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Abstract: With the implementation of the energy efficiency design index (EEDI) by the International
Maritime Organization (IMO), the goal of which is to reduce greenhouse gas (GHG) emissions,
interest in energy saving devices (ESDs) is increasing. Among such ESDs are air lubrication methods,
which reduce the frictional drag of ships by supplying air to the hull surface. This is one of the efficient
approaches to reducing a ship’s operating costs and making it environmentally friendly. In this study,
the air lubrication method on a flat plate was studied using computational fluid mechanics (CFD).
OpenFOAM, the open-source CFD platform, was used. The coupled level-set and volume of fluid
(CLSVOF) solver, which combines the advantages of the level-set method and the volume of fluid
method, was used to accurately predict the air and water interface. Rayleigh–Taylor instability was
simulated to verify the CLSVOF solver. The frictional drag reduction achieved by the air lubrication
of the flat plate at various injected airflow rates was studied, and compared with experimental results.
The characteristics of the air and water interface and the main factors affecting the cavity formation
were also investigated.

Keywords: air lubrication method; coupled level-set and volume of fluid (CLSVOF); computational
fluid dynamics (CFD); drag reduction; flat plate; OpenFOAM

1. Introduction

As global warming accelerates due to greenhouse gas (GHG) emissions, the interna-
tional community remains vigilant. The International Maritime Organization (IMO) has
imposed regulations on GHG emission and energy efficiency design index (EEDI) to ships
built from 2013. Based on emissions in 2008, the aim was to reduce carbon emissions by
10% from 2016, 20% from 2020, and 30% from 2025. Accordingly, energy-saving devices
(ESDs) are being actively studied as a means of increasing the fuel efficiency of ships [1–3].
For ships with a high Froude number, studies on ESDs that reduce frictional drag are
particularly active.

In the past, research on reducing the frictional drag has examined the riblet method [4]
and the flexible wall method [5] as approaches to decreasing the velocity gradient on the
hull surface. However, these methods were vulnerable to damage, and had the disadvan-
tages of causing environmental pollution.

Recently, an air lubrication method in which air is injected at the flat bottom of a ship
to reduce the frictional drag has been actively studied. The air lubrication method reduces
the frictional drag through the injection of air on the hull bottom surface to form an air
layer, thereby reducing the submerged surface area of ships. As shown in Figure 1, the
shape of the air layer can be broadly divided into three categories: bubble drag reduction
(BDR), transitional air layer drag reduction (TALDR), and air layer drag reduction (ALDR).
In the BDR regime, the injected air forms air bubbles, and the frictional drag reduction
is not high. On the other hand, in the ALDR regime, an air layer is continuously formed
at the surface, and the frictional drag reduction is higher. The TALDR regime is a mix
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of these two states. The air lubrication method is advantageous, in that the reduction in
fuel cost that can be achieved by lowering the frictional drag is higher than the cost of
installing and operating the device [6]. Currently, a range of air lubrication systems is
being applied to actual ships. In sea trials, the Mitsubishi Air Lubrication System (MARS)
of Mitsubishi Heavy Industries achieved a fuel savings up to 12% [7]. In 2018, Samsung
Heavy Industries installed “Samsung Advanced Vibration and Energy Reduction (SAVER)
Air”, an air lubrication system, resulting in a 4% fuel savings [6]. Daewoo Shipbuilding
and Marine Engineering also applied its own DSME ALS to LNG carriers in 2019. It has
been confirmed that the air lubrication method is effective in terms of fuel-saving and
environmental benefits.
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Figure 1. Three shapes of air layer. Reprinted from Ref. [8].

In addition to the utilization of the air lubrication system for ships, many studies
have been carried out on the physical characteristics of injected air. To exclude the effect
of shape, studies have been conducted on air lubrication on a flat plate [9–11]. Hao [12]
studied the effect of ship motions by the air layer. Kim et al. [13] predicted the full-scale
resistance of a ship with an air lubrication method and captured the air layer using the
volume of fluid (VOF) method. There have been some challenges in simulating the VOF
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method. Kim et al. [14] analyzed the air lubrication method using the VOF and Eulerian
multiphase (EMP) methods. In some studies, the VOF method has limitations when it
comes to reproducing the behavior of the air layer in the BDR or TALDR regimes [14].

