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Abstract: The hydrodynamic damping of a buoy stationed with three different mooring configura-
tions was estimated using a Navier-Stokes (NS) equations solver coupled with a dynamic mooring
model. The mooring configurations comprised a catenary system, a catenary system with sub floaters,
and a catenary system with sub floaters and clump weights. Systematic simulations were achieved
by adopting the overset grid scheme instead of the conventional morphing grid scheme, which re-
quired regenerating the entire mesh when the buoy’s initial position changed, thereby avoiding mesh
distortions and numerical instabilities. Motion decay simulations in heave, pitch, and surge were
conducted with and without various mooring systems. The analyzed results comprised decaying
oscillating motions, natural periods, and associated amounts of damping. The mooring systems
influenced not only restoring force characteristics, but also total damping of the moored buoy, which
demonstrated the importance of considering mooring-induced damping when investigating moored
offshore structures.

Keywords: hydrodynamic damping; dynamic mooring model; mooring configurations; mooring-
induced damping; decay; overset; wave energy converter

1. Introduction

Over the past several decades, there has been a continuous stream of innovations
in ocean-based structures and systems, applied not only in the oil and gas area, but
also more recently in the floating offshore wind energy and wave energy sectors [1].
Furthermore, owing to the scarcity of land, very large floating structures are now being
designed to cater for an increasing population in coastal areas [2]. All of these structures
must maintain station; that is, their mooring systems must withstand the forces of the
ocean over long asset lives in the corrosive sea—air interface, while operating under various
environmental conditions.

To reliably assess floating offshore structures with mooring systems, interdisciplinary
knowledge of hydrodynamics, mooring dynamics, and their interactions is required. Tech-
niques, generally classified as potential and viscous flow solvers, when coupled with
various mooring models, have been developed to analyze such systems. Although poten-
tial flow based solvers are unable to implicitly consider viscous effects, they are widely
used in marine hydrodynamics due to their robustness and computational efficiency. For
instance, Schellin [3] investigated the dynamics of single-point moored vessels subject to
current, wind, and waves, based on the use of both frequency domain and time domain
approaches. The significant nonlinearities inherent in single-point mooring systems, mainly
due to hydrodynamic response and control forces as well as mooring system restoring
forces, may lead to multifarious dynamic phenomena, such as self-sustained oscillations.
A comparative study of the mooring loads of a moored vessel in a steady current was
documented in [4]. Gutiérrez-Romero et al. [5] presented a time-domain model to solve
for the dynamics of floating marine devices subject to nonlinear environmental loads with
special attention to mooring dynamics.
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For floating offshore wind turbines, the importance of mooring line model fidelity
was studied by Hall et al. [6], whereby a low-fidelity quasi-static approach and a high-
fidelity dynamic mooring line model were coupled with the potential flow based solver
FAST (Fatigue, Aerodynamics, Structures, and Turbulence program). They discussed
the limitations of the quasi-static mooring model under steady and stochastic operating
conditions. For the offshore oil and gas industry, there is a tradition of designing mooring
systems using the quasi-static approach, justified by the low responsiveness and large
mass of the moored structure and its corresponding low velocities. For the wave energy
sector, dynamic mooring models are preferred due to the more complex dynamics involved.
Apart from station keeping, which is the primary role of the mooring system, the influence
of the mooring system on the efficiency of power take-off should also be considered.
Thomsen et al. [7] assessed the available numerical tools for a dynamic mooring analysis.
Significant cost reductions are required for floating structures to become competitive,
and one key area that has the potential for cost reduction is the mooring system [8].
For instance, for the deployment of arrays of floating wave energy converters (WECs),
short mooring lines providing a small footprint allow one to install multiple devices [9].
Harris et al. [10] and Davidson et al. [11] presented overviews of different generic types of
WECs and their mooring requirements. Cerveira et al. [12] studied the power generation
performance of a buoy type WEC under three mooring configurations and discussed their
influence on the annually captured wave energy. However, potential flow methods cannot
accurately predict oscillatory motions of floating structures at their natural frequencies,
because viscous effects must be approximated from simplified methods [13]. Li and
Yu [14] reviewed various numerical methods used for modeling WECs, such as analytical
methods, potential-flow based methods, and Navier—Stokes equation solvers. They found
that potential-flow based methods are generally used for the analysis under operational
conditions, albeit with a carefully selected approach to account for viscous damping.

On the other hand, an unsteady computational fluid dynamics (CFD) approach can
capture the nonlinear interactions between waves and floaters, thereby revealing details of
various flow effects related to floating objects. Burmester et al. [13] simulated surge decay
motions to account for viscous effects of scaling, wave radiation, coupled motions, and
nonlinear moorings on the hydrodynamic damping of the DeepCwind semisubmersible
platform via CFD. Palm et al. [15] performed a coupled CFD mooring analysis of a moored
WEC, thereby presenting a solid framework for simulating the highly nonlinear behavior
of wave energy convertors. Van Rij et al. [16] assessed design loads for a WEC using both
potential and CFD approaches. In comparison with experimental and CFD simulation
results, the potential-flow based methods can roughly approximate the design loads.
Calculations and experiments showed that mooring-induced damping may account for
reduced surge and sway amplitudes in the order of 20% or more, indicating that mooring-
induced damping should be taken into consideration [17].

