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Abstract: Boat noise is known to have a detrimental effect on a vulnerable Mediterranean sciaenid,
the brown meagre Sciaena umbra. During summer 2019, two acoustic surveys were conducted at
40 listening points distributed within the inlet areas of Venice (northern Adriatic Sea). Two five-
minute recordings were collected per each point during both the boat traffic hours and the peak of
the species’ vocal activity with the aims of (1) characterizing the local noise levels and (2) evaluating
the fish spatial distribution by means of its sounds. High underwater broadband noise levels were
found (sound pressure levels (SPLs)50–20kHz 107–137 dB re 1 µPa). Interestingly, a significantly
higher background noise within the species’ hearing sensibility (100–3150 Hz) was highlighted in the
afternoon (113 ± 5 dB re 1 µPa) compared to the night (103 ± 7 dB re 1 µPa) recordings due to a high
vessel traffic. A cluster analysis based on Sciaena umbra vocalizations separated the listening points
in three groups: highly vocal groups experienced higher vessel presence and higher afternoon noise
levels compared to the lower ones. Since the species’ sounds are a proxy of spawning events, this
suggests that the reproductive activity was placed in the noisier part of the inlets.

Keywords: coastal areas; fish; anthropogenic noise; passive acoustic monitoring; protected species;
reproduction

1. Introduction

Many human activities generate sounds in the aquatic environment that are very
different from those arising from natural sources both at the intensity and frequency levels;
as a result, man-made noise has changed the acoustic underwater landscape of many areas,
and it has become a pollutant of international concern, given its potential to harm marine
fish [1].

Living in a very noisy environmental condition represents a constraint for aquatic
species. It has been widely recognized that anthropogenic noise can threaten animals
at both the physiological and behavioral levels, increasing the hearing thresholds and
stress hormones and impacting their foraging and anti-predatory ability and reproductive
success, with potential consequences in terms of survival and fitness (reviewed in [2–4]).
In marine ecosystems, commercial shipping and recreational boating are common sources
of anthropogenic noise, and noise from vessel traffic along coastal areas is a widespread
stressor [5] to which animals have to cope. Vessel noise was demonstrated to affect
fish [6] by inducing changes in fish swimming, brooding, and anti-predator behaviors in
both laboratory and field environments, as well as impacting fish social communication
interfering with the receiver’s ability to hear the signal’s original content.

Continuous and chronic disturbance from boat noise is typically associated with
marinas, boat channels, and harbor entrances. This is also expected to be the case of the
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inlets that allow for shipping traffic in and out of the Venice Lagoon; Venice is one of
the principal ports of the northern Adriatic Sea, with a number of about 3500 port calls
for commercial vessels and cruise ships. The large number of fishing boats and motor-
and speed-boats operating along the inlets also gives a large contribution to the local
anthropogenic noise levels, particularly during the summer period [7].

On the other side, the Venice inlets, which are constituted by piers made by artificial
3-D structures, represent a standardized homogeneous habitat that has the potential to
attract and aggregate the local pelagic and benthic fauna in accordance with other artificial
structures in coastal areas [8]. In more detail, since they are constituted by rocky reefs
with holes and shelters close to the soft substrates that act as feeding grounds, the inlets
resemble the typical reproductive habitat of a small-sized sciaenid occurring along most
of the Mediterranean coast, the brown meagre Sciaena umbra [9,10]. A preliminary survey
confirmed the local presence of this species, with a variable number of heterogeneously
distributed individuals [11].

The brown meagre is a slow-growing species that can live for up to approximately
30 years and exceed 60 cm in total length [12,13]. In the Mediterranean, it is frequently
targeted by spear-fishers and caught by the coastal commercial fleet, leading to a change
in the abundance and composition of its populations [14,15]. As a result, it is listed in
the Annex III (Protected Fauna Species) of the Barcelona Conventions and classified as a
vulnerable species by the International Union for Conservation of Nature (IUCN), although
a slow recovery has been recently reported [16].

Sciaena umbra is sedentary with a limited capability for adult dispersal, particularly
during the autumn and winter months [14,17]. During the summer season, daytime site
fidelity is corroborated by underwater observations [18,19], whereas there is a general lack
of data on its nocturnal behavior; it is known that S. umbra feeds actively on crustaceans
during the night [10,14], but the spatial extent of its nocturnal movements is unknown.
Feeding has been proved to be mainly focused during the spring gonad maturation [17,20].