The VOF method has the advantage of achieving better mass conservation, but has
a disadvantage due to difficulty in accurately predicting the radius of curvature of the
interface in a region in which the volume ratio is discontinuous. A level-set, another
method of tracking the interface, has the advantage of having high accuracy with regard to
the radius of curvature, but the disadvantage of difficulty preserving mass. To overcome
those difficulties, the coupled level-set and volume of fluid (CLSVOF) method, which
combines the advantages of the VOF method and the level-set method, was proposed [15].
In a similar study, a continuum surface force (CSF) was developed that considered surface-
tension force in the VOF method [16]. Albadawi [17] proposed a simple coupled level-set
and volume of fluid (S-CLSVOF) that combined the two methods using the CSF. The
CLSVOF method is applied in a wide range of engineering fields. Dianat et al. [18] selected
the CLSVOF method to study liquid droplets over solid surfaces, which could be applied to
exterior water management on road vehicles. Li et al. [19] simulated gas-assisted injection
modeling process by the CLSVOF method.

The objectives were (1) to develop the CLSVOF solver and (2) to apply it to an air
lubrication system of a flat plate. The CLSVOF solver was developed using open source
computational fluid dynamics libraries, called OpenFOAM version 6.

2. Model Description

A flat plate with a length of 8.19 m, a breadth of 1.71 m, and a height of 0.06 m were
selected. The bottom air cavity to trap the air had a length of 7.59 m, a width of 1.7 m, and
a height of 0.035 m. At both sides of the bottom air cavity, a thin plate with a breadth of
0.005 m was installed. Figure 2 shows the flat plate employed in this present study. The air
was injected from the air injection in the bottom air cavity. The computations were carried
out with the Reynolds number of 1.1× 107 and the Froude number of 0.173.
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Table 1 lists the test cases for various injected airflow rates. The coefficient of the
injected air flow rate (Cq) and the reduction ratio of the total drag (ηT) can be expressed as:

Cq =
Qair
VBh

(1)

ηT =
RT0 − RT

RT0

× 100(%) (2)

where Qair is the flow rate of the injected air, V is the inlet flow velocity, B is the width of
the flat plate, and h is the height of the bottom air cavity. The subscript “w/o air” and “w/
air” indicate the cases without injected air and with injected air, respectively.

Table 1. Test cases.

Cq Qair (m3/s)

Case 1 0.037 0.0152
Case 2 0.074 0.0304
Case 3 0.112 0.0461
Case 4 0.149 0.0614
Case 5 0.180 0.0742

3. Computational Methods
3.1. Governing Equations

The mass and momentum-conservation equations in the incompressible flow could
be written as

∇·
→
U = 0 (3)

∂
→
U

∂t
+

(→
U·∇

)→
U = −∇p +∇·(ν + νT)

(
∇
→
U +∇

→
U

T)
(4)

where
→
U is the velocity vector, p is the pressure, ν is the kinematic viscosity, and νt is the

turbulent kinematic viscosity.
To close the Reynolds stress term, k−ω SST model was selected [20]. The k−ω SST

model is a hybrid model combining the k−ω model in the near wall and the k− ε model
in the freestream.

3.2. Interface Capturing Method
3.2.1. VOF Method

The volume of fluid (VOF) method is a front capturing method that defines the
interface using the volume fraction of each cell and expresses the shape and motion of the
interface [21]. The VOF method uses the volume fraction to calculate the volume ratio of
each phase in the cell. When the cell is filled with air or water, the volume fraction is zero
or one. The volume fraction is between zero and one when the cell contains the interface.
The flowchart of the VOF method is shown in Figure 3. The volume fraction was decided
by the volume fraction transport equation, and then the mixture density and viscosity were
updated. The momentum and pressure equations were then solved.

The volume fraction transport equation was expressed as

∂

∂t
(αρm) +∇·

(
αρm

→
vm

)
+ Cad∇·

(
α(1− α)

→
vr

)
= 0 (5)

where Cad is the antidiffusion coefficient. The third term reduced the solution smearing.
This study selected one as the antidiffusion coefficient [22].