To fully account for viscous effects and the dynamics of a mooring system, we imple-
mented a dynamic mooring model into the open-source CFD library OpenFOAM [18] to
predict hydrodynamic damping of a moored buoy [19]. The computed buoy motions, the
natural periods, and the amount of hydrodynamic damping were compared with experi-
mental measurements. For different mooring models, using quasi-static mooring models
coupled with potential flow solvers or viscous flow solvers [20], we found that the hydro-
dynamic damping of the moored floating structure was generally underpredicted [21].

Previous work of ours [22] considered a dynamic mooring model coupled with CFD
to assess the influence of three different mooring configurations on the heave motion of
a buoy type WEC. The mooring configurations comprised a catenary system, a catenary
system with sub floaters, and a catenary system with sub floaters and clump weights.
The favorable agreement between numerical simulations and experimental measurements
validated the coupled numerical approach for simulating different mooring configurations.
As an extension, here, we systematically studied the effects of mooring-induced damping
of different mooring configurations on decay motions for a buoy type WEC. The exact
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same mesh was used for all simulations with different degrees-of-freedom by adopting
an overset grid scheme over the conventional morphing grid domain. For the morphing
grid scheme, to numerically simulate decay motions in different degrees-of-freedom (i.e.,
surge, heave, and pitch) caused by the change of the floater’s initial position, the entire
mesh domain had to be regenerated for each case. When simulating large motions (for
instance, under rough sea conditions), the associated mesh distortions and the subsequent
numerical instability had to be dealt with.

Our main objective was to systematically determine the influence of different mooring
configurations on buoy motions, natural periods, and the amounts of hydrodynamic
damping for various degrees-of-freedom. Our results indicated that, although the mooring
systems’ restoring forces were similar, their influences on buoy motions and hydrodynamic
damping deviated significantly. To optimize power take-off efficiency of WECs, one
key area is to find an optimal mooring configuration tailored to the particular motion
characteristics of each concept.

2. Numerical Method
2.1. The Viscous Flow Solver

The open source CFD library OpenFOAM includes a method to solve free surface flows
by coupling the Navier-Stokes (NS) equations with a volume of fluid (VOF) method [23].
The solution domain is subdivided into a finite number of control volumes, which may be
of arbitrary shape. The integrals are numerically approximated using the midpoint rule,
the mass conservation is ensured using a pressure correction equation based on a hybrid
PIMPLE approach [24], which combines the Semi-Implicit Pressure Linked Equations
(SIMPLE) algorithm with the Pressure Implicit with Splitting of Operators (PISO) algorithm.
Boundary volumes define the free surface, and the entire fluid domain is marked by the
transport function of the volume fraction. The governing equations for an incompressible
Newtonian fluid are based on the continuity and the momentum conservation equations.
In integral vector notation, they are written as follows:

9
E'/Vpde/spu-nds —0 (1)

% /V oudV + /S p(uu)ndS = /5 T-ndS + /V ob-ndV @)

where u is the fluid velocity field vector, n is the normal vector of S representing the surface
area of the control volume V, T is the stress tension, and b is a vector describing a force per
unit mass. The instantaneous local density, p, and dynamic viscosity, y, are expressed in
terms of water volume faction « as follows:

p = apw + pa(l —a) 3)

H=apy+ pa(l—a) @)

where subscripts w and a represent water and air, respectively. Use of the MULES (Multidi-
mensional Universal Limiter with Explicit Solution) algorithm and an additional compres-
sive convective term reduces numerical smearing and retains a sharp interface between
water and air. At each time step, the existing velocity field converts phase fractions, and the
distribution and development of the free surface is estimated using the following equation:

9 / adV+/¢xu~ndS+/zx(1 —a)uyndS =0 (5)
ot Jv S S

where u, is a velocity field normal to the interface, which stands for the artificial compres-
sion on the free surface, and where its magnitude is proportional to the instantaneous
velocity. Despite the existence of this artificial compression term, the free surface may be
smeared over a number of cells.
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The motions of a floating body are then solved using a six degrees-of-freedom rigid
body motion library. Two reference frames describe body motions, namely, the global
coordinate system and the body-fixed coordinate system. Solving the nonlinear motions
of a floating body entails translating and rotating it about the body—fixed coordinate

system [25]. The considered external loads are the hydrodynamlc force, f g, the restorlng

force, f ¢» and the linear viscous mechanical damping force, f p- With a state vector, r,
extending from the origin of global coordinate system to the body’s center of gravity, the
dynamic equations are given as follows [13]:

. . .
M? +D7 +Cr = fg 6)

where M is the mass matrix, D the damping matrix, and C the stiffness matrix. As we dealt
with a rigid body, the mechanical damping component was zero. The stiffness component
was replaced by the forces obtained from the coupled mooring model. These equations
describe a second-order nonlinear initial value problem because the hydrodynamic forces

and mooring restoring forces are nonlinearly related to the motion vector +, which are
obtained by solving the Navier-Stokes equations and the nonlinear dynamic mooring
model, respectively.