Sciaena umbra reproduces from late spring to autumn [20,21]. It emits drumming
sounds as part of its reproductive process [22–24], whose acoustic features are consistent
in space and time [25]. As a consequence, the species can be acoustically identified at
sea by mean of its vocalizations. S. umbra vocalizations consist of low-frequency pulsed
sounds with main energy below 1 kHz (mean dominant frequency of 200–300 Hz); they
are made of 4–7 pulses, with a pulse period of approximately 70–145 ms and a pulse
duration of approximately 16–27 ms [9,11,21,23,25,26]. Recently, a two-year continuous
acoustic monitoring at a study site inside the no-take Réserve de Couronne (near Marseille,
France) highlighted a strong consistency in the sound production along the reproduction
period [21], thus further confirming the site-fidelity for breeding, vocalizing individuals.

Being sedentary, S. umbra benefits from protection measures inside marine protected
areas (MPAs), where it is usually present at high densities [18,19,27,28]. Chorusing activity
produced by spawning aggregations has been recorded within fully protected zones of
old MPAs in the northwestern Mediterranean Sea, where S. umbra was present in approxi-
mately 70–80% of the monitored stations, though a generally lower probability of detecting
S. umbra calls was found in younger MPAs (approximately 30% of the stations; [21]).
Sound production has also been reported in anthropized coastal areas [9,11,21], where
the species could be nevertheless affected by the underwater noise produced by vessel
traffic. Thus far, S. umbra behavior and vocal activity have been proved to be influenced
by boat passages by two different studies run inside MPAs [19,29]. MPAs represent an
ideal situation to evaluate the impact of potential stressors on relatively pristine animal
populations. However, it remains unclear whether fish avoid high-noise areas. To explore
this question, the distribution of the protected fish species Sciaena umbra was analyzed here
in a potentially highly noisy area: the Venice inlets. This research aimed at (i) evaluating
the vessel traffic and the received sound pressure level of noise along the three Venice
inlets while considering the hearing thresholds of the target species; (ii) monitoring the
spatial distribution of S. umbra in the inlets by recording its acoustical activity, following a
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previous established methodology [9,11,21,24]; and (iii) observing and interpreting the fish
distribution in relation to the local underwater anthropogenic noise pressure.

2. Materials and Methods
2.1. Data Collection

During summer 2019, two acoustic surveys were conducted at 40 listening points
distributed along the three inlets that connect the Venice lagoon to the sea (Figure 1). The
total number of listening points (n = 40) were allocated into the three different sea inlets
(n = 13 Lido, north-eastern inlet; n = 15 Malamocco, the central inlet; and n = 12 Chioggia
south-western inlet; see Figure 1). They were distributed along both the internal and
external sides of the inlets, with each at about 300 m apart; this distance was based on the
sound source levels reported by [22], assuming a cylindrical spreading loss.
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Figure 1. Map showing the 40 listening points in the three inlets (Lido, Malamocco, and Chioggia)
explored during the acoustic monitoring. The map also visualizes the stations characterized by
higher Sciaena umbra vocalization rates with different colors (black dots for group 1 and dark grey
dots for group 2), whereas white dots indicate stations characterized by lower vocalization rates
(group 3), in accordance with the results presented in this study.

Each listening point was replicated twice, one at the end of July and the other at
the end of August (5 and 29 August for the Lido inlet; 29 July and 28 August for the
Malamocco inlet; and 1 August and 27 August 2019 for the Chioggia inlet). Within the
above-indicated monitoring days, each listening point was also replicated twice per station:
one 5-min acoustic sample was collected in the late afternoon, corresponding to one of the
local peaks of boat traffic in the summer period (17–19); a second 5-min acoustic sample
was collected a few hours later, corresponding to the peak of the species’ vocal activity
(19.30–23) [23,25]. The earlier acoustic samples were mainly meant to instantaneously
evaluate the man-made noise pressure per listening point, whereas the sunset-nocturnal
ones locally monitored the presence of the target species by means of its reproductive
sounds. Sciaena umbra vocalizations consist of pulsed sounds with main energy below
1 kHz and a mean dominant frequency of 200–300 Hz; they are made of 4–7 pulses,
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with a pulse period of approximately 70–145 ms and a pulse duration of approximately
16–27 ms [23,25].