→
vr is the artificial compres-

sion velocity.
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3.2.2. CLSVOF Method

The flow chart of the CLSVOF method is shown in Figure 4. The flow chart and
equations were based on Albadawi et al. [17]. In the CLSVOF method, the level-set method
was started from the solution of the VOF method. The volume fraction (α), which was the
solution of the volume fraction transport equation, was used in the initial level-set function
(φo). The initial level-set function could be expressed as

φ0 = (2α− 1)Γ (6)
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The volume fraction of 0.5 was defined as the initial interface in the level-set function
because the isosurface of 0.5 is usually defined as the interface in the VOF method. The
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initial level-set function has a positive value in the air and a negative value in the water.
The non-dimensional number (Γ) was defined using the cell size (4x) and defined as

Γ = 0.754 x (7)

The non-dimensional number was related to numerical stability and accuracy. A
large non-dimensional number caused numerical instability, while a small nondimensional
number caused an inaccurate result.

The level-set function was redistancing from the initial level-set function. The level-set
function of each cell was calculated using the normal distance from the interface. The
reinitialization equation could be expressed as

∂φ

∂τ
= Sign(φ0)(1− |∇φ|) (8)

where τ is the artificial time step, and was selected as τ = 0.14 x.
The mixture density and dynamics viscosity were calculated using the Heaviside

function (He(φ)). The mixture density and dynamic viscosity were expressed as

He(φ) =


0 i f φ < −e

φ+e
2e + sin(πφ/e)

2π i f |φ| ≤ e
1 i f φ > e

(9)

ρi,j = He(φ)ρ1 + (1− He(φ))ρ2 (10)

µi,j = He(φ)µ1 + (1− He(φ))µ2 (11)

where ε is the interface thickness. The Heaviside function has values of zero and one
outside the interface thickness (|φ| ≤ e), and smoothly connects zero and one within the
interface thickness. The interface thickness was chosen as ε = 1.5∆x. The continuum
surface force in the level-set function could be expressed as [16]

Fσ,φ = σkφδφ∇φ (12)

where σ is the surface tension coefficient, and δφ is the Dirac function, which is to activate
the surface tension within the interface. The Dirac function and interface curvature could
be written as

δφ

{
1
2e

(
1 + cos

(
πφ
e

))
|φ| ≤ e

0 |φ| > e
(13)

κ(φ) = −∇· ∇φ

|∇φ| (14)

3.2.3. Verification of CLSVOF

The Rayleigh–Taylor instability, which was used to verify complex multiphase flows,
has been used by many researchers to compare their numerical methods. This is a mixing
problem in which a dense fluid mixes with a low-density fluid, and is used to study the
accuracy of reproducing the instability of the interface. Two fluids with different densities
(ρ1 = 1.225 kg

m3 , ρ2 = 0.1694 kg
m3 ) but the same viscosity (µ1 = 0.00313 kg

m·s , µ2 = 0.00313 kg
m·s )

were selected. The domain extent was 1 m × 4 m and the initial interface was set by the
Cosine function, which was the wavelength of 1 m and amplitude of 0.05 m. Gravity (g)
was 9.81 m/s2 and the time step size (4t) was set to 2.5× 10−4 s. The grid size (hG) was
1/256. The two-dimensional analysis was carried out for the Rayleigh–Taylor instability.
Figure 5 shows the interface shapes at 0 s., 0.8 s., 0.9 s, and 0.95 s. and compares with
another numerical result [23]. Both the stem shape and bubble shape were well simulated.
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3.3. Numerical Methods

The time derivative terms were discretized using the Crank–Nicholson implicit
scheme. The gradient at the cell centers was calculated using the least-squares method. The
convection terms were discretized using a second-order accurate total variation diminish-
ing (TVD) scheme with the Gauss van Leer limiter [24]. The velocity and pressure coupling
and overall solution procedure were based on the PIMPLE algorithm. The PIMPLE Algo-
rithm is a combination of PISO (Pressure Implicit with Splitting of Operator) and SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations) algorithm. The discretized algebraic
equations for pressure and velocity were solved using a pointwise Gauss–Seidel itera-
tive algorithm, while an algebraic multigrid method was employed to accelerate solution
convergence [25].

The time step was set to 1× 10−3 s. The simulation time was advanced when the
normalized residuals for the solutions had dropped by seven orders of magnitude.