Although accurate results were obtained using a morphing grid scheme in our pre-
vious works [19,20], for motions in rough sea conditions large mesh deformations were
reported in our subsequent study [21], which yielded skewed shapes and unacceptable
aspect ratios for grid cells and, consequently, induced numerical instabilities. To dispose of
these limitations and still use the same mesh for our subsequent systematic simulations,
we adopted the overset mesh scheme. This grid technique defined a background grid and
a body-fitted grid, allowing these grids to move independently, and it connected them at
appropriate cells or points using an interpolation mechanism. Cells located outside the
domain or cells that were not of interest, such as cells inside the buoy, were marked as
holes and excluded from the computation. Cells surrounding the holes, called fringe cells,
were treated as boundaries in each overset grid. Every fringe cell had a stencil consisting
of several donor cells that provided information for the fringe cell obtained from the donor
grid. The value of a variable ¢ of the fringe cell was obtained by interpolation from the
donor cells: .

p=Y wii ()

i=1

where w; is the weight coefficient and ¢; is the donor cell value for each donor. Compared
to the morphing grid approach, which required regenerating the entire mesh when the
buoy’s initial position changed, the overset grid approach overcame this problem. For
instance, for the three motions—heave, pitch, and surge—considered here, the buoy’s
initial positions differed and, consequently, three different meshes were required, as shown
in Figure 1. However, as shown Figure 2, only one mesh was needed using the overset
grid approach although all meshes used exactly same background grid as the body-fitted
grid. These grids were transformed to fit each motion component by simply rotating the
body-fitted grid, which made it easier to simulate the other degrees-of-freedoms motions,
especially the motions in waves.

2.2. The Dynamic Mooring Model

The lumped mass dynamic mooring model MoorDyn [26] was adopted, which was val-
idated against experimental measurements by coupling it with a potential flow solver [27]
and a viscous flow solver [20]. As shown in Figure 3, it combined the effects of mass,
external forces, and inertial reactions at a finite number of nodes along a mooring cable.
A mooring cable was modeled as a set of concentrated masses connected by massless
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springs. Different mooring configurations were generated by adding weights/floaters in
the mooring lines. The equation of motion for each node is written as follows:

(mi—l—api—l—aqi)h = T}—FCZ'—FWZ'—FB,‘-l-Dpl’-Fin (8)

where m; is the mass matrix of node i, r; is the position vector, and a,; and a,; are the
corresponding transverse added mass and tangential added mass, respectively. Symbol
T; represents the tension in each line segment, C; is a numerical internal damping force
to improve stability, W;, is the net buoyancy force, B, is the interaction with the sea bed,
and Dy; and D,; are the transverse and tangential drag forces, respectively. This process
is described in detail in [27], and additional information on the coupling between the
mooring model and the viscous flow solver is documented in [20].

(a) (b) (c)
Figure 1. The morphing grid schemes for: (a) heave; (b) pitch; (c) and surge.
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Figure 2. The overset grid schemes for: (a) heave; (b) pitch; (c) and surge.
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Figure 3. The discretized mooring model adopted from [27].
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Cable 1

3. Test Case Descriptions
3.1. The Numerical Setups

The test cases adopted from [28] were analyzed for the buoy positioned with three
mooring configurations typically appropriate for WECs. Figure 4 shows an overview of the
setup and the adopted mooring configurations, comprising the standard catenary system
(CAT), the compact (small sea bed footprint) configuration consisting of synthetic cables
and floaters (CON1), and the compact configuration made up of synthetic cables, floaters,
and clump weights (CON2). The setup consisted of a cylindrical buoy moored with three
mooring legs spaced 120 deg apart. Table 1 lists the properties of the buoy without the
mooring system. For the studless chain used for experimental testing, the cable diameter
used in the simulations considered a volume-equivalent diameter for the mooring chain;
that is, the diameter of a cylindrical cable had the same displacement per unit length as the
chain [27]. Table 2 lists the static properties for mooring simulations, namely, equivalent
diameter d, mass density in air 1, mass of the sub floater my, volume of the sub floater Vi,
mass of the clump weight m., and volume of the clump weight V.. The mooring model
was formulated for cylindrical elements. Therefore, drag and added mass coefficients used
for hydrodynamic force calculations needed to be adjusted accordingly. Table 3 lists the
associated hydrodynamic properties adopted for the mooring simulations; Table 4, the
resulting mooring tensions at the buoy’s rest position.

0.90m

/S 7/ 7 7 /s /
Cable 3 6.660 m"~ 1'64'" 4

I S [ } e A - S S
—
Floater '
- - Floater
\ : \
S :
=3 g
/&
/ ,;\Q Clumpweight
Anchor Anchor ad
Va4 L///{&tfm///ﬂ///

////K

(c) (d)

/{soo/m///ﬂ///

Figure 4. Schematics and dimensions of the adopted mooring configurations: (a) top view of the setup; (b) configura-

tion consisting of standard catenary cables (CAT); (c) configuration consisting of synthetic cables and floaters (CON1);

(d) configuration consisting of synthetic cables, floaters and clump weights (CON2).

Table 1. Particulars of the moored buoy.

Mass. Diameter Height Inertia !

35.50 kg 0.515m 0.40 m 0.95 kg-m?

