issue.
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