4. Results and Discussion
4.1. Domain Extents, Boundary Conditions, and Meshes

The stern direction of the flat plate was set as the + x-axis, the starboard direction
as the + y-axis, and the height direction as the + z-axis. The domain extent was set to
0.6 L in the forward direction, 1.4 L in the stern direction, 0.8 L in the width direction, and
0.6 L above and below the flat plate. Here, L is the length of the flat plate. The air was
injected from the bottom in the—z-direction. Figure 6 shows the domain extent, boundary
conditions, and meshes.
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The Dirichlet conditions were applied for the velocity, turbulence, and volume fraction
at the inlet boundary and the pressure at the outlet boundary. The Neumann conditions
were applied for the pressure at the inlet boundary, and the velocity, turbulence, and
volume fraction at the outlet boundary [26]. Only half of the flat plate was considered
because the shape was symmetrical. The symmetry condition was applied to the plane of
y = 0.

Figure 7 shows typical internal meshes at the y = 0 plane. For an accurate prediction
of the air layer in the bottom air cavity, structured meshes were used.

4.2. Grid Uncertainty Assessment

Grid uncertainty for the total drag reduction and covered area of the injected air were
assessed with three types of grids. As listed in Table 2, three types of grid, i.e., coarse,
medium, and fine grids, were considered. Figure 8 shows the typical internal meshes at the
y-z plane. The background structured grid size was increased or decreased in all directions
by 1.4 times each. The finally considered total grid counts were 1.2× 106 for the coarse
grid, 2.8× 106 for the medium grid, and 4.8× 106 for the fine grid.

Table 2. Grid number for uncertainty assessment.

Grid System Background Grid Size (m) Grid Count

Coarse 0.06 1,245,645
Medium 0.042 2,822,109

Fine 0.03 4,778,028
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Table 3 lists the results of the grid uncertainty assessment for the total drag reduction
(ηT) and coverage area of the injected air (ζair). The convergence ratios (RG =

SG,2 − SG,1
SG,3 − SG,2

)
showed a monotonic convergence (0 < RG < 1). Using the correction factor (C), the
corrected error (δG

∗), uncertainty (UG), and corrected uncertainty (UGC) were calculated as

C =
rG

pi − 1
rG

pest − 1
. (15)

δG
∗ = CδREG

∗ = C
(

εG,21

ri
pi − 1

)
. (16)

UG =
∣∣CδREG

∗|+|(1− C)δREG
∗. (17)

UGC =
∣∣(1− C)δREG

∗∣∣ (18)

Table 3. Results of grid convergence test.

Parameter ηT ζair

Fine (SG, 1) 0.312 0.999
Medium (SG, 2) 0.311 0.997
Coarse (SG, 3) 0.308 0.989

RG 0.333 0.25
δG
∗(% SG, 1) −0.001 (−0.32%) −0.002 (−0.20%)

UG
∗(% SG, 1) 0.0015 (0.48%) 0.00333 (0.33%)

UGC
∗(% SG, 1) 0.0005 (0.16%) 0.00133 (0.13%)

The grid uncertainty and corrected grid uncertainty for the total drag reduction were
0.48% and 0.16%, respectively. The grid uncertainty and corrected grid uncertainty for
the coverage area of the injected air were 0.33% and 0.13%, respectively. The level of
verification and validation was less than 1%.

4.3. Air Lubrication Method and Drag Reduction

The computations were carried out at a Froude number of 0.173 and the injected
airflow rate of 0.149 m3/s. Figure 9 shows the streamlines around the flat plate and
inside the bottom air cavity. The flow was circulated in the fore region of the bottom air
cavity, which was similar to the flow of the backward-facing step. Figure 10 shows the
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air layer evolution in the bottom air cavity. The injected air filled the circulation zone and
then convected downstream. After the injected air filled the bottom surface, the air layer
thickness was increased.
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The air circulation zone causes low pressure outside the air layer, as shown in
Figure 11. The repeated high and low pressures outside the air layer caused an undu-
lation of the air layer, which generated an air layer wave. The generated air layer wave is
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observed in Figure 11. The air layer wave was related to the velocity of the injected air, and
can be expressed with the equation below [27].

λ =
2πU2

g
(19)

Figure 11. Pressure coefficient contours below the air layer.

The calculated wavelength of the air layer was λ = 2πU2

g = 1.5, which was similar to
the result in Figure 11. This equation was of the same form as the phase velocity in the
airy wave theory. The propagation characteristic of the air layer was similar to the ocean
wave. Figure 12 shows the air layer elevation. The five air layer waves were seen in the
bottom air cavity. Note that the air layer showed converging and diverging flow patterns.