Recordings were obtained using a pre-amplified Colmar GP1280 hydrophone (sen-
sitivity of −170 dB re 1V/µPa and frequency range of 5–90 kHz) connected to a Tascam
Handy Recorder (Tascam Corporation, Santa Fe Springs CA, USA; sampling rate 44.1 kHz,
16 bit) generating Waveform Audio File Format (WAV). Prior to each survey, the signal
was calibrated using a generator of pure waves of known voltage. The hydrophone was
lowered from a 7.5 m open boat to an average depth of 4 m (range of 2–6 m in depth).
Sampling was carried out only in a sea state of less than two on the Douglas scale and
a wind speed of less than 10 km/h. Surface water temperature was measured prior to
each recording by using a digital thermometer (HANNA Checktemp® 1 HI98509 ± 0.1 ◦C),
resulting in an average of 27.4 ◦C (range: 26.6–28.5 ◦C) for the acoustic samples containing
S. umbra sounds.

A quantification of the traffic in the area was obtained by keeping a log of the vessels
visible by eye per each acoustic recording; this was further confirmed by scoring the number
of vessel signals that were visually and aurally identifiable for their unique signature in the
acoustic files. The same vessel was never included in two different acoustic files because of
a minimum of 10 min needing to pass from the end of one recording and the start of the
next one.

2.2. Data Analysis

A total of 160 5-min recordings were collected and analyzed minute by minute using
the Adobe Audition software by the aural and visual assessment of the spectrograms (sam-
pling rate—FS 44.1 kHz, 16 bit, resampled at 6 kHz, Fast Fourier Transform—FFT = 512,
and 50% overlap). This allowed us (i) to discriminate geophony (waves and currents),
biophony (i.e., S. umbra sounds), and anthropophony (vessels and cargo), as well as (ii) to
score their presence/absence per acoustic sample. The Adobe Audition software was also
used to quantify both the vessel passages and the S. umbra calls.

S. umbra produces low-frequency pulsed sounds with a main energy below 1 kHz that
are clearly detectable even in the presence of vessel noise (Figure 2). The pulses were iden-
tified and scored by an aural and visual assessment of the recorded file, following [11,26];
the number of pulses present per minute was defined as the pulse rate (PR). The PR
was further scaled on a quantitative scale (pulse code: PC) ranging from 0 (no sound)
to 5 (maximum pulse rate): 0 = no sound production, 1 = very few sounds (less than
50 pulses min−1), 2 = some sounds (30–50 pulses min−1), 3 = semi-continuous sound pro-
duction (>50 pulses min−1), 4 = continuous sound production (>100 pulses min−1), and
5 = ‘chorus’.

The acoustic samples were analyzed as instantaneous sound pressure level (SPL) by
using the software SpectraPlus 5.0 (Pioneer Hill Software, Sequim, WA, USA; Hanning
windows, 32768-pt FFT size, 75%FFT overlap, and averaging fast) previously calibrated
with a signal of 100 mV RMS at 1 kHz and the hydrophone sensitivity value. This software
utilizes the discrete fast Fourier transform algorithm to compute the frequency spectrum
among 1/3 octave bands (center frequencies of 50–20,000 Hz) and the broadband SPL
per each second. Per each sampling station, a single SPL value was further obtained
(i) for the 1/3 octave bands and (ii) along the whole broadband by log-averaging in the
dB domain the obtained values over the sample (300 s). Energy levels (hereafter called
“ELs”) were also calculated for the frequency range of 100–3150 Hz (EL100–3150; range:
89–3548 Hz), which was consistent with the species’ audiogram, and 200–630 Hz (EL200–630;
range: 178–708 Hz), which corresponded to the species’ best hearing range [30]. Energy
levels were calculated by summing the energy of the corresponding 1/3 octave bands by a
log-sum in the dB domain.
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Median one-third octave band levels generated from all the 5-min SPL averages were
compared to the S. umbra audiogram [30] to estimate which parts of underwater noise
spectra might be audible to the species. For a quantitative evaluation, the average difference
between the S. umbra audiogram and the median values in the sensitive frequency band
(EL200–630) was calculated for (i) the afternoon (n = 80) and (ii) night (n = 80) recordings,
(iii) the night recordings characterized by the S. umbra chorus (n= 11) and (iv) the recordings
containing more than three boat passages (n = 31); almost all the files containing more
than three boat passages were recorded in the afternoon in the absence of fish sounds (see
results). As a consequence, their ELs were representative of the anthropic contribution to
the local background noise in case of high boating traffic.