I About horizontal axis through center of gravity.

Center of Gravity Draft
—0.093 m 0.174 m
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Table 2. Static properties of mooring cables.

Mooring Config. dm)  m(kg/m)  mg(kg) Vem®  mc(kg) V. (m?)
CAT 0.0115 0.193 - - - -
CON1 0.0060 0.035 0.250 0.0011 - -

CON2 0.0060 0.035 0.250 0.0011 1.050 0.00005

Table 3. Hydrodynamic properties of mooring systems.

Symbols Descriptions Values
Can () Transverse added mass coefficient 0.865
Cat () Tangential added mass coefficient 0.269
Can () Transverse drag coefficient 1.08
Cat () Tangential drag mass coefficient 0.213

Kpot (Pa/m) Sea bottom stiffness 300 Pa/m
Cpot (Pas/m) Sea bottom damping 1.0 Pas/m

Table 4. Mean cable tensions in the buoy’s rest position.

Configurations FREE CAT CON1 CON2
Tension (N) - 3.18 3.11 10.93

A rectangular box shown in Figure 5 defined the computational domain, which
consisted of three domain layers. One uniform high-resolution middle layer, extending
below and above the calm water level, encapsulated minimum and maximum surface
elevations. The two other layers extended from the clam water level to the bottom and
the top of the domain. The gridding became coarser towards to the outlet boundary to
dampen wave reflections and to significantly reduce the computational effort for further
simulations in waves. The distance from the inlet boundary to the buoy was about 5 Dg,
where Dg is the diameter of the buoy. The distance from the outlet boundary to the buoy
was about 10 Dg. The width of the wave tank was 6 Dg, and the water depth was the
same as in the experiments. Figure 6 shows a sample grid topology. Grids were refined
towards the free surface and towards the buoy, but their refinement was constant in the
vertical direction.

He e o AR Bt R

Figure 5. Perspective view of the computational domain.

(a) (b)

Figure 6. Grid refinement at free surface and region surrounding the buoy: (a) side view; (b) top view.
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3.2. Discretization Uncertainties

Numerical results from field methods are sensitive to spatial and temporal discretiza-
tion uncertainties. Specifically, results from CFD simulations are subject to discretization
uncertainties, iterative uncertainties, statistical uncertainties, and residual uncertainties.
As our residual uncertainties turned out to be two orders of magnitude less than our
discretization uncertainties, we neglected to determine the iterative uncertainties [29]. We
also did not consider statistical uncertainties, because our numerically simulated decay
motions resulted in time-accurate oscillating amplitudes. Therefore, we only addressed
discretization uncertainties.

We started with the decaying heave motion. For our temporal uncertainty study,
we adopted a refinement factor of ¢; = 2.0 and defined three time-step sizes based on
a system’s natural heave period T, with Aty = T/140, At, = T/280, At3 = T/560. A
uniform refinement factor of c; = 1.2 was specified for all spatial directions. Consequently,
the ratios specifying the number of cells for the coarse grid G;, the medium grid G,, and
the fine grid G; were adequately matched with the factor c,®. Table 5 lists these cell grid
ratios and the associated number of cells for each grid.

Table 5. Cell grid ratios and the associated number of cells for each grid.

Grid Length Ax (m) Width Ay (m) Height Az No. of Cells (-)
Gy Axy X cg Ay X cg Azy X cq 1.35 x 10°
Gy Axy Ay, Azy 2.29 x 106
Gs Axy/cq Aya/cq Azy/cq 4.17 x 10°

According to the International Towing Tank Conference (ITTC) [30], the discretization
uncertainty Up was expressed as follows:

Up® = Ur” + Ug* )

where Ur and Ug are uncertainties of time step size and grid size, respectively. The
convergence ratio R, defined as the ratio of the difference between solutions obtained on
the fine and medium grids, €35, and the difference of these solutions obtained with the
medium and coarse time step sizes, €51, was calculated as follows:

R =e3/en (10)

The asymptotic analysis from subfigures (b) and (c) of Figure 7 shows that monotonic
convergence (0 < R < 1) was achieved for both target solutions, i.e., for amplitudes as well
as for periods. For results with monotonic convergences, the Richardson extrapolation was
applied, and the estimated numerical error dgr and the order of accuracy p were calculated.
With three solutions, only the leading term was estimated, which provided the following
one-term estimates:

p= ln(;) /In(ct) (11)

Ore = €32/ (1 —ciP) (12)

To better estimate the uncertainties of solutions far from the asymptotic range, the
correction factor, Cr, was adopted [31] as a measure defining the distance of solutions from
the asymptotic range:

CF = (1 — Ctp)/(l — Ctpo) (13)

where py is an estimate for the limiting order of accuracy as the time-step size approaches
zero, and py = 2 was adopted here for a second-order accurate method. The numerical
error p, the numerical benchmark result S, and the uncertainty Up were obtained from
as follows:

0p = CrRE (14)
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Sc=S-dp (15)

(2.4(1 —Cr)?+ 0.1) 0RE|, |1 — Cr| < 0.25
Up =

|1 _CFH(SRE’r |1 — CF| > 0.25

(16)

where S is the final solution for the verification study. For Cr significantly less than or
greater than unity, the solutions are far away from the asymptotic range, and the numerical
uncertainty was then calculated as follows:

(9:6(1 = Cr)* +1.1) |érel, |1 = Cr| < 0125
(21 = CF| +1)|dge|, |1 — Cr| > 0.125

N\
Jo

Up = (17)
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Figure 7. Time histories freely decaying heave motions: (a) the associated amplitude; (b) period; (c) of the first oscillation
period obtained on grids G1, G, and Gj3 for the time-step size study.