Figure 13 shows the crossflow (
√

u2
y + u2

z) at the flat plate at x = 0.5 m. The cross-flow was
generated because of the different pressures at the side thin plate of the bottom air cavity.
This cross-flow caused the diverging of the air layer around the fore region in the bottom
air cavity. Diverging and converging flow patterns were then observed.
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Figure 13. Cross flow at x = 0.7 m (Fr = 0.173, Cq = 0.149).

The drag reduction of the flat plate was predicted using the CLSVOF and VOF solvers.
Figure 14 shows the total drag reduction rate (ηT) for various injected airflow rates (Cq). It
could be observed that the total drag reductions were constant when the injected airflow
rates were greater than 0.14, because the frictional drag by the air lubrication did not
decrease further. After the air layer completely covered the surface of the bottom cavity, no
additional frictional drag reduction could be obtained. At high injected airflow rates, the
total drag reductions shown by both the VOF and CLSVOF solvers were similar to those by
the experimental results [12]. Similar reductions were obtained using both solvers because
the air layer covered the whole bottom cavity. On the other hand, at low injected airflow
rates, the air layer showed a shape of BDR or TALDR, so it could be seen that the CLSVOF
solver was more similar to the experimental data than the VOF solver.
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Figure 14. Total drag reduction at various injected air flow rates.

The air layer shape for both the CLSVOF and VOF solvers were compared. Figure 15
shows the air layer at the low injected airflow rate of 0.037. In the CLSVOF solver, the air
layer was discontinuously observed over a large area, but only a continuous air layer was
observed in the VOF solver. It was confirmed that the shape of the air layer by the VOF
solver caused a decrease in the total drag reduction. Figure 16 shows the air layer at the
high injected airflow rate of 0.18. The air layer was continuously distributed by both the
solvers. The air layer shapes were similar in the ALDR regime, indicating that the VOF
solver was limited in terms of its capacity to predict the discontinuous air layer.

Figure 17 shows the air layer for various injected airflow rates according to the
CLSVOF solver. At the low injected airflow rate of 0.037, bubbles appeared discontinuously.
As the injected airflow rate increased, the continuous air layer was widened, and at the
end of the air layer, a discontinuous air layer was observed. The time required for the air
layer to evolute to its maximum length was calculated as 16.9 s, 10.2 s, 8.8 s, 8.1 s, and
7.9 s when the airflow rates were 0.037, 0.074, 0.112, 0.149, and 0.180, respectively. As the
injected airflow rate increased, the air layer evolution speed increased.
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Figure 17. Air layer shapes at various injected air flow rates.

Table 4 lists the results with a Froude number of 0.173 and the injected airflow rate
of 0.149. Here RT is the total drag of the flat plate, Rv is the frictional drag, ηT is the total
drag reduction, and η f is the frictional drag reduction. It can be seen that the CLSVOF
solver predicted the drag reduction in the air lubrication method well.
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Table 4. Drag and drag reduction.

Present
(CLSVOF)

Experiment
(Hao et al. [12]) Difference

RT 41.9 N 41.8 N 0.24%
Rv 28.3 N 28.1 N 0.71%
ηT 32.1% 33% −0.9%
η f 32.3% 31.5% 0.8%

5. Concluding Remarks

In the present study, the CLSVOF solver was selected to simulate air lubrication
of a flat plate. The CLSVOF solver was developed using OpenFOAM, an open-source
computational fluid dynamics platform. The air layer shape and drag reduction achieved
by the air lubrication were observed for various injected airflow rates.

The recirculating flow inside the bottom cavity appeared like a backward-facing step.
The air layer showed an undulation and the fluctuating period of the air layer was similar
to the ocean wave. The cross-flow at the side edge of the flat plate caused a converging and
diverging flow pattern of the air layer.

As the injected airflow rate increased, the air layer developed from the BDR to ALDR
regimes. After the air layer covered the whole surface, the frictional drag did not decrease
even if the airflow rate increased, so that the total drag was constant. When the air layers
simulated by both the CLSVOF and VOF solvers were compared, it was found that the VOF
solver had limitations in terms of reproducing a discontinuous air layer. It was confirmed
that CLSVOF was needed to predict the air layer well in air lubrication systems. The
CLSVOF solver is planned to be used to predict the drag of a ship with the air lubrication
system in the model and full scales.
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