In order to group the recording stations of the three inlets according to the local vocal
activity of the target species, a hierarchical cluster analysis based on Ward’s algorithm was
applied to the listening points by using the S. umbra PC as a variable; for this analysis, the
PC values were standardized as (x − min)/(max − min), with x being the average PC value
over the 5-min-file recorded per single station and the min and max being the minimum
and maximum average PC recorded along all the monitored stations, respectively. The
cluster groups were calculated by using the Ward’s minimum variance method using
Euclidean distances. Groups were based on an a priori level of 70% of similarity.

To compare the collected data, statistical analyses were performed with non-parametric
tests, with an alpha level of 0.05: (1) the Kruskal–Wallis Test was used for spatial compar-
isons between the three inlets or for comparisons of the S. umbra vocalization rate or noise
levels between the groups of recording point, (2) the Mann–Whitney U Test was used for
temporal comparisons between the two surveys (end of July/beginning of August vs. end
of August), and (3) the Wilcoxon pair test was used for temporal comparisons between
afternoon vs. night collected data per each recording point.
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3. Results
3.1. Acoustic Characterisation of the Data Collected in the Venice Inlets

The acoustic data collected in the Venice inlets were characterized by the sounds
produced by the waves and the water current (present in 53% of the collected acoustic
samples), the irregular transit of different type of vessels (70%) or cargo (5%) contributing
to both the high and low frequency bands, and the sounds produced by biological sources
such as the snapping shrimps (100%) and Sciaenid fish vocalizations (50% of the collected
nocturnal acoustic samples).

From a quantitative point of view, the background noise (broadband) varied from 107
to 137 dB re 1 µPa in the afternoon recordings and between 109 and 133 dB re 1 µPa in the
night recordings. The broadband SPLs calculated per each listening point did not differ
between these two periods (Wilcoxon signed rank test, p = 0.38), suggesting a temporal
consistency of the noise levels within this broadband frequency spectrum. Furthermore,
no difference was found in the broadband SPLs of samples collected during the first (end
of July/beginning of August) vs. the second (end of August) surveys (Mann–Whitney
U test: p = 0.84 for the afternoon samples and p = 0.53 for the nocturnal samples) nor when
comparing the average SPLs recorded at the three inlets (Kruskal–Wallis Test: p = 0.49 for
the afternoon samples and p = 0.38 for the nocturnal samples).

The local SPLs were highly influenced by the vessel passages, as clearly shown by
Figure 3. A significantly higher presence of vessel passing along the inlets was detectable
in the afternoon (2.4 ± 2.2 vessel passages per five-minute sample, corresponding to about
30 vessel passages per hour along the 17–19 period) compared to the night (0.8 ± 0.8 vessel
passages per 5-min sample, corresponding to about 10 vessel passages per hour along
the 19.30–23; Wilcoxon signed rank test, p < 0.001). As a result, 30 out of 31 acoustic files
containing more than three boat passages were recorded in the afternoon in the absence of
fish sounds.
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The background noise, as described by the 1/3 octave band spectrum (Figure 4),
showed consistently high SPLs at low frequency, which increased above 2 kHz with a
peak around 4 kHz, which was mainly attributable to the activity of snapping shrimps
(the Alpheus and Synalpheus genera). After comparing the recorded levels with the Sciaena
umbra audiogram (Figure 4), an overlap of the background noise with the species hearing
thresholds was evident.