Figure 7 plots results of the associated time-step size study for free heave obtained on
the medium grid using three different time steps. As hydrodynamic damping and natural
periods of the buoy were of interest here, the associated oscillation amplitude over one
period, plotted in Figure 7b, and the corresponding time instances (periods), plotted in
Figure 7c, were considered to be solutions of our verification study. The resulting phases
and amplitudes, using a coarse-time step, only slightly differ from each other. Furthermore,
phases and amplitudes using medium and fine time-step sizes are nearly the same. Table
6 lists the obtained time-step uncertainties. For both selected solutions, the convergence
factors, R, are between 0 and 1, indicating that a monotonic convergence was achieved for
both solutions. Time-step uncertainties for the amplitude and the period were 0.2203%S¢
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0.08 ¢

and 0.533%S¢, respectively. As seen, the difference Diff.\; between solutions obtained
with the medium time-step size and the numerical benchmark solution S¢ was 4.11% for
the amplitude and 0.47% for the period. To obtain sufficiently accurate, yet cost effective
solutions, we subsequently used the medium time-step size.

Table 6. Time-step uncertainties of free heave motion.

Solutions R p Cr Sc Up (%Sc) Diffc Diffy; Diffg
Amplitude 05448 0.8762  0.2785 —0.0414 0.2203 9.76% 411% 1.03%
Period 0.5000 1.0000  0.3333 1.1307 0.5333 1.18% 047%  0.12%

To determine the grid uncertainties, we performed simulations on three different grids
with the selected medium time-step, and the associated results are plotted in Figure 8. As
seen, the results on different grids are almost identical, although there are small deviations
between phases. Following the same procedure, the uncertainties were calculated for
the oscillation amplitude and the period, and their results are listed in Table 7. Both
selected solutions achieved a monotonic convergence. The uncertainties of grid size for
the amplitude and the period were 0.0095% Sc and 1.0182% S¢, respectively. Combining
the time-step and grid uncertainties, the associated total discretization uncertainties were
0.2205% S for the oscillation amplitude and 1.1494% Sc for the period, which verified that
our chosen time-step and grid sizes were small enough to obtain reliable predictions. The
similar Diff.\; and Diff.r indicate that decreasing the grid size from medium to fine did not
significantly improve the results. Therefore, we chose the medium time-step and grid sizes
for subsequent decay simulations.

i G (6t
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0.06 1 7\ i — (GIIA:er
/ \'\ i -
/
0044 V/ { —
i 7N
. / I 7/ A\
g %021 / \ i / \ F
| \ N FARN =
& oo04d \\ i / A\ J N 4
v \ A\ 4 X 4
3 \ | / \ B R
T -0024 \\ | / \',/,
i/
/ I 7
0.04 { \rw
/ i
-0.064 i
i
0084 1
) 0.5 1.0 15 2.0 2.5 3.0 35 4.0
Time [s]
(a)
-0038 1.20
G, (8t) O Glat)
E -0.040 G (at2) 1.18 G (at)
u Gy (AL) Gy (AL)
£ -00424 = ¥ 1.16 1
= R —
E | e e <]
< -0044 1l —— 4
° & 141 e
- e
& _p.046 112
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No. of Cell [-] No. of Cell [-]

(b) (c)

Figure 8. Time histories freely decaying heave motions: (a) the associated amplitude; (b) period; (c) of the first oscillation

period obtained on grids G;, Gy, and G for the grid study.
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Table 7. Grid uncertainties of free heave motion.

Solutions R P CF SC UD (%Sc) lefc lefM lefF
Amplitude 0.0300 192290 73.4315 —0.0432 0.0095 —1.80% —0.16% —0.11%
Period 0.5000 3.8018  2.2727 1.1491 1.0182 —1.84% —1.14% —0.79%

To ensure that the chosen time-step and grid size were also applicable for decay
motions in pitch and surge, we again conducted grid sensitivity studies, and the associated
time series are plotted in Figure 9. As seen, the medium time-step and the medium grid
size obtained accurate enough results for decay motions in pitch and surge.

r
[

ane
B

.00

Surge [m]

-0.10

Figure 9. Time histories of freely decaying pitch: (a) heave; (b) motions obtained on grids Gy, G, and Gs,

3.3. Hydrodynamic Damping

The evaluation of the results comprised not only the buoy motions and mooring forces,
but also the systems’ associated natural periods and amounts of hydrodynamic damping.
Various techniques exist to obtain hydrodynamic damping from decay tests. Previously [19],
we used an improved P-Q method to estimate linear and quadratic damping of a moored
buoy and found the results to be reliable although they were sensitive to data input.
Alternately, the equivalent linear damping approach [32] was adopted in this study, as it
is relatively simple and robust. The nonlinear motion equation of a floating unit can be
written as follows:

MX + B(X) + Cx = Fext(t) (18)

where M is the mass, C is the stiffness, and x, X, and x are the motion, velocity and
acceleration vectors, respectively. Vector Fext comprises the external forces, and the higher
order nonlinear damping function, B, can be expressed as follows:

B = ByX + Box|X| 4+ Bpx’ 4 - - - (19)

For the free decay tests, considering only the linear damping and no external forces,
the equation of motions in non-dimensional form can be rewritten as follows:

X + 20wnX 4+ wp?x =0 (20)

where ( is the percentage of critical damping, and wy, is the natural frequency of the motion.
Then, Equation (18) then is linear, and its solution can be rewritten as follows:

X = xpe~ wnt cos( 1— Czwnt) (21)
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where x is the initial condition of motion. An exponential fitted curve, adjusted using a
least-squares approach and the parameters a and b from the exponential fit, can be found
as follows:

X = xge~ Wat = ge~b* (22)

where wjq is the damped natural frequency obtained from the oscillations of free decay tests.

4. Results
4.1. Decay Tests in Heave

All decay tests were simulated as a one degree-of freedom system, i.e., the influences
of other motion components were not considered.

We performed four heave decay tests, namely, one test without a mooring system
(FREE) and three tests with mooring configurations CAT, CON1, and CON2. Heave decay
tests began by displacing the buoy a vertical distance of —0.076 m from its static equilibrium
position. After it was released, it began to oscillate at its damped natural frequency about
this equilibrium position. Hydrodynamic damping caused the oscillating amplitudes to
decrease. Figure 10 shows plots of the numerically simulated time series of the decaying
heave motion and Figure 11 shows the associated time series of tension in cable 1. Due to
symmetry, only the tensions in cable 1 were plotted. As seen, due to the differing mooring
restoring forces provided by the three mooing configurations, the buoy’s vertical heave
motions and the tensions in cable 1 differ significantly. Heave motions and cable tensions
all oscillate about their mean values. The presence of a mooring system caused heave
amplitudes to decrease and that this decrease became successively more pronounced for the
configurations CON1, CAT, and CON2. The buoy’s draft changed with different mooring
configurations, as well as the mooring tensions. Cable tensions obtained from simulations
with configurations CAT and CONT1 are similar, although the amplitude peaks with the
CAT system are slightly larger than those with the CON1 system. The CON2 system’s
tension amplitudes are largest because this system provided the highest restoring forces.

0.08

w— FRFF
cA
CCN1

-== CON2

0.02 -

Heave [m]
o
>
3

. \ //’( \\ N

-0.02

-0.06

0 Dt‘n IT':' 1v§ 2.0 7Tﬂ '\TC' s 4.0
Time ()

Figure 10. Comparative time histories of heave motion obtained from decay tests of the free buoy

and of the buoy with mooring systems CAT, CON1, and CON2.

To quantify the influence of attached mooring systems on the buoy’s hydrodynamics,
the natural period, the percentage of critical damping, the computed and fitted time series
of heave decay together with the envelope curves joining the computed heave amplitudes
are depicted in Figure 12. Solid lines identify the computed heave motions; dotted lines,
the fitted heave motions, which we obtained via the least-squares method by appropriately
fitting each system’s natural period, T, and its percentage of critical damping, {. The
dashed lines identify the envelope curves joining the fitted decaying heave amplitudes.
Legends in the four graphs of this figure specify the natural periods and the percentages
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of critical damping associated with each system. Table 8 lists the corresponding changes

brought about by the presence of the moorings.

of each system’s natural period, its percentages of critical damping, and the buoy’s draft
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Figure 11. Comparative time series of mooring line tension obtained from decay tests in heave for
the buoy with mooring systems CAT, CON1, and CON2.
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Figure 12. Time series to estimate the natural period and percentage of critical damping for the decaying heave motion of:
(a) the free buoy; (b) and of the buoy with mooring systems CAT; (¢) CON1, (d) and CON2.
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We see that the buoy’s draft increased due to the presence of the moorings for all

configurations. However, the effect of the mooring system on natural periods was minor

because the mooring systems’ restoring forces were relatively small compared to the buoy’s
hydrostatic restoring force, as this hydrostatic restoring force dominated the natural periods

in heave. On the other hand, the systems” damping turned out to be significant. Overall,

CAlL: Cable L (left y-axis!
CONI: Cable 1 {left y-axis) | 130
=== CONZ: Cable 1 tright y-axis)
12.5
12.0
z
ns ¢
- >
AN - 2
by O
7 < fantnmey =
\ 7 LN A S Inog
\ ’ \ 4 N 2
\\ I/ \ ’l ~ v
\ ’ \ ’
Y /’ \\ i
\ / Saan 10.5
N /
o 4
10.0
as
20 2.5 3.0 35
Tme |5)



J. Mar. Sci. Eng. 2021, 9, 350

14 of 20

the CON1 system had the least effect and the CON2 system had the greatest effect on
heave amplitudes. Although the CAT system did influence heave motions, its effect was
similar to that of the CON1 system. This was because the top part of the mooring cables of
the CONT1 configuration was horizontally connected to the buoy, thereby minimizing this
system’s vertical force components. On the other hand, with the CON2 system, the sub
floater and the clump weight attached to the mooring cables introduced additional effects.