An average EL100–3150 value of 113 (±5 SD) dB re 1 µPa and an EL200–630 value of 103
(±7 SD) dB re 1 µPa were found along the S. umbra hearing frequencies (100–3150 Hz)
and the restricted range of 200–630 Hz, respectively. The average difference between the
S. umbra audiogram and the median EL200–630 in the sensitive frequency band (200–630 Hz)
was equal to approximately 10 dB re 1 µPa for both the afternoon (10.7 dB re 1 µPa; n = 80)
and night (10.3 dB re 1 µPa; n = 80) recordings. This increased to 16.6 dB re 1 µPa for
the afternoon recordings containing more than three boat passages (n = 31) and to 14 dB
re 1 µPa for the night recordings characterized by the S. umbra chorus (n = 11). It has to
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be noticed that out of eleven files with chorusing activity, only two contained the signals
produced by one passing recreational boat.
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The background noise for each recording point was slightly higher in the afternoon
than in the night recordings when considering the 100–3150 Hz (EL100–3150 = 114 ± 5 dB re
1 µPa vs. EL100–3150 = 112 ± 4 dB re 1 µPa; Wilcoxon signed rank test, p = 0.027) but not
the 200–630 Hz frequency ranges (EL200–630 = 104 ± 7 vs. EL200–630 = 103 ± 7 dB re 1 µPa,
respectively; Wilcoxon signed rank test, p = 0.131). In the 200–630 Hz range, however, the
S. umbra nocturnal chorus was responsible for increased values, like the ones resulting
from the boat noise contributions observed in the afternoon (Figure 4) [31].

The afternoon SPL levels were similar across the three inlets for both the 100–3150
and 200–630 Hz frequency ranges (Kruskal–Wallis test: EL100–3150, p = 0.07 and EL200–630,
p = 0.25, respectively), indicating a spatial homogeneity in accord with the case of the
broadband SPLs.

3.2. Sciaena umbra Vocalizations

Sciaena umbra vocalizations were recorded at sea only after the sunset. About half of
the collected nocturnal samples included these sounds (39 out of a total of 80). During the
first and second surveys, S. umbra sounds were found in 21 and 18 out of 40 listening points
(i.e., in 52% and 42% of points), respectively. The species’ PR (i.e., the number of pulses
per minute) ranged between 0 and 350 pulse min−1 (mean: 68 pulse min−1 ± 125 SD), not
being consistent along the monitored area. In detail, the mean PR varied across the three
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tested inlets (Kruskal–Wallis test, p = 0.04), with a mean of 100 pulse min−1 (±21 SD) and
113 pulse min−1 (±23 SD) at the Lido and Malamocco inlets, respectively, whereas a mean
of only 11 pulse min−1 (±4 SD) was recorded at the Chioggia inlet. Boat noises were
present in about half of the samples containing S. umbra vocalizations (19 out of a total of
39; in six cases, one of the noise sources was a cargo ship).

A cluster analysis based on the S. umbra pulse code (PC) created a total of 14 possible
groupings, one for each node at descending Euclidean distances (Figure 5). The grouping
produced at a distance of 0.3 have three distinct assemblages that clearly differed for the
species vocalizations activity: group “1” included seven points characterized by a higher
vocalization rate (PC = 4.3 ± 0.3, i.e., characterized by a continuous sound production of
>100 pulses min−1 and/or the chorus, following [11]) distributed mainly in the internal side
of the Lido and Malamocco inlets (see also Figure 1) whereas group “3” contained nineteen
points with a very low vocalization rate (PC = 0.1 ± 0.08, i.e., characterized by less than
30 pulses min−1, following [11]), mostly facing the external sea side of the inlets and/or
located in the Chioggia inlet. Group “2” consisted of an intermediate vocal activity of the
target species (PC = 1.5 ± 0.3, i.e., characterized by 30–50 pulses min−1, following [11]).
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Figure 5. Tree diagram provided by cluster analysis using the pulse code to visualize which listening points were more
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The three groups of locations produced by the cluster analysis were characterized by a
slightly but significantly different background noise levels along the afternoon recordings
(Kruskal–Wallis test, broadband p = 0.001; EL100–3150 p = 0.018, EL200–630 p = 0.017), with
group 1 and 2 having higher values compared to group 3 for all considered frequency
ranges. Figure 6a shows the case of EL200–630. Consistently, groups 1 and 2 were charac-
terized by a higher number of vessel passages compared to group 3 (Kruskal–Wallis test,
p = 0.021; Figure 6b).