Table 8. Comparative changes of each system’s natural period, Ty, of the percentage of critical
damping, ¢, and the mean draft caused by the presence of the mooring systems obtained from decay
tests in heave.

FREE CAT (%) CONT1 (%) CONZ2 (%)
Tp —0.18 —0.18 —0.44
¢ 1.83 0.34 11.99
Mean draft —-1.82 —0.57 -7.37

4.2. Decay Tests in Pitch

The decay tests in pitch started with the buoy displaced at a pitch angle of 10 deg
from its static equilibrium position. Figure 13 shows plots of the associated time series of
computed decaying pitch motions for the free buoy and for the buoy moored with systems
CAT, CON1, and CON2. Figure 14 shows plots of the corresponding time series of tension
in mooring cables 1 and 2, and Figure 15 plots the process of obtaining the natural periods
and damping ratio. Again, legends in the four graphs of this figure specify the natural
periods and the percentages of critical damping associated with each system. Table 9 lists
the corresponding changes of each system’s natural period and of the associated percentage
of critical damping.

Pitch [deg?

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 a.0
Time [s]

Figure 13. Comparative time histories of motions for decay tests in pitch.
Table 9. Comparative changes of each system'’s natural period, Ty, and of each system’s percentages

of critical damping, ¢, caused by the presence of the mooring systems, obtained from decay tests
in pitch.

Diff. to FREE CAT (%) CON1 (%) CON2 (%)

Ty —-1.29 —2.23 —0.86
C 42.79 54.23 122.64
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Figure 14. Comparative time histories of mooring tensions for decay tests in pitch.
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Figure 15. Time series to estimate the natural period and percentage of critical damping for the decaying pitch motion of:
(a) the free buoy; (b) of the buoy with mooring systems CAT; (¢) CON1, (d) and CON2.

From Figure 13 we see that the presence of moorings caused pitch amplitudes to
decrease and that this decrease became successively more pronounced for the CAT, CON1,
CON2 configurations. The effects of the moorings on decaying pitch motions differed
slightly from those of the decaying heave motions, in that the associated natural periods
also decreased. This was because the changes of the percentage of critical pitch damping
(see Table 8) were about two orders of magnitude larger compared to the percentage of
critical heave damping (see Table 9).

Mooring systems provide not only a translational (horizontal) restoring force, but also
a rotational restoring moment. In our model, this restoring moment was largely due to
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the buoy’s hydrostatic restoring moment in pitch. Although the mean tensions in cable
2 of the CAT and the CON1 systems are similar (see Figure 14), the oscillating tension
amplitudes of the CON1 system greatly exceed those of the CAT system. The CON2 system
caused only moderate tension amplitudes, although it has the largest tensions. All three
mooring configurations induced damping that caused pitch motions to decay. In contrast
to the decay motions in heave, apart from potential damping, viscous damping was largely
responsible for the decay of pitch motions. Consequently, the effects of mooring-induced
damping were more pronounced. Overall, the CAT system had the least effect on the pitch
motions, the CON2 system had the greatest effect on damping, and the CON1 system had
the greatest effect on the natural period.

4.3. Decay Tests in Surge

To compare the additional mooring-induced damping for decay motions in surge,
we introduced a quasi-static mooring model as a comparison. The dynamic effects on the
mooring lines were ignored in this approach, omitting the motion dependency of mass,
damping, and fluid acceleration on mooring lines. Mooring line shape and tension were
derived from the catenary formulation, based on the assumption that each mooring line is
in static equilibrium at each time step and that inertia effects can be neglected. For further
details of the adopted quasi-static (QS) model, see [21]. Figure 16 plots tensions in cables 1
and 2 for the QS and the CAT system against the buoy’s offset from its equilibrium position,
whereas the QS restoring force characteristics were designed according to the CAT. As seen,
their functional relationships hardly differ, which justified our decision of selecting the QS
restoring force characteristics.

6
..... Qs
CAT
5 - *, Cable 1
z
C 4 - Cable 2
S
0
5 !
&
@ 1 L F
53T [ Lommmmwr
Q@ | | ettt
O | [ _ppeees™ | TTAa,
2 4
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-0.10 —-0.05 0.00 0.05 0.10

Offset in Surge [m]

Figure 16. Cable tensions versus static buoy offset for the QS analysis and the CAT system.

Figure 17 shows plots of the resulting numerically simulated time histories of surge
motions obtained with restoring characteristics from the QS analysis and with restoring
characteristics for the CAT, the CON1, and the CON2 mooring configurations. As seen,
with restoring characteristics from the QS analysis, we obtained the largest surge ampli-
tudes and the smallest natural period, and with the CON1 system, we found the smallest
amplitudes; however, with the CAT system, we determined the largest natural period. To
demonstrate the difference between mooring configurations, the simultaneously recorded
mooring tensions are plotted as time histories in Figure 18, and the associated natural
periods and percentages of critical damping are estimated in Figure 19. Table 10 lists the
corresponding changes of each system’s natural period and of the associated percentage of
critical damping.
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Figure 17. Comparative time histories of surge motion obtained from decay tests in surge.
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Figure 18. Comparative time histories of mooring tension obtained from decay tests in surge.