On the contrary, neither the SPLs and ELs (Kruskal–Wallis test, p = 0.1, 0.4, and
0.5 for the broadband, EL100–3150, and EL200–630, respectively) nor the number of vessel
passages (Kruskal–Wallis test, p = 0.602) varied between the three groups of locations
during the night recordings. Though not significant, a slightly higher value was evident
while comparing the average EL200–630 of group 1 vs. group 3 (Figure 7a). This was likely
due to the contribution of the S. umbra vocalizations, given the overall low number of
vessel passages after sunset (Figure 7b).
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4. Discussion

The Venice lagoon, located in the northern part of the Adriatic Sea, is one of the largest
lagoons in Europe. Its port is characterized by a double function: a passenger port in the
lagoon city (hosting two million passengers and providing services to 200 mega-yachts)
and a commercial port on the mainland. It is therefore not surprising that such vessel traffic
influences the underwater acoustics in the inlet areas, resulting in high underwater noise
levels (overall recorded SPLs50Hz–20kHz ranging from 107 to 137 dB re 1 µ), with maximum
values similar to those reported in other Italian and Portuguese areas (i.e., Gulf of Trieste:
SPLs50Hz–20kHz 76–141 dB re 1 µPa; Gulf of Naples: SPLs16Hz–40kHzH 108–140 dB re 1 µPa;
and Port of Civitavecchia: SPLs12.5–16 kHz 45–158 dB re 1 µPa) [32–34]. Noise levels at the
low-frequencies are mainly produced by vessel engines, electrical machinery, and propeller
cavitation (<3 kHz [35,36]). They were found to be slightly, but significantly, higher during
the afternoon than night-recordings, mirroring the number of operating vessels in the inlets.
A similar pattern was recently found by the authors of [37] in a large Portuguese coastal
lagoon: during summer, the underwater noise tended to remain sustained from 7 to 17
at levels that approached or exceeded 120 dB re 1 µPa, with a smooth and progressive
variation at dawn and evening as a result of the reduced boat traffic nearby.

The present study could not fully define a continuous and extremely variable phe-
nomenon such as marine background noise by using a non-continuous monitoring ap-
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proach; nevertheless, the acquired data are indicative of an environment saturated by
the anthropic presence at the lower frequencies (<2–3 kHz) during the afternoon period,
whereas the vessel presence was found to be reduced at night. Vessels generated acous-
tic signals that were unpredictable in intensity, in a context of a persistent low intensity
background. According to the present paper, the background noises were at similar levels
to the Sciaena umbra audiogram. Further, if vessel activity expanded into evening hours,
then the associated acoustic input associated to boating had the potential to exceed the
S. umbra vocalizations even during chorusing activity. This likely led to a reduction in
the detectability of signals of interest. This effect was supported by a laboratory study,
where the playback of one single recreational boat noise (mean ambient noise—LLeq,1 min
132 dB, with a maximum instantaneous SPL of 138 dB re 1 µPa) induced an upward shift
in the S. umbra auditory threshold by about 25 dB and a reduction of the species acoustic
communication from 500 m under ambient noise to only about 1 m under the boat noise
conditions [22].

Boat noise is known to affect the efficiency of fitness-related fish behaviors such as for-
aging and antipredator behaviors, risk assessment, nest-defense, and parental care [38–44].
Fish responses, however, depend on many variables, including boat and engine types, boat
speed, distance from noise source, motivational and physiological fish state, and the social
context [41,43,45]. Therefore, there can be a continuum of responses to disturbance in in
situ conditions ranging from mild to more severe forms.

In the context of conservation, the critical factor is whether a disturbance results in
lower population sizes, especially in case of an already vulnerable species, such as the
brown meagre. Usually, these assessments rely on proximate measures as the behavioral
responses to a stimulus. In this context, the in situ exposition to boat noises (the mean SPL
ranged from 134 to 146 dB re 1 µPa) did not cause displacement or elicit any significant
activity changes in S. umbra groups (for a total of 65 tested brown meagres) living in an
Italian MPA besides a reduction in the duration of active swimming [19]. An individual
variability in response was found by the authors: on average, one third of exposed fish
in a group reacted to noise by flighting and hiding. They resumed behavior quickly
after exposures.

Conversely, visual-based methods could not be applied to the Venice inlets due to the
risks connected with high boating and cargo traffic. As a consequence, it was not possible
to investigate the S. umbra behaviors in relation to the local traffic. Since S. umbra is a
vocal fish, the passive acoustic method (PAM) was the best option for the species-specific
recognition of its presence and distribution in the inlets.