Table 10. Comparative changes of each system’s natural period, Ty, and of each system'’s percentage
of critical damping, , caused by the presence of the mooring systems obtained from decay tests

in surge.
Diff. to QS CAT (%) CONT1 (%) CONZ2 (%)
Ty 10.45 6.47 7.15
C 109.90 650.00 245.83

In terms of mooring forces, although the simulation with QS analysis obtained the
largest mooring forces, it also provided the smallest additional damping to the motions in
surge, which demonstrated the advances of the dynamic mooring model over the quasi-
static mooring model when predicting the hydrodynamic damping of a moored offshore
structure. The simulation with the CAT system had the least effect and the simulation with
the CON1 system the greatest effect on decaying surge motions. The simulation with the
CONB2 system had a medium effect on decaying surge motions because the cable tensions
of this system were relatively larger, as each mooring leg incorporated not only a clump
weight, but also a submerged floater. CON1 suffers the smallest mooring forces, but its
force amplitudes are comparative to those from CON2. For cable tensions obtained with
the CONT1 system, although its amplitudes were not large, the almost horizontally acting
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mooring cable transmitted a relatively large horizontal force to the buoy, and this force was
dominant for the decaying surge motion amplitudes and periods.
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0.05

— Surge QS
0001 4 Fit

Surge [m)

-0101 — \/ _oce=——

== T,=8.456s, {=1.92%

— Surge CAT

Surge [m)

20 25 30 35 40 0 5 10 15 20 25 30 35 40

0.05

Surge [m)

-0.05

-0.104,#

w— Surge CON1 el w— Surge CON2

0.05

Surge [m)

-0.05

-0.10

20 25 30 35 40 0 5 10 15 20 25 30 35 40

Figure 19. Time series to estimate the natural period and percentage of critical damping for the decaying surge motion of
the buoy with mooring system: (a) QS; (b) CAT; (c) CON1, (d) and CON2.

5. Conclusions

To account for mooring-induced damping, a freely floating buoy and a buoy posi-
tioned with three different mooring configurations were simulated using a Navier-Stokes
equations solver coupled with a dynamic mooring model. This method allows one to
consider nonlinear mooring-induced phenomena, fluid structure interactions, and the
associated viscous effects.

Motion decay simulations in heave, pitch, and surge were considered. The analyzed
response comprised the decaying oscillating motions, the natural periods, and the associ-
ated amount of system damping. The main objective was to systematically determine the
influence of these mooring configurations on buoy motions, the systems’ natural periods,
and the amount of hydrodynamic damping for heave, pitch, and surge motions. To achieve
this, we performed numerical decay simulations using an overset grid scheme of exactly
the same mesh for each motion component. Although the restoring force characteristics of
all mooring systems considered were similar, their influence on the buoy’s motions as well
as on the amounts of system damping showed large deviations.

To consider the mooring-induced damping of a moored floating structure, a dynamic
mooring model must be adopted over a quasi-static mooring model. This was so because
the quasi-static approach assumes that the motion of the system is uniform and linear
between two static positions over a given time step and that the loads acting on the system
are constant. The dynamic effects on mooring lines are ignored in this approach, omitting
the motion dependency of mass, damping, and fluid acceleration on mooring lines. Larger
discrepancies were expected between results obtained from the dynamic and the quasi-
static mooring model when considering the oscillatory motions of a moored buoy in waves,
especially for the high frequency motions. However, high velocities may happen, possibly
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leading to undesirable snap loads in mooring lines. If that happens, the associated mooring
dynamics violate the assumption of a quasi-static mooring model.

The influence of mooring-induced damping on a moored buoy was demonstrated.
This kind of damping varied significantly between configurations although the comparative
mooring tensions hardly differed. The CAT system balanced the effects on the buoy’s heave,
pitch, and surge motions. However, its relatively large footprint restricts its application
in densely packed array formations. The CONI1 system mainly restricted the buoy’s
horizontal motions, but it hardly affected the buoy’s heave motion, suggesting that this
kind of mooring configuration might be appropriate to position WECs that extract wave
energy from vertical motions. The CON2 system restricted vertical motions more than the
other systems considered.

Generally, a mooring configuration should be tailored to the particular characteristics
of the floating concept. The different mooring systems considered not only influenced
the system’s restoring force characteristics, but also the overall amount of damping in the
system. Unlike in the offshore oil and gas sector, where large mass moored structures are
characterized by low responsiveness and nearly linear load-extension restoring characteris-
tics, moored WECs are likely to operate in a nonlinear load-extension range. For WECs,
a mooring configuration is more problematic because the system’s influence on power
take-off efficiency has to be considered. Such mooring configurations must be designed to
optimize the power take-off efficiency of WECs, and their physical parameters have to be
tailored to the particular characteristics of each concept. To optimize the power take-off
efficiency of such devices, one key area, for example, might be the system’s footprint on the
ocean floor, especially if a large number of converters are to be situated in a restricted area.
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