Noise effects could also be evaluated by relating the presence of animals to varying
rates of disturbance across a number of sites [46]. Along the Venice inlets, brown meagre
vocalizations were found in about 50% of the investigated points; this was an intermediate
value compared to the case of the old and younger MPAs investigated in the northwestern
Mediterranean Sea, where S. umbra was found to be present in approximately 70–80% and
30% of the monitored stations, respectively [21]. Such a result is somehow surprising: since
animals select a location based upon its perceived quality, areas degraded by anthropogenic
(noise) disturbance are expected to be poorly occupied.

Following [19], brown meagre groups were reported to remain on site year by year
despite high boat traffic (18.7 boat passages h−1 during the tourist season), showing
a higher abundance than other surrounded less anthropized sites. The present study
also indicated that the brown meagre did not avoid the Venice inlets despite a vessel
traffic corresponding to an estimation of 10–30 boat passages h−1 on average due to
motorboats, cargos, or cruises. Interestingly, most of the listening points characterized
by a high S. umbra pulse rate (groups 1 and 2) were located in the internal side of the
inlets. These areas represent the only water connections between the inner lagoon and
the sea and are therefore characterized by a high boating traffic. Given the sedentary and
site-related S. umbra attitude [14,18,19], the nocturnal distribution is expected to mirror the
diurnal distribution.
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Furthermore, only the busiest locations in the internal side of the inlets were character-
ized by chorusing (group 1). Since the latter is a reliable natural indicator of the S. umbra
breeding sites [24], we conclude that the brown meagre does reproduce in these sites, de-
spite the relatively high anthropogenic noise levels experienced mostly but not exclusively
during the diurnal hours. This result was also unexpected if we consider that a reduction
in the ability to detect conspecific signals due to boat noise [22,47] could potentially affect
the courtship efficacy. It has to be stressed, however, that in the inlets, the vessel traffic was
reduced during the sunset-nocturnal hours, when the brown meagre vocalized. In its turn,
this could result in a lower masking effect on the species calls, thus diminishing the costs
expected for the animals living in the area.

The animals could be following the best-of-a-bad-job strategy: if the resources found
in the Venice inlets are unique in the local coastal area, the fish will not leave them. Exposed
fish could increase tolerance by a declining response from learning that the stimulus does
not have any detrimental consequences or through shifts in hearing sensitivity thresholds.
Behavioral and physiological attenuation have been found in fish after the repeated play-
back of the same motorboat-noise [48]; accordingly, the responses to motorboat noise in
wild endemic cichlids in Lake Malawi were lower in areas with higher levels of motor-
boat disturbance [49]. One way to potentially assess this effect would be to generate and
compare audiograms of the fish living in the three groups of locations in the inlets.

The decision of whether or not to stay in disturbed areas is determined not only by
the quality of the site but also by the distance to and quality of other suitable sites and/or
their relative risk of predation, the availability of prey, the density of competitors, and the
investment that an individual has made for establishing a territory, gaining dominance
status, and so on [46]. The Venice inlets are a structurally homogeneous area made by
artificial standard blocks that are matched by distance to the shore. Theoretically, there are
plenty of suitable sites for S. umbra along the inlets where noise disturbance is minimal,
such as the locations facing the open sea. Therefore, these sites were expected to be more
exploited by the species. As this was not the case, other factors (current, water depth,
salinity, bottom composition, and so on) seem to be crucial for the species, “forcing” it to
remain in some areas regardless of whether or not noise represents a disturbance. A deep
assessment of the habitat characteristics of those areas, where the vocal production and
likely the reproductive activity was more intense, should be carried out in future studies.
In other words, we need to address the structure of the reproductive habitat of the brown
meagre in this highly anthropic ecological context. Such information could help to evaluate
the suitability of surrounding locations for the reproduction of the target species. It could
also be used to evaluate the real extent of disturbance on the local fish population: if there
are relevant, less disturbed, but not exploited areas in the surroundings, we can conclude
that S. umbra is not strongly affected by boat noise. On the contrary, the species is likely
to be impacted by the anthropic pressure because it is constrained to stay and to tolerate
the costs of disturbance [46]. Data are currently being acquired to confirm the observed
spatial distribution of S. umbra in the Venice inlets and to evaluate the role of environmental
factors leading the habitat selection of this species